1
|
Cooper J, Airstone B, Beaman E, Carollo E, Brooks SA, Pink RC. Helix pomatia agglutinin bound to surface glycans of small extracellular vesicles in-vitro and in-vivo increases in early and late stage breast cancer. Breast Cancer 2025:10.1007/s12282-025-01724-4. [PMID: 40411659 DOI: 10.1007/s12282-025-01724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 05/11/2025] [Indexed: 05/26/2025]
Abstract
BACKGROUND Breast cancer is the most frequently diagnosed cancer and a leading cause of cancer-related mortality in women globally. Small extracellular vesicles (sEVs) play a crucial role in cell communication and cancer progression. This study aimed to investigate the glycosylation patterns of sEVs derived from breast epithelial cells and plasma samples from breast cancer patients, focusing on the presence of truncated O-linked glycans, such as the Tn antigen, using Helix pomatia agglutinin (HPA). METHODS Breast cancer cell lines were investigated for HPA lectin surface binding by confocal microscopy and flow cytometry. The sEVs of these were tested for surface HPA and tetraspanin binding using imaging-flow cytometry, single particle interferometry, and direct stochastical optical reconstruction microscopy. Plasma from healthy and stage II-IV breast cancer patients were tested by imaging-flow cytometry for HPA binding and analyzed for the source of HPA + EVs using 37 colocalised markers by multiplex flow cytometry . RESULTS Quantitative analysis revealed elevated HPA binding in sEVs from metastatic MCF-7 cells compared to that in non-metastatic BT-474 and immortalized healthy normal hTERT-HME1 cells, suggesting a correlation between HPA binding and metastatic potential. Analysis of sEVs revealed differential glycan presentation with CD81-positive sEVs from MCF-7 cells compared to CD63. In patient-derived plasma sEVs, HPA binding was significantly higher in patients with breast cancer than in healthy individuals, highlighting its potential as a biomarker for cancer detection. CONCLUSIONS These findings highlight the complex glycosylation of sEVs and their potential early diagnostic utility in breast cancer for HPA positive sEVs.
Collapse
Affiliation(s)
- Jamie Cooper
- School of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Bethy Airstone
- School of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Ellie Beaman
- School of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Emanuela Carollo
- School of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Susan Ann Brooks
- School of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Ryan Charles Pink
- School of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK.
| |
Collapse
|
2
|
Zhang C, Wang G, Xu J, Wang W, Sun P, Hu S. A review of the role of CSCs and CSC-EXOs in increasing drug resistance in breast cancer and future applications. Crit Rev Oncol Hematol 2025; 212:104774. [PMID: 40412576 DOI: 10.1016/j.critrevonc.2025.104774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/04/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025] Open
Abstract
Breast cancer (BCa) remains a major global health challenge due to its complex etiology, varied clinical manifestations, and therapy resistance, which contributes to nearly 90 % of cancer-related deaths. A key factor in treatment failure is the presence of BCa stem cells (BCSCs), which drive drug resistance and tumor recurrence. Understanding BCSC formation, regulation, and role in therapeutic resistance is crucial for developing targeted therapies. Additionally, exosomes (EXOs) secreted by BCSCs play a critical role in cancer progression and drug resistance. These vesicles facilitate communication between cancer and stromal cells by transferring RNA and proteins, influencing treatment response. For instance, EXOs from stromal cells can enhance BCa cell survival under chemotherapy and radiation. This study explores BCSC mechanisms, their contribution to drug resistance, and emerging therapeutic strategies. We also examine how BCa-derived and BCSC-derived EXOs promote drug tolerance and tumor growth. Finally, we discuss future treatment approaches, current research limitations, and potential solutions to advance BCa therapy. Novel interventions may overcome resistance and improve patient outcomes by targeting BCSCs and EXO-mediated pathways. However, further research is needed to translate these findings into practical clinical applications.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Liver Transplant Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guoliang Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Liver Transplant Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jianjun Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Liver Transplant Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenqiang Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Liver Transplant Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ping Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Shaobo Hu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Liver Transplant Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Wu X, Meng Y, Yao Z, Lin X, Hu M, Cai S, Gao S, Zhang H. Extracellular vesicles as nature's nano carriers in cancer therapy: insights toward preclinical studies and clinical applications. Pharmacol Res 2025:107751. [PMID: 40345354 DOI: 10.1016/j.phrs.2025.107751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/11/2025]
Abstract
Extracellular vesicles (EVs), which are secreted by various cell types, hold significant potential for cancer therapy. However, there are several challenges and difficulties that limit their application in clinical settings. This review, which integrates the work of our team and recent advancements in this research field, discusses EV-based cancer treatment strategies to guide their clinical application. The following treatment strategies are discussed: 1) leveraging the inherent properties of EVs for the development of cancer treatments; 2) modifying EVs using EV engineering methods to improve drug loading and delivery; 3) targeting key molecules in tumor-derived EV (TDE) synthesis to inhibit their production; and 4) clearing TDEs from the tumor microenvironment. Additionally, on the basis of research into EV-based vaccines and bispecific antibodies, this review elaborates on strategies to enhance antitumor immunity via EVs and discusses engineering modifications that can improve EV targeting ability and stability and the research progress of AI technology in targeted delivery of EV drugs. Although there are limited strategies for enhancing EV targeting abilities, this review provides an in-depth discussion of prior studies. Finally, this review summarizes the clinical progress on the use of EVs in cancer therapy and highlights challenges that need to be addressed.
