1
|
Zhang C, Li XY, Guan DX, Gao JL, Yang Q, Chen XL, Ma LQ. Manganese oxide application reduces cadmium bioavailability in rice rhizosphere: Insights from desorption kinetics and high-resolution imaging. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126110. [PMID: 40127810 DOI: 10.1016/j.envpol.2025.126110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/26/2025] [Accepted: 03/22/2025] [Indexed: 03/26/2025]
Abstract
Cadmium (Cd) contamination in paddy soils threatens global food safety. While manganese (Mn)-based materials show promise in reducing soil Cd bioavailability, their efficacy requires further evaluation. Traditional ex situ sampling methods often overlook metal desorption kinetics and rhizosphere biochemical heterogeneity, potentially misinterpreting Mn's regulatory influence on Cd dynamics. This study employed in situ monitoring tools, including diffusive gradients in thin-films (DGT) measurements, DIFS (DGT-induced fluxes in soils) modeling, and high-resolution DGT and planar optode (PO) imaging, to assess the impact of two Mn oxides (MnO2 and Mn2O3) on Cd bioavailability in rice rhizosphere. Application of MnO2 and Mn2O3 reduced bioavailable Cd by 28.9 % and 15.3 %, respectively, attributed to elevated soil Mn and Fe levels fostering Cd immobilization. DGT-DIFS results revealed that Mn oxide application prolonged Cd replenishment time and reduced its desorption rate from soil solids. PO imaging identified pH heterogeneity in rice rhizosphere, confirming that Mn oxides mediated Cd bioavailability reduction by increasing pH. High-resolution DGT imaging revealed distinct spatial distribution patterns of Cd, Mn, and Fe fluxes, demonstrating Mn's inhibitory effects on Cd bioavailability. These findings highlight the potential of Mn oxides to mitigate Cd uptake by rice, offering a promising strategy for managing Cd-contaminated soils.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xing-Yue Li
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Xing Guan
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jia-Lu Gao
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiong Yang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao-Lei Chen
- Engineering Technology Innovation Center for Ecological Evaluation and Restoration of Farmland of Plain District in Ministry of Natural Resources, Zhejiang Institute of Geosciences, Hangzhou, 311203, China
| | - Lena Q Ma
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Pawlik K, Ostrowska M, Gumienna-Kontecka E. Systematic Model Peptide Studies: A Crucial Step To Understand the Coordination Chemistry of Mn(II) and Fe(II) in Proteins. Inorg Chem 2025; 64:5472-5486. [PMID: 40067133 PMCID: PMC11938343 DOI: 10.1021/acs.inorgchem.4c05380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Pathogenic bacteria and all other species require Mn(II) and Fe(II) ions for proper growth. Microbes use a variety of assimilation pathways to obtain the necessary metal ions, and their metal homeostasis mechanisms are still not fully uncovered. The knowledge of the poorly discovered complexation chemistry of Mn(II) and Fe(II) ions could help us to understand the basis of those processes better. We have designed six model peptides (L1 - Ac-HHHHHH-NH2, L2 - Ac-HHHHHHHHH-NH2, L3 - Ac-HAHAHAHAH-NH2, L4 - Ac-HHAAAAAAAAAHHHH-NH2, L5 - Ac-HDHDHDHDH-NH2, and L6 - Ac-HEHEHEHEH-NH2) inspired by Mn(II) and Fe(II) binding motifs that are prevalent in nature, in order to clarify their coordination preferences. Spectrometric, spectroscopic, and potentiometric techniques were used to determine the thermodynamic and structural properties of the studied systems. All of the investigated ligands possess efficient Mn(II), Fe(II), and Zn(II) binding sites. Complex stability and metal affinity are significantly influenced by the length of the peptide sequences, as well as the location and quantity of coordinating amino acid residues like His, Asp, and Glu.
