2
|
Yang J, Zhang D, Jiang W. Long noncoding RNA as an emerging regulator of endoderm differentiation: progress and perspectives. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:11. [PMID: 40133743 PMCID: PMC11937447 DOI: 10.1186/s13619-025-00230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/09/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Accumulated studies have demonstrated that long noncoding RNAs (lncRNAs) play crucial regulatory roles in diverse biological processes, such as embryonic development and cell differentiation. Comprehensive transcriptome analysis identifies extensive lncRNAs, gradually elucidating their functions across various contexts. Recent studies have highlighted the essential role of lncRNAs in definitive endoderm differentiation, underscoring their importance in early development. In this review, we have analyzed the features of overlapping, proximal, and desert lncRNAs, classified by genomic location, in pluripotent stem cells (PSCs) and the differentiation derivatives. Furthermore, we focus on the endoderm lineage and review the latest advancements in lncRNA identification and their distinct regulatory mechanisms. By consolidating current knowledge, we aim to provide a clearer perspective on how lncRNAs contribute to endoderm differentiation in different manners.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
3
|
Bastian L, Beder T, Barz MJ, Bendig S, Bartsch L, Walter W, Wolgast N, Brändl B, Rohrandt C, Hansen BT, Hartmann AM, Iben K, Das Gupta D, Denker M, Zimmermann J, Wittig M, Chitadze G, Neumann M, Schneller F, Fiedler W, Steffen B, Stelljes M, Faul C, Schwartz S, Müller FJ, Cario G, Harder L, Haferlach C, Pfeifer H, Gökbuget N, Brüggemann M, Baldus CD. Developmental trajectories and cooperating genomic events define molecular subtypes of BCR::ABL1-positive ALL. Blood 2024; 143:1391-1398. [PMID: 38153913 PMCID: PMC11033585 DOI: 10.1182/blood.2023021752] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023] Open
Abstract
ABSTRACT Distinct diagnostic entities within BCR::ABL1-positive acute lymphoblastic leukemia (ALL) are currently defined by the International Consensus Classification of myeloid neoplasms and acute leukemias (ICC): "lymphoid only", with BCR::ABL1 observed exclusively in lymphatic precursors, vs "multilineage", where BCR::ABL1 is also present in other hematopoietic lineages. Here, we analyzed transcriptomes of 327 BCR::ABL1-positive patients with ALL (age, 2-84 years; median, 46 years) and identified 2 main gene expression clusters reproducible across 4 independent patient cohorts. Fluorescence in situ hybridization analysis of fluorescence-activated cell-sorted hematopoietic compartments showed distinct BCR::ABL1 involvement in myeloid cells for these clusters (n = 18/18 vs n = 3/16 patients; P < .001), indicating that a multilineage or lymphoid BCR::ABL1 subtype can be inferred from gene expression. Further subclusters grouped samples according to cooperating genomic events (multilineage: HBS1L deletion or monosomy 7; lymphoid: IKZF1-/- or CDKN2A/PAX5 deletions/hyperdiploidy). A novel HSB1L transcript was highly specific for BCR::ABL1 multilineage cases independent of HBS1L genomic aberrations. Treatment on current German Multicenter Study Group for Adult ALL (GMALL) protocols resulted in comparable disease-free survival (DFS) for multilineage vs lymphoid cluster patients (3-year DFS: 70% vs 61%; P = .530; n = 91). However, the IKZF1-/- enriched lymphoid subcluster was associated with inferior DFS, whereas hyperdiploid cases showed a superior outcome. Thus, gene expression clusters define underlying developmental trajectories and distinct patterns of cooperating events in BCR::ABL1-positive ALL with prognostic relevance.
Collapse
Affiliation(s)
- Lorenz Bastian
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Thomas Beder
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Malwine J. Barz
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Sonja Bendig
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Lorenz Bartsch
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | | | - Nadine Wolgast
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Björn Brändl
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Schleswig Holstein, Kiel, Germany
| | - Christian Rohrandt
- Department of Psychiatry and Psychotherapy, University Hospital Schleswig Holstein, Kiel, Germany
| | - Björn-Thore Hansen
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alina M. Hartmann
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Katharina Iben
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Dennis Das Gupta
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Miriam Denker
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Johannes Zimmermann
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Guranda Chitadze
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Martin Neumann
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Folker Schneller
- Medical Clinic and Polyclinic of Klinikum rechts der Isar of Technical University Munich, Munich, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Steffen
- Department of Medicine II, Hematology/Oncology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Matthias Stelljes
- Department of Medicine A–Hematology, Hemostaseology, Oncology, Pulmonology, University Hospital Muenster, Munster, Germany
| | - Christoph Faul
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Stefan Schwartz
- Department of Hematology, Oncology and Tumor Immunology (Campus Benjamin Franklin), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | - Franz-Josef Müller
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Schleswig Holstein, Kiel, Germany
| | - Gunnar Cario
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lana Harder
- Institut für Tumorgenetik Nord, Kiel, Germany
| | | | - Heike Pfeifer
- Department of Medicine II, Hematology/Oncology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Nicola Gökbuget
- Department of Medicine II, Hematology/Oncology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Monika Brüggemann
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| | - Claudia D. Baldus
- Medical Department II, Hematology and Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinical Research Unit “CATCH ALL” (KFO 5010/1), Kiel, Germany
| |
Collapse
|