Collapse
Affiliation(s)
- Xiaotong Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yuhua Meng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China; Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China; Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiaona Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China; Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Mengyuan Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Songwang Cai
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shegan Gao
- College of Clinical Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Henan Key Laboratory of Cancer Epigenetics, Luoyang, Henan, China.
| | - Hao Zhang
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China.
| |
Collapse
|
4
|
Scholten D, El-Shennawy L, Jia Y, Zhang Y, Hyun E, Reduzzi C, Hoffmann AD, Almubarak HF, Tong F, Dashzeveg N, Sun Y, Squires JR, Lu J, Platanias LC, Wasserfall CH, Gradishar WJ, Cristofanilli M, Fang D, Liu H. Rare Subset of T Cells Form Heterotypic Clusters with Circulating Tumor Cells to Foster Cancer Metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646421. [PMID: 40236049 PMCID: PMC11996511 DOI: 10.1101/2025.04.01.646421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The immune ecosystem is central to maintaining effective defensive responses. However, how immune cells in the periphery blood interact with circulating tumor cells (CTCs) - seeds of metastasis - remains largely understudied. Here, our analysis of the blood specimens (N=1,529) from patients with advanced breast cancer revealed that over 75% of the CTC-positive blood specimens contained heterotypic CTC clusters with CD45 + white blood cells (WBCs). Detection of CTC-WBC clusters correlates with breast cancer subtypes (triple negative and luminal B), racial groups (Black), and decreased survival rates. Flow cytometry and ImageStream analyses revealed diverse WBC composition of heterotypic CTC-WBC clusters, including overrepresented T cells and underrepresented neutrophils. Most strikingly, a rare subset of CD4 and CD8 double positive T (DPT) cells showed an up to 140-fold enrichment in the CTC clusters versus its frequency in WBCs. DPT cells shared part of the profiles with CD4 + T cells and others with CD8 + T cells but exhibited unique features of T cell exhaustion and immune suppression with higher expression of TIM-3 and PD-1. Single-cell RNA sequencing and genetic perturbation studies further pinpointed the integrin VLA4 (α4β1) in DPT cells and its ligand VCAM1 in tumor cells as essential mediators of heterotypic WBC-CTC clusters. Neoadjuvant administration of anti-α4 (VLA4) neutralizing antibodies markedly blocked CTC-DPT cell clustering and inhibited metastasis for extended survival in preclinical mouse models in vivo . These findings uncover a pivotal role of rare DPT cells with immune suppressive features in fostering cancer dissemination through direct interactive clustering with CTCs. It lays a foundation for developing innovative biomarkers and therapeutic strategies to prevent and target cancer metastasis, ultimately benefiting cancer care. Brief summary Our findings uncover a fostering role of immune-suppressive T cells in contact with circulating tumor cells and identify therapeutic approaches to eliminate devastating cancer metastasis.
Collapse
|
5
|
Xu K, Feng H, Zhao R, Huang Y. Targeting Tetraspanins at Cell Interfaces: Functional Modulation and Exosome-Based Drug Delivery for Precise Disease Treatment. ChemMedChem 2025; 20:e202400664. [PMID: 39415492 DOI: 10.1002/cmdc.202400664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/18/2024]
Abstract
Tetraspanins are key players in various physiological and pathological processes, including malignancy, immune response, fertilization, and infectious disease. Affinity ligands targeting the interactions between tetraspanins and partner proteins are promising for modulating downstream signaling pathways, thus emerging as attractive candidates for interfering related biological functions. Due to the involvement in vesicle biogenesis and cargo trafficking, tetraspanins are also regarded as exosome markers, and become molecular targets for drug loading and delivery. Given the rapid development in these areas, this minireview focuses on recent advances in design and engineering of affinity binders toward tetraspanins including CD63, CD81, and CD9. Their mechanism of actions in modulating protein interactions at cell interfaces and treatment of malignant diseases are discussed. Strategies for constructing exosome-based drug delivery platforms are also reviewed, with emphasis on the important roles of tetraspanins and the affinity ligands. Finally, challenges and future development of tetraspanin-targeting therapy and exosomal drug delivery platforms are also discussed.