Collapse
Affiliation(s)
- Karolina Pawlik
- Faculty of Chemistry, University of Wrocław, Wrocław 50-383, Poland
| | | | | |
Collapse
|
3
|
Wicander J, Gorsuch J, Chen L, Caldbeck R, Korza G, Brul S, Christie G, Setlow P. Germination of Bacillus spores by LiCl. J Bacteriol 2025; 207:e0051024. [PMID: 40013823 PMCID: PMC11925240 DOI: 10.1128/jb.00510-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
Spores of Bacillus subtilis have been found to germinate when incubated with LiCl, but not with other monovalent or divalent metal cations. Bacillus megaterium spores also germinated with LiCl, but B. cereus spores did not. In B. subtilis, the LiCl germination was via the activation of spores' GerA germinant receptor (GR), and in B. megaterium, it was the GerU GR. Notably, LiCl germination was much slower than normal physiological germinant triggered GR germination. In B. subtilis spores, rates of LiCl germination were increased in spores with a more fluid IM and decreased in spores with a less fluid IM. Analyses of the GerA germinant binding site suggested that Li+ could bind in a specific site in the B. subtilis GerAB subunit where normally a Na+ likely binds. Importantly, NaCl strongly inhibited LiCl germination of B. subtilis spores, much more so than the larger cation in KCl, although neither salt inhibited L-alanine germination via the GerA GR. These findings increase the understanding of features of mechanisms of germination of Bacillus spores.IMPORTANCEThe ability of some bacteria to form spores upon nutrient starvation confers properties of metabolic dormancy and enhanced resistance to environmental stressors that would otherwise kill vegetative cells. Since spore-forming bacteria include several notable pathogens and economically significant spoilage organisms, insight into how spores are stimulated to germinate and form new vegetative cells is important. Here, we reveal that relatively high concentrations of the inorganic salt lithium chloride trigger the germination of Bacillus subtilis and Bacillus megaterium spores by stimulating one of the spores of each species cohort of nutrient germinant receptors. This is significant since novel germinants and increased knowledge of the germination process should provide opportunities for improved control of spores in healthcare, food, and environmental sectors.
Collapse
Affiliation(s)
- James Wicander
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | | | - Longjiao Chen
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, North Holland, Netherlands
| | - Rebecca Caldbeck
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Stanley Brul
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, North Holland, Netherlands
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
4
|
Orzel B, Ostrowska M, Potocki S, Zoroddu MA, Kozlowski H, Peana M, Gumienna-Kontecka E. The Coordination Chemistry of Two Peptidic Models of NFeoB and Core CFeoB Regions of FeoB Protein: Complexes of Fe(II), Mn(II), and Zn(II). Inorg Chem 2025; 64:5038-5052. [PMID: 40048504 PMCID: PMC11920956 DOI: 10.1021/acs.inorgchem.4c05111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/04/2025] [Accepted: 02/25/2025] [Indexed: 03/18/2025]
Abstract
Often necessary for efficient Fe(II) trafficking into bacterial cell, the Feo system is a vital transporter for many pathogenic bacteria and indispensable for proper development and survival in the host organism during infection. In this work, we present the metal-binding characteristics of the peptidic models of two putative Fe(II)-binding sites of E. coliFeoB: L1 (Ac-477IMRGEATPFVMELPVYHVPH496-CONH2) being a fragment of the Core CFeoB region located between the transmembrane helices and L2 (Ac-38VERKEG43-CONH2), which represents the ExxE motif found within the NFeoB domain. With a variety of physicochemical methods, such as potentiometry, mass spectrometry, NMR, and EPR spectroscopy, we have determined the stability constants and metal-binding residues for the complexes of Fe(II), Mn(II), and Zn(II) with two ligands, L1 and L2, acting as models for the Core CFeoB and ExxE motif. We compare their affinities toward the studied metal ions with the previously studied C-terminal part of the protein and discuss a possible role in metal trafficking by the whole protein.
