1
|
Hoy CW, de Hemptinne C, Wang SS, Harmer CJ, Apps MAJ, Husain M, Starr PA, Little S. Beta and theta oscillations track effort and previous reward in the human basal ganglia and prefrontal cortex during decision making. Proc Natl Acad Sci U S A 2024; 121:e2322869121. [PMID: 39047043 PMCID: PMC11295073 DOI: 10.1073/pnas.2322869121] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Choosing whether to exert effort to obtain rewards is fundamental to human motivated behavior. However, the neural dynamics underlying the evaluation of reward and effort in humans is poorly understood. Here, we report an exploratory investigation into this with chronic intracranial recordings from the prefrontal cortex (PFC) and basal ganglia (BG; subthalamic nuclei and globus pallidus) in people with Parkinson's disease performing a decision-making task with offers that varied in levels of reward and physical effort required. This revealed dissociable neural signatures of reward and effort, with BG beta (12 to 20 Hz) oscillations tracking effort on a single-trial basis and PFC theta (4 to 7 Hz) signaling previous trial reward, with no effects of net subjective value. Stimulation of PFC increased overall acceptance of offers and sensitivity to reward while decreasing the impact of effort on choices. This work uncovers oscillatory mechanisms that guide fundamental decisions to exert effort for reward across BG and PFC, supports a causal role of PFC for such choices, and seeds hypotheses for future studies.
Collapse
Affiliation(s)
- Colin W. Hoy
- Department of Neurology, University of California, San Francisco, CA94143
| | - Coralie de Hemptinne
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL32608
- Department of Neurology, University of Florida, Gainesville, FL32608
| | - Sarah S. Wang
- Department of Neurology, University of California, San Francisco, CA94143
| | - Catherine J. Harmer
- Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
| | - Matthew A. J. Apps
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham UKB15 2TT, United Kingdom
- Centre for Human Brain Health, School of Psychology, University of Birmingham, BirminghamB15 2TT, United Kingdom
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, OxfordOX3 9DU, United Kingdom
| | - Philip A. Starr
- Department of Neurological Surgery, University of California, San Francisco, CA94143, United Kingdom
| | - Simon Little
- Department of Neurology, University of California, San Francisco, CA94143
| |
Collapse
|
2
|
Hoy CW, de Hemptinne C, Wang SS, Harmer CJ, Apps MAJ, Husain M, Starr PA, Little S. Beta and theta oscillations track effort and previous reward in human basal ganglia and prefrontal cortex during decision making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570285. [PMID: 38106063 PMCID: PMC10723308 DOI: 10.1101/2023.12.05.570285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Choosing whether to exert effort to obtain rewards is fundamental to human motivated behavior. However, the neural dynamics underlying the evaluation of reward and effort in humans is poorly understood. Here, we investigate this with chronic intracranial recordings from prefrontal cortex (PFC) and basal ganglia (BG; subthalamic nuclei and globus pallidus) in people with Parkinson's disease performing a decision-making task with offers that varied in levels of reward and physical effort required. This revealed dissociable neural signatures of reward and effort, with BG beta (12-20 Hz) oscillations tracking subjective effort on a single trial basis and PFC theta (4-7 Hz) signaling previous trial reward. Stimulation of PFC increased overall acceptance of offers in addition to increasing the impact of reward on choices. This work uncovers oscillatory mechanisms that guide fundamental decisions to exert effort for reward across BG and PFC, as well as supporting a causal role of PFC for such choices.
Collapse
Affiliation(s)
- Colin W. Hoy
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Coralie de Hemptinne
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Sarah S. Wang
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Mathew A. J. Apps
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Philip A. Starr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Simon Little
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Grembecka B, Majkutewicz I, Harackiewicz O, Wrona D. Deep-Brain Subthalamic Nucleus Stimulation Enhances Food-Related Motivation by Influencing Neuroinflammation and Anxiety Levels in a Rat Model of Early-Stage Parkinson's Disease. Int J Mol Sci 2023; 24:16916. [PMID: 38069238 PMCID: PMC10706602 DOI: 10.3390/ijms242316916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Deep-brain subthalamic nucleus stimulation (DBS-STN) has become a well-established therapeutic option for advanced Parkinson's disease (PD). While the motor benefits of DBS-STN are widely acknowledged, the neuropsychiatric effects are still being investigated. Beyond its immediate effects on neuronal circuits, emerging research suggests that DBS-STN might also modulate the peripheral inflammation and neuroinflammation. In this work, we assessed the effects of DBS-STN on food-related motivation, food intake pattern, and the level of anxiety and compared them with markers of cellular and immune activation in nigrostriatal and mesolimbic areas in rats with the 6-OHDA model of early PD. To evaluate the potential mechanism of observed effects, we also measured corticosterone concentration in plasma and leukocyte distribution in peripheral blood. We found that DBS-STN applied during neurodegeneration has beneficial effects on food intake pattern and motivation and reduces anxiety. These behavioral effects occur with reduced percentages of IL-6-labeled cells in the ventral tegmental area and substantia nigra pars compacta in the stimulated brain hemisphere. At the same brain structures, the cFos cell activations were confirmed. Simultaneously, the corticosterone plasma concentration was elevated, and the peripheral blood lymphocytes were reduced after DBS-STN. We believe that comprehending the relationship between the effects of DBS-STN on inflammation and its therapeutic results is essential for optimizing DBS therapy in PD.
Collapse
Affiliation(s)
- Beata Grembecka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (I.M.); (O.H.); (D.W.)
| | | | | | | |
Collapse
|