Collapse
Affiliation(s)
- Kun Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huixia Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Ye J, Li D, Jie Y, Luo H, Zhang W, Qiu C. Exosome-based nanoparticles and cancer immunotherapy. Biomed Pharmacother 2024; 179:117296. [PMID: 39167842 DOI: 10.1016/j.biopha.2024.117296] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Over the past decades, cancer immunotherapy has encountered challenges such as immunogenicity, inefficiency, and cytotoxicity. Consequently, exosome-based cancer immunotherapy has gained rapid traction as a promising alternative. Exosomes, a type of extracellular vesicles (EVs) ranging from 50 to 150 nm, are self-originating and exhibit fewer side effects compared to traditional therapies. Exosome-based immunotherapy encompasses three significant areas: cancer vaccination, co-inhibitory checkpoints, and adoptive T-cell therapy. Each of these fields leverages the inherent advantages of exosomes, demonstrating substantial potential for individualized tumor therapy and precision medicine. This review aims to elucidate the reasons behind the promise of exosome-based nanoparticles as cancer therapies by examining their characteristics and summarizing the latest research advancements in cancer immunotherapy.
Collapse
Affiliation(s)
- Jiarong Ye
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi Province, 330000 China.
| | - Danni Li
- Second Clinical Medical School, Nanchang University, Jiangxi Province 330000, China
| | - Yiting Jie
- Second Clinical Medical School, Nanchang University, Jiangxi Province 330000, China
| | - Hongliang Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Province 330000, China
| | - Wenjun Zhang
- Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Province 330000, China
| | - Cheng Qiu
- Gastrointestinal Surgery, Pingxiang People's Hospital, Jiangxi Province 330000, China.
| |
Collapse
|
7
|
Ikari A, Ito Y, Taniguchi K, Shibata MA, Kimura K, Iwamoto M, Lee SW. Role of CD44-Positive Extracellular Vesicles Derived from Highly Metastatic Mouse Mammary Carcinoma Cells in Pre-Metastatic Niche Formation. Int J Mol Sci 2024; 25:9742. [PMID: 39273689 PMCID: PMC11395953 DOI: 10.3390/ijms25179742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Malignant breast cancers pose a notable challenge when it comes to treatment options. Recently, research has implicated extracellular vesicles (EVs) secreted by cancer cells in the formation of a pre-metastatic niche. Small clumps of CD44-positive breast cancer cells are efficiently transferred through CD44-CD44 protein homophilic interaction. This study aims to examine the function of CD44-positive EVs in pre-metastatic niche formation in vitro and to suggest a more efficacious EV formulation. We used mouse mammary carcinoma cells, BJMC3879 Luc2 (Luc2 cells) as the source of CD44-positive EVs and mouse endothelial cells (UV2 cells) as the recipient cells in the niche. Luc2 cells exhibited an enhanced secretion of EVs expressing CD44 and endothelial growth factors (VEGF-A, -C) under 20% O2 (representative of the early stage of tumorigenesis) compared to its expression under 1% O2 (in solid tumor), indicating that pre-metastatic niche formation occurs in the early stage. Furthermore, UV2 endothelial cells expressing CD44 demonstrated a high level of engulfment of EVs that had been supplemented with hyaluronan, and the proliferation of UV2 cells occurred following the engulfment of EVs. These results suggest that anti-VEGF-A and -C encapsulated, CD44-expressing, and hyaluronan-coated EVs are more effective for tumor metastasis.
Collapse
Affiliation(s)
- Ayana Ikari
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (A.I.); (K.K.); (M.I.); (S.-W.L.)
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (A.I.); (K.K.); (M.I.); (S.-W.L.)
| | - Kohei Taniguchi
- Translational Research Program, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan
| | - Masa-Aki Shibata
- Department of Anatomy & Cell Biology, Division of Life Sciences, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan;
| | - Kosei Kimura
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (A.I.); (K.K.); (M.I.); (S.-W.L.)
| | - Mitsuhiko Iwamoto
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (A.I.); (K.K.); (M.I.); (S.-W.L.)
| | - Sang-Woong Lee
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (A.I.); (K.K.); (M.I.); (S.-W.L.)