Collapse
Affiliation(s)
- Bartosz Orzel
- Faculty
of Chemistry, University of Wrocław, Wrocław 50-383, Poland
| | | | - Slawomir Potocki
- Faculty
of Chemistry, University of Wrocław, Wrocław 50-383, Poland
| | - Maria Antonietta Zoroddu
- Department
of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari 07100, Italy
| | - Henryk Kozlowski
- Faculty
of Chemistry, University of Wrocław, Wrocław 50-383, Poland
- Faculty
of Health Sciences, University of Opole, Katowicka, Opole 68 45-060, Poland
| | - Massimiliano Peana
- Department
of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari 07100, Italy
| | | |
Collapse
|
5
|
An W, Gao Y, Liu L, Bai Q, Zhao J, Zhao Y, Zhang XC. Structural basis of urea transport by Arabidopsis thaliana DUR3. Nat Commun 2025; 16:1782. [PMID: 39972035 PMCID: PMC11840088 DOI: 10.1038/s41467-025-56943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025] Open
Abstract
Urea is a primary nitrogen source used as fertilizer in agricultural plant production and a crucial nitrogen metabolite in plants, playing an essential role in modern agriculture. In plants, DUR3 is a proton-driven high-affinity urea transporter located on the plasma membrane. It not only absorbs external low-concentration urea as a nutrient but also facilitates nitrogen transfer by recovering urea from senescent leaves. Despite its importance, the high-affinity urea transport mechanism in plants remains insufficiently understood. In this study, we determine the structures of Arabidopsis thaliana DUR3 in two different conformations: the inward-facing open state of the apo structure and the occluded urea-bound state, with overall resolutions of 2.8 Å and 3.0 Å, respectively. By comparing these structures and analyzing their functional characteristics, we elucidated how urea molecules are specifically recognized. In the urea-bound structure, we identified key titratable amino acid residues and proposed a model for proton involvement in urea transport based on structural and functional data. This study enhances our understanding of proton-driven urea transport mechanisms in DUR3.
Collapse
Affiliation(s)
- Weidong An
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiwei Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Laihua Liu
- Department of Plant Nutrition, Key Laboratory of Plant and Soil Interactions of MEoC, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Qinru Bai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China.
| | - Yan Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Liziczai M, Fuchs A, Manatschal C, Dutzler R. Structural basis for metal ion transport by the human SLC11 proteins DMT1 and NRAMP1. Nat Commun 2025; 16:761. [PMID: 39824808 PMCID: PMC11742427 DOI: 10.1038/s41467-024-54705-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/19/2024] [Indexed: 01/30/2025] Open
Abstract
Iron and manganese are essential nutrients whose transport across membranes is catalyzed by members of the SLC11 family. In humans, this protein family contains two paralogs, the ubiquitously expressed DMT1, which is involved in the uptake and distribution of Fe2+ and Mn2+, and NRAMP1, which participates in the resistance against infections and nutrient recycling. Despite previous studies contributing to our mechanistic understanding of the family, the structures of human SLC11 proteins and their relationship to functional properties have remained elusive. Here we describe the cryo-electron microscopy structures of DMT1 and NRAMP1 and relate them to their functional properties. We show that both proteins catalyze selective metal ion transport coupled to the symport of H+, but additionally also mediate uncoupled H+ flux. Their structures, while sharing general properties with known prokaryotic homologs, display distinct features that lead to stronger transition metal ion selectivity.
Collapse
Affiliation(s)
- Márton Liziczai
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Ariane Fuchs
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Inoue J, Teramoto T, Kazama T, Nakamura T. Engineering rice Nramp5 modifies cadmium and manganese uptake selectivity using yeast assay system. FRONTIERS IN PLANT SCIENCE 2024; 15:1482099. [PMID: 39634065 PMCID: PMC11614607 DOI: 10.3389/fpls.2024.1482099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Cd is a seriously hazardous heavy metal for both plants and humans and international regulations regarding Cd intake have become stricter in recent years. Three-quarters of the Cd intake comes from plant-based foods, half of which comes from cereals. Therefore, it is anticipated that the Cd uptake efficiency of cereals, including rice, a staple crop in Asia, will be reduced. Natural resistance-associated macrophage protein (Nramp) is the principal transporter involved in the uptake and translocation of metal ions in various plants. In rice, OsNramp5 is a transporter of Mn, which is an essential micronutrient for plant growth, and is responsible for Cd uptake. Although several attempts have been made to engineer the metal uptake characteristics of OsNramp5, in many cases, both Cd and Mn uptake efficiencies are impaired. Therefore, in this study, we engineered OsNramp5 to reduce Cd uptake while retaining Mn uptake efficiency for low-Cd rice production. OsNramp5 was engineered using amino acid substitution(s) at the 232nd Ala and 235th Met of OsNramp5, which have been suggested to be key residues for metal uptake efficiency and/or selectivity by structural analyses of bacterial Nramps. The metal uptake efficiency was first analyzed using a yeast model assay system. Several mutants showed less than 8.6% Cd and more than 64.1% Mn uptake efficiency compared to the original OsNramp5. The improved metal uptake characteristics were confirmed by direct measurement of the metal content in the yeast using inductively coupled plasma optical emission spectroscopy. Notably, several mutants reduced Cd uptake efficiency to the background level while retaining more than 64.7% Mn uptake efficiency under conditions mimicking heavily polluted soils in the world. In addition, computational structural modeling suggested requirements for the spatial and chemical properties of the metal transport tunnel and metal-binding site, respectively, for Cd/Mn uptake efficiency.
Collapse
|
8
|
Licht JA, Berry SP, Gutierrez MA, Gaudet R. They all rock: A systematic comparison of conformational movements in LeuT-fold transporters. Structure 2024; 32:1528-1543.e3. [PMID: 39025067 PMCID: PMC11380583 DOI: 10.1016/j.str.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024]
Abstract
Many membrane transporters share the LeuT fold-two five-helix repeats inverted across the membrane plane. Despite hundreds of structures, whether distinct conformational mechanisms are supported by the LeuT fold has not been systematically determined. After annotating published LeuT-fold structures, we analyzed distance difference matrices (DDMs) for nine proteins with multiple available conformations. We identified rigid bodies and relative movements of transmembrane helices (TMs) during distinct steps of the transport cycle. In all transporters, the bundle (first two TMs of each repeat) rotates relative to the hash (third and fourth TMs). Motions of the arms (fifth TM) to close or open the intracellular and outer vestibules are common, as is a TM1a swing, with notable variations in the opening-closing motions of the outer vestibule. Our analyses suggest that LeuT-fold transporters layer distinct motions on a common bundle-hash rock and demonstrate that systematic analyses can provide new insights into large structural datasets.
Collapse
Affiliation(s)
- Jacob A Licht
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Samuel P Berry
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael A Gutierrez
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
9
|
Taskozhina G, Batyrova G, Umarova G, Issanguzhina Z, Kereyeva N. The Manganese-Bone Connection: Investigating the Role of Manganese in Bone Health. J Clin Med 2024; 13:4679. [PMID: 39200820 PMCID: PMC11355939 DOI: 10.3390/jcm13164679] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The complex relationship between trace elements and skeletal health has received increasing attention in the scientific community. Among these minerals, manganese (Mn) has emerged as a key element affecting bone metabolism and integrity. This review examines the multifaceted role of Mn in bone health, including its effects on bone regeneration, mineralization, and overall skeletal strength. This review article is based on a synthesis of experimental models, epidemiologic studies, and clinical trials of the mechanisms of the effect of Mn on bone metabolism. Current research data show that Mn is actively involved in the processes of bone remodeling by modulating the activity of osteoblasts and osteoclasts, as well as the main cells that regulate bone formation and resorption. Mn ions have a profound effect on bone mineralization and density by intricately regulating signaling pathways and enzymatic reactions in these cells. Additionally, Mn superoxide dismutase (MnSOD), located in bone mitochondria, plays a crucial role in osteoclast differentiation and function, protecting osteoclasts from oxidative damage. Understanding the nuances of Mn's interaction with bone is essential for optimizing bone strategies, potentially preventing and managing skeletal diseases. Key findings include the stimulation of osteoblast proliferation and differentiation, the inhibition of osteoclastogenesis, and the preservation of bone mass through the RANK/RANKL/OPG pathway. These results underscore the importance of Mn in maintaining bone health and highlight the need for further research into its therapeutic potential.