| |
Collapse
|
8
|
Zou Z, Luo T, Wang X, Wang B, Li Q. Exploring the interplay between triple-negative breast cancer stem cells and tumor microenvironment for effective therapeutic strategies. J Cell Physiol 2024; 239:e31278. [PMID: 38807378 DOI: 10.1002/jcp.31278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/30/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic malignancy with poor treatment outcomes. The interaction between the tumor microenvironment (TME) and breast cancer stem cells (BCSCs) plays an important role in the development of TNBC. Owing to their ability of self-renewal and multidirectional differentiation, BCSCs maintain tumor growth, drive metastatic colonization, and facilitate the development of drug resistance. TME is the main factor regulating the phenotype and metastasis of BCSCs. Immune cells, cancer-related fibroblasts (CAFs), cytokines, mesenchymal cells, endothelial cells, and extracellular matrix within the TME form a complex communication network, exert highly selective pressure on the tumor, and provide a conducive environment for the formation of BCSC niches. Tumor growth and metastasis can be controlled by targeting the TME to eliminate BCSC niches or targeting BCSCs to modify the TME. These approaches may improve the treatment outcomes and possess great application potential in clinical settings. In this review, we summarized the relationship between BCSCs and the progression and drug resistance of TNBC, especially focusing on the interaction between BCSCs and TME. In addition, we discussed therapeutic strategies that target the TME to inhibit or eliminate BCSCs, providing valuable insights into the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Zhuoling Zou
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, China
| | - Tinglan Luo
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Xinyuan Wang
- Department of Clinical Medicine, The Second Clinical College of Chongqing Medicine University, Chongqing, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Qing Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Bandu R, Oh JW, Kim KP. Extracellular vesicle proteins as breast cancer biomarkers: Mass spectrometry-based analysis. Proteomics 2024; 24:e2300062. [PMID: 38829178 DOI: 10.1002/pmic.202300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 06/05/2024]
Abstract
Extracellular vesicles (EVs) are membrane-surrounded vesicles released by various cell types into the extracellular microenvironment. Although EVs vary in size, biological function, and components, their importance in cancer progression and the potential use of EV molecular species to serve as novel cancer biomarkers have become increasingly evident. Cancer cells actively release EVs into surrounding tissues, which play vital roles in cancer progression and metastasis, including invasion and immune modulation. EVs released by cancer cells are usually chosen as a gateway in the search for biomarkers for cancer. In this review, we mainly focused on molecular profiling of EV protein constituents from breast cancer, emphasizing mass spectrometry (MS)-based proteomic approaches. To further investigate the potential use of EVs as a source of breast cancer biomarkers, we have discussed the use of these proteins as predictive marker candidates. Besides, we have also summarized the key characteristics of EVs as potential therapeutic targets in breast cancer and provided significant information on their implications in breast cancer development and progression. Information provided in this review may help understand the recent progress in understanding EV biology and their potential role as new noninvasive biomarkers as well as emerging therapeutic opportunities and associated challenges.
Collapse
Affiliation(s)
- Raju Bandu
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jae Won Oh
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Singh A, Liu H, El-Shennawy L. Multi-omic features and clustering phenotypes of circulating tumor cells associated with metastasis and clinical outcomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 392:67-100. [PMID: 40287221 DOI: 10.1016/bs.ircmb.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Metastasis is a lethal disease of cancer, spreading from primary tumors to the bloodstream as circulating tumor cells (CTCs), which disseminate to distant organs at low efficiency for secondary tumor regeneration, thereby contributing to unfavorable patient outcomes. The detection of dynamic CTC alterations can be indicative of cancer progression (residual cancer, aggressiveness, therapy resistance) or regression (therapy response), serving as biomarkers for diagnoses and prognoses. CTC heterogeneity is impacted by both intrinsic oncogenic changes and extrinsic microenvironmental factors (e.g. the immune system and circadian rhythm), altering the genomic/genetic, epigenomic/epigenetic, proteomic, post-translational, and metabolomic landscapes. In addition to homeostatic dynamics, regenerative stemness, and metabolic plasticity, a newly discovered feature of CTCs that influences metastatic outcomes is its intercellular clustering. While the dogma suggests that CTCs play solo as single cells in the circulation, CTCs can orchestrate with other CTCs or white blood cells to form homotypic or heterotypic multi-cellular clusters, with 20-100 times enhanced metastatic potential than single CTCs. CTC clusters promote cell survival and stemness through DNA hypomethylation and signaling pathways activated by clustering-driving proteins (CD44, CD81, ICAM1, Podocalyxin, etc). Heterotypic CTC clusters may protect CTCs from immune cell attacks if not being cleared by cytotoxic immune cells. This chapter mainly focused on CTC biology related to multi-omic features and metastatic outcomes. We speculate that CTCs could guide therapeutic targeting and be targeted specifically by anti-CTC therapeutics to reduce or eliminate cancer and cancer metastasis.
Collapse
Affiliation(s)
- Anmol Singh
- Department of Pharmacology, Northwestern University, Chicago, IL, United States
| | - Huiping Liu
- Department of Pharmacology, Northwestern University, Chicago, IL, United States; Hematology & Oncology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Lamiaa El-Shennawy
- Department of Pharmacology, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
11
|
Schmidt SC, Massenberg A, Homsi Y, Sons D, Lang T. Microscopic clusters feature the composition of biochemical tetraspanin-assemblies and constitute building-blocks of tetraspanin enriched domains. Sci Rep 2024; 14:2093. [PMID: 38267610 PMCID: PMC10808221 DOI: 10.1038/s41598-024-52615-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/21/2024] [Indexed: 01/26/2024] Open
Abstract
Biochemical approaches revealed that tetraspanins are multi-regulatory proteins forming a web, where they act in tetraspanin-enriched-microdomains (TEMs). A microscopic criterion differentiating between web and TEMs is lacking. Using super-resolution microcopy, we identify co-assemblies between the tetraspanins CD9 and CD81 and CD151 and CD81. CD9 assemblies contain as well the CD9/CD81-interaction partner EWI-2. Moreover, CD9 clusters are proximal to clusters of the CD81-interaction partner CD44 and CD81-/EWI-2-interacting ezrin-radixin-moesin proteins. Assemblies scatter unorganized across the cell membrane; yet, upon EWI-2 elevation, they agglomerate into densely packed arranged-crowds in a process independent from actin dynamics. In conclusion, microscopic clusters are equivalent to biochemical tetraspanin-assemblies, defining in their entirety the tetraspanin web. Cluster-agglomeration enriches tetraspanins, which makes agglomerations to a microscopic complement of TEMs. The microscopic classification of tetraspanin assemblies advances our understanding of this enigmatic protein family, whose members play roles in a plethora of cellular functions, diseases, and pathogen infections.
Collapse
Affiliation(s)
- Sara C Schmidt
- Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Annika Massenberg
- Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Yahya Homsi
- Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Dominik Sons
- Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Thorsten Lang
- Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany.
| |
Collapse
|
12
|
Li D, Wang L, Jiang B, Jing Y, Li X. Improving cancer immunotherapy by preventing cancer stem cell and immune cell linking in the tumor microenvironment. Biomed Pharmacother 2024; 170:116043. [PMID: 38128186 DOI: 10.1016/j.biopha.2023.116043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer stem cells are the key link between malignant tumor progression and drug resistance. This cell population has special properties that are different from those of conventional tumor cells, and the role of cancer stem cell-related exosomes in progression of tumor malignancy is becoming increasingly clear. Cancer stem cell-derived exosomes carry a variety of functional molecules involved in regulation of the microenvironment, especially with regard to immune cells, but how these exosomes exert their functions and the specific mechanisms need to be further clarified. Here, we summarize the role of cancer stem cell exosomes in regulating immune cells in detail, aiming to provide new insights for subsequent targeted drug development and clinical strategy formulation.
Collapse
Affiliation(s)
- Dongyu Li
- Department of General Surgery & VIP In-Patient Ward, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Lei Wang
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Bo Jiang
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Yuchen Jing
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Xuan Li
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China.
| |
Collapse
|
13
|
Wei YN, Yan CY, Zhao ML, Zhao XH. The role and application of vesicles in triple-negative breast cancer: Opportunities and challenges. Mol Ther Oncolytics 2023; 31:100752. [PMID: 38130701 PMCID: PMC10733704 DOI: 10.1016/j.omto.2023.100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Extracellular vesicles (EVs) carry DNA, RNA, protein, and other substances involved in intercellular crosstalk and can be used for the targeted delivery of drugs. Triple-negative breast cancer (TNBC) is rich in recurrent and metastatic disease and lacks therapeutic targets. Studies have proved the role of EVs in the different stages of the genesis and development of TNBC. Cancer cells actively secrete various biomolecules, which play a significant part establishing the tumor microenvironment via EVs. In this article, we describe the roles of EVs in the tumor immune microenvironment, metabolic microenvironment, and vascular remodeling, and summarize the application of EVs for objective delivery of chemotherapeutic drugs, immune antigens, and cancer vaccine adjuvants. EVs-based therapy may represent the next-generation tool for targeted drug delivery for the cure of a variety of diseases lacking effective drug treatment.