Collapse
Affiliation(s)
- Gulaim Taskozhina
- Department of Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan
| | - Gulnara Batyrova
- Department of Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan
| | - Gulmira Umarova
- Department of Evidence-Based Medicine and Scientific Management, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| | - Zhamilya Issanguzhina
- Department of Children Disease No. 2, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| | - Nurgul Kereyeva
- Department of Oncology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| |
Collapse
|
10
|
Shi A, Xu J, Guo Y, Rensing C, Chang J, Zhang T, Zhang L, Xing S, Ni W, Yang W. Jasmonic acid's impact on Sedum alfredii growth and cadmium tolerance: A physiological and transcriptomic study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169939. [PMID: 38211868 DOI: 10.1016/j.scitotenv.2024.169939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Soil cadmium (Cd) pollution is escalating, necessitating effective remediation strategies. This study investigated the effects of exogenous jasmonic acid (JA) on Sedum alfredii Hance under Cd stress, aiming to enhance its phytoextraction efficiency. Initially, experiments were conducted to assess the impact of various concentrations of JA added to environments with Cd concentrations of 100, 300, and 500 μmol/L. The results determined that a concentration of 1 μmol/L JA was optimal. This concentration effectively mitigated the level of ROS products by enhancing the activity of antioxidant enzymes. Additionally, JA fostered Cd absorption and accumulation, while markedly improving plant biomass and photosynthetic performance. In further experiments, treatment with 1 μmol/L JA under 300 μmol/L Cd stress was performed and transcriptomic analysis unveiled a series of differentially expressed genes (DEGs) instrumental in the JA-mediated Cd stress response. These DEGs encompass not only pathways of JA biosynthesis and signaling but also genes encoding functions that influence antioxidant systems and photosynthesis, alongside genes pertinent to cell wall synthesis, and metal chelation and transport. This study highlights that JA treatment significantly enhances S. alfredii's Cd tolerance and accumulation, offering a promising strategy for plant remediation and deepening our understanding of plant responses to heavy metal stress.
Collapse
Affiliation(s)
- An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junlong Xu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingmin Guo
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinqing Chang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Taoxiang Zhang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liming Zhang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wuzhong Ni
- College of Environment and Resources, Zhejiang University, Hangzhou 310058, China
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
11
|
Licht JA, Berry SP, Gutierrez MA, Gaudet R. They all rock: A systematic comparison of conformational movements in LeuT-fold transporters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577062. [PMID: 38352416 PMCID: PMC10862720 DOI: 10.1101/2024.01.24.577062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Many membrane transporters share the LeuT fold-two five-helix repeats inverted across the membrane plane. Despite hundreds of structures, whether distinct conformational mechanisms are supported by the LeuT fold has not been systematically determined. After annotating published LeuT-fold structures, we analyzed distance difference matrices (DDMs) for nine proteins with multiple available conformations. We identified rigid bodies and relative movements of transmembrane helices (TMs) during distinct steps of the transport cycle. In all transporters the bundle (first two TMs of each repeat) rotates relative to the hash (third and fourth TMs). Motions of the arms (fifth TM) to close or open the intracellular and outer vestibules are common, as is a TM1a swing, with notable variations in the opening-closing motions of the outer vestibule. Our analyses suggest that LeuT-fold transporters layer distinct motions on a common bundle-hash rock and demonstrate that systematic analyses can provide new insights into large structural datasets.