Collapse
Affiliation(s)
- Ya-Nan Wei
- Department of Clinical Oncology, Sheng jing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Chun-Yan Yan
- Department of Clinical Oncology, Sheng jing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Meng-Lu Zhao
- Department of Clinical Oncology, Sheng jing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Xi-He Zhao
- Department of Clinical Oncology, Sheng jing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| |
Collapse
|
14
|
Dashzeveg NK, Jia Y, Zhang Y, Gerratana L, Patel P, Shajahan A, Dandar T, Ramos EK, Almubarak HF, Adorno-Cruz V, Taftaf R, Schuster EJ, Scholten D, Sokolowski MT, Reduzzi C, El-Shennawy L, Hoffmann AD, Manai M, Zhang Q, D'Amico P, Azadi P, Colley KJ, Platanias LC, Shah AN, Gradishar WJ, Cristofanilli M, Muller WA, Cobb BA, Liu H. Dynamic Glycoprotein Hyposialylation Promotes Chemotherapy Evasion and Metastatic Seeding of Quiescent Circulating Tumor Cell Clusters in Breast Cancer. Cancer Discov 2023; 13:2050-2071. [PMID: 37272843 PMCID: PMC10481132 DOI: 10.1158/2159-8290.cd-22-0644] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Most circulating tumor cells (CTC) are detected as single cells, whereas a small proportion of CTCs in multicellular clusters with stemness properties possess 20- to 100-times higher metastatic propensity than the single cells. Here we report that CTC dynamics in both singles and clusters in response to therapies predict overall survival for breast cancer. Chemotherapy-evasive CTC clusters are relatively quiescent with a specific loss of ST6GAL1-catalyzed α2,6-sialylation in glycoproteins. Dynamic hyposialylation in CTCs or deficiency of ST6GAL1 promotes cluster formation for metastatic seeding and enables cellular quiescence to evade paclitaxel treatment in breast cancer. Glycoproteomic analysis reveals newly identified protein substrates of ST6GAL1, such as adhesion or stemness markers PODXL, ICAM1, ECE1, ALCAM1, CD97, and CD44, contributing to CTC clustering (aggregation) and metastatic seeding. As a proof of concept, neutralizing antibodies against one newly identified contributor, PODXL, inhibit CTC cluster formation and lung metastasis associated with paclitaxel treatment for triple-negative breast cancer. SIGNIFICANCE This study discovers that dynamic loss of terminal sialylation in glycoproteins of CTC clusters contributes to the fate of cellular dormancy, advantageous evasion to chemotherapy, and enhanced metastatic seeding. It identifies PODXL as a glycoprotein substrate of ST6GAL1 and a candidate target to counter chemoevasion-associated metastasis of quiescent tumor cells. This article is featured in Selected Articles from This Issue, p. 1949.
Collapse
Affiliation(s)
- Nurmaa K. Dashzeveg
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yuzhi Jia
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Youbin Zhang
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lorenzo Gerratana
- Department of Medicinal Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Priyam Patel
- Quantitative Data Science Core, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Tsogbadrakh Dandar
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Erika K. Ramos
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hannah F. Almubarak
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Valery Adorno-Cruz
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rokana Taftaf
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Emma J. Schuster
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David Scholten
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Michael T. Sokolowski
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Lamiaa El-Shennawy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Andrew D. Hoffmann
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Maroua Manai
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Qiang Zhang
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paolo D'Amico
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Karen J. Colley
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, Illinois
| | - Leonidas C. Platanias
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ami N. Shah
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William J. Gradishar
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William A. Muller
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Brian A. Cobb
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Huiping Liu
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
15
|
Mei X, Qiao P, Ma H, Qin S, Song X, Zhao Q, Shen D. Bombyx mori Tetraspanin A (BmTsp.A) is a facilitator in BmNPV invasion by regulating apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104736. [PMID: 37207976 DOI: 10.1016/j.dci.2023.104736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
BmTsp.A (Bombyx mori Tetraspanin A) is one of the four transmembrane proteins which are capable to regulate multiple aspects of the immune response and are involved in various stages of viral invasion of the hosts. This study focused on the sequence features, analysis of expression pattern, as well as the effect of BmTsp.A on BmNPV (Bombyx mori nucleopolyhedrovirus) infection in the apoptotic pathway. BmTsp.A features the typical tetraspanins family, including four transmembrane domains and a major large extracellular loop domain. It is highly expressed specifically in the malpighian tubes, and its expression is increased by BmNPV induction for 48 h and 72 h. Overexpression and RNAi (RNA interference) mediated by siRNA reveal that BmTsp.A can promote the infection and replication of the virus. In addition, the overexpression of BmTsp.A regulates BmNPV-induced apoptosis, leading to changes in the expression of apoptosis-related genes and thus affecting viral proliferation. When subjected to stimulation by BmNPV infection, on the one hand, BmTsp.A inhibits Bmp53 through a Caspase-dependent pathway, which consequently promotes the expression of Bmbuffy, thereby activating BmICE to inhibit apoptosis and causing the promotion of viral proliferation. On the other hand, BmTsp.A inhibits the expression of BmPTEN and BmPkc through the phosphatidylinositol 3 kinase (PI3K)/protein kinaseB(AKT) signaling pathway, thus affecting the regulation of apoptosis. To summarize, our results demonstrate that BmTsp.A promotes viral infection and replication by inhibiting apoptosis, which is fundamental for understanding the pathogenesis of BmNPV and the immune defense mechanism of silkworm.
Collapse
Affiliation(s)
- Xianghan Mei
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Peitong Qiao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Hengheng Ma
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Siyu Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Xia Song
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Dongxu Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| |
Collapse
|
16
|
Greenberg ZF, Graim KS, He M. Towards artificial intelligence-enabled extracellular vesicle precision drug delivery. Adv Drug Deliv Rev 2023:114974. [PMID: 37356623 DOI: 10.1016/j.addr.2023.114974] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Extracellular Vesicles (EVs), particularly exosomes, recently exploded into nanomedicine as an emerging drug delivery approach due to their superior biocompatibility, circulating stability, and bioavailability in vivo. However, EV heterogeneity makes molecular targeting precision a critical challenge. Deciphering key molecular drivers for controlling EV tissue targeting specificity is in great need. Artificial intelligence (AI) brings powerful prediction ability for guiding the rational design of engineered EVs in precision control for drug delivery. This review focuses on cutting-edge nano-delivery via integrating large-scale EV data with AI to develop AI-directed EV therapies and illuminate the clinical translation potential. We briefly review the current status of EVs in drug delivery, including the current frontier, limitations, and considerations to advance the field. Subsequently, we detail the future of AI in drug delivery and its impact on precision EV delivery. Our review discusses the current universal challenge of standardization and critical considerations when using AI combined with EVs for precision drug delivery. Finally, we will conclude this review with a perspective on future clinical translation led by a combined effort of AI and EV research.
Collapse
Affiliation(s)
- Zachary F Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA
| | - Kiley S Graim
- Department of Computer & Information Science & Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA.
| |
Collapse
|
17
|
Varshney N, Mishra AK. Deep Learning in Phosphoproteomics: Methods and Application in Cancer Drug Discovery. Proteomes 2023; 11:proteomes11020016. [PMID: 37218921 DOI: 10.3390/proteomes11020016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Protein phosphorylation is a key post-translational modification (PTM) that is a central regulatory mechanism of many cellular signaling pathways. Several protein kinases and phosphatases precisely control this biochemical process. Defects in the functions of these proteins have been implicated in many diseases, including cancer. Mass spectrometry (MS)-based analysis of biological samples provides in-depth coverage of phosphoproteome. A large amount of MS data available in public repositories has unveiled big data in the field of phosphoproteomics. To address the challenges associated with handling large data and expanding confidence in phosphorylation site prediction, the development of many computational algorithms and machine learning-based approaches have gained momentum in recent years. Together, the emergence of experimental methods with high resolution and sensitivity and data mining algorithms has provided robust analytical platforms for quantitative proteomics. In this review, we compile a comprehensive collection of bioinformatic resources used for the prediction of phosphorylation sites, and their potential therapeutic applications in the context of cancer.
Collapse
Affiliation(s)
- Neha Varshney
- Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California, San Diego, CA 93093, USA
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Abhinava K Mishra
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
18
|
Schuster E, Dashzeveg N, Jia Y, Golam K, Zhang T, Hoffman A, Zhang Y, Zheng C, Ramos E, Taftaf R, Shennawy LE, Scholten D, Kitata RB, Adorno-Cruz V, Reduzzi C, Spahija S, Xu R, Siziopikou KP, Platanias LC, Shah A, Gradishar WJ, Cristofanilli M, Tsai CF, Shi T, Liu H. Computational ranking-assisted identification of Plexin-B2 in homotypic and heterotypic clustering of circulating tumor cells in breast cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536233. [PMID: 37090580 PMCID: PMC10120645 DOI: 10.1101/2023.04.10.536233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Metastasis is the cause of over 90% of all deaths associated with breast cancer, yet the strategies to predict cancer spreading based on primary tumor profiles and therefore prevent metastasis are egregiously limited. As rare precursor cells to metastasis, circulating tumor cells (CTCs) in multicellular clusters in the blood are 20-50 times more likely to produce viable metastasis than single CTCs. However, the molecular mechanisms underlying various CTC clusters, such as homotypic tumor cell clusters and heterotypic tumor-immune cell clusters, are yet to be fully elucidated. Combining machine learning-assisted computational ranking with experimental demonstration to assess cell adhesion candidates, we identified a transmembrane protein Plexin- B2 (PB2) as a new therapeutic target that drives the formation of both homotypic and heterotypic CTC clusters. High PB2 expression in human primary tumors predicts an unfavorable distant metastasis-free survival and is enriched in CTC clusters compared to single CTCs in advanced breast cancers. Loss of PB2 reduces formation of homotypic tumor cell clusters as well as heterotypic tumor-myeloid cell clusters in triple-negative breast cancer. Interactions between PB2 and its ligand Sema4C on tumor cells promote homotypic cluster formation, and PB2 binding with Sema4A on myeloid cells (monocytes) drives heterotypic CTC cluster formation, suggesting that metastasizing tumor cells hijack the PB2/Sema family axis to promote lung metastasis in breast cancer. Additionally, using a global proteomic analysis, we identified novel downstream effectors of the PB2 pathway associated with cancer stemness, cell cycling, and tumor cell clustering in breast cancer. Thus, PB2 is a novel therapeutic target for preventing new metastasis.
Collapse
|
19
|
Bailly C, Thuru X. Targeting of Tetraspanin CD81 with Monoclonal Antibodies and Small Molecules to Combat Cancers and Viral Diseases. Cancers (Basel) 2023; 15:cancers15072186. [PMID: 37046846 PMCID: PMC10093296 DOI: 10.3390/cancers15072186] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Tetraspanin CD81 plays major roles in cell-cell interactions and the regulation of cellular trafficking. This cholesterol-embarking transmembrane protein is a co-receptor for several viruses, including HCV, HIV-1 and Chikungunya virus, which exploits the large extracellular loop EC2 for cell entry. CD81 is also an anticancer target implicated in cancer cell proliferation and mobility, and in tumor metastasis. CD81 signaling contributes to the development of solid tumors (notably colorectal, liver and gastric cancers) and has been implicated in the aggressivity of B-cell lymphomas. A variety of protein partners can interact with CD81, either to regulate attachment and uptake of viruses (HCV E2, claudin-1, IFIM1) or to contribute to tumor growth and dissemination (CD19, CD44, EWI-2). CD81-protein interactions can be modulated with molecules targeting the extracellular domain of CD81, investigated as antiviral and/or anticancer agents. Several monoclonal antibodies anti-CD81 have been developed, notably mAb 5A6 active against invasion and metastasis of triple-negative breast cancer cells. CD81-EC2 can also be targeted with natural products (trachelogenin and harzianoic acids A-B) and synthetic compounds (such as benzothiazole-quinoline derivatives). They are weak CD81 binders but offer templates for the design of new compounds targeting the open EC2 loop. There is no anti-CD81 compound in clinical development at present, but this structurally well-characterized tetraspanin warrants more substantial considerations as a drug target.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, F-59290 Lille, France
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France
- CNRS, Inserm, CHU Lille, UMR9020-U1277-Canther-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France
| | - Xavier Thuru
- CNRS, Inserm, CHU Lille, UMR9020-U1277-Canther-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France
| |
Collapse
|
20
|
Zhou Z, Yang Z, Zhou L, Yang M, He S. The versatile roles of testrapanins in cancer from intracellular signaling to cell-cell communication: cell membrane proteins without ligands. Cell Biosci 2023; 13:59. [PMID: 36941633 PMCID: PMC10025802 DOI: 10.1186/s13578-023-00995-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/21/2023] [Indexed: 03/23/2023] Open
Abstract
The tetraspanins (TSPANs) are a family of four-transmembrane proteins with 33 members in mammals. They are variably expressed on the cell surface, various intracellular organelles and vesicles in nearly all cell types. Different from the majority of cell membrane proteins, TSPANs do not have natural ligands. TSPANs typically organize laterally with other membrane proteins to form tetraspanin-enriched microdomains (TEMs) to influence cell adhesion, migration, invasion, survival and induce downstream signaling. Emerging evidence shows that TSPANs can regulate not only cancer cell growth, metastasis, stemness, drug resistance, but also biogenesis of extracellular vesicles (exosomes and migrasomes), and immunomicroenvironment. This review summarizes recent studies that have shown the versatile function of TSPANs in cancer development and progression, or the molecular mechanism of TSPANs. These findings support the potential of TSPANs as novel therapeutic targets against cancer.
Collapse
Affiliation(s)
- Zhihang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China.
| | - Zihan Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, China
| | - Li Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China
| | - Mengsu Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Center, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, SAR, People's Republic of China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|