Collapse
Affiliation(s)
- Jacob A. Licht
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Samuel P. Berry
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Michael A. Gutierrez
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Present address: Novartis Biomedical Research, Cambridge, MA, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Lead contact
| |
Collapse
|
12
|
Jormakka M. Structural insights into ferroportin mediated iron transport. Biochem Soc Trans 2023; 51:BST20230594. [PMID: 38115725 DOI: 10.1042/bst20230594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Iron is a vital trace element for almost all organisms, and maintaining iron homeostasis is critical for human health. In mammals, the only known gatekeeper between intestinally absorbed iron and circulatory blood plasma is the membrane transporter ferroportin (Fpn). As such, dysfunction of Fpn or its regulation is a key driver of iron-related pathophysiology. This review focuses on discussing recent insights from high-resolution structural studies of the Fpn protein family. While these studies have unveiled crucial details of Fpn regulation and structural architecture, the associated functional studies have also at times provided conflicting data provoking more questions than answers. Here, we summarize key findings and illuminate important remaining questions and contradictions.
Collapse
Affiliation(s)
- Mika Jormakka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Orzel B, Pelucelli A, Ostrowska M, Potocki S, Kozlowski H, Peana M, Gumienna-Kontecka E. Fe(II), Mn(II), and Zn(II) Binding to the C-Terminal Region of FeoB Protein: An Insight into the Coordination Chemistry and Specificity of the Escherichia coli Fe(II) Transporter. Inorg Chem 2023; 62:18607-18624. [PMID: 37910812 PMCID: PMC10647171 DOI: 10.1021/acs.inorgchem.3c02910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
The interactions between two peptide ligands [Ac763CCAASTTGDCH773 (P1) and Ac743RRARSRVDIELLATRKSVSSCCAASTTGDCH773 (P2)] derived from the cytoplasmic C-terminal region of Eschericha coli FeoB protein and Fe(II), Mn(II), and Zn(II) ions were investigated. The Feo system is regarded as the most important bacterial Fe(II) acquisition system, being one of the key virulence factors, especially in anaerobic conditions. Located in the inner membrane of Gram-negative bacteria, FeoB protein transports Fe(II) from the periplasm to the cytoplasm. Despite its crucial role in bacterial pathogenicity, the mechanism in which the metal ion is trafficked through the membrane is not yet elucidated. In the gammaproteobacteria class, the cytoplasmic C-terminal part of FeoB contains conserved cysteine, histidine, and glutamic and aspartic acid residues, which could play a vital role in Fe(II) binding in the cytoplasm, receiving the metal ion from the transmembrane helices. In this work, we characterized the complexes formed between the whole cytosolic C-terminal sequence of E. coli FeoB (P2) and its key polycysteine region (P1) with Fe(II), Mn(II), and Zn(II) ions, exploring the specificity of the C-terminal region of FeoB. With the help of a variety of potentiometric, spectroscopic (electron paramagnetic resonance and NMR), and spectrometric (electrospray ionization mass spectrometry) techniques and molecular dynamics, we propose the metal-binding modes of the ligands, compare their affinities toward the metal ions, and discuss the possible physiological role of the C-terminal region of E. coli FeoB.
Collapse
Affiliation(s)
- Bartosz Orzel
- Faculty
of Chemistry, University of Wrocław, 50-383 Wrocław, Poland
| | - Alessio Pelucelli
- Department
of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | | | - Slawomir Potocki
- Faculty
of Chemistry, University of Wrocław, 50-383 Wrocław, Poland
| | - Henryk Kozlowski
- Faculty
of Chemistry, University of Wrocław, 50-383 Wrocław, Poland
- Department
of Health Sciences, University of Opole, Katowicka 68, 45-060 Opole, Poland
| | - Massimiliano Peana
- Department
of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | | |
Collapse
|
14
|
Cellier MFM. Slc11 Synapomorphy: A Conserved 3D Framework Articulating Carrier Conformation Switch. Int J Mol Sci 2023; 24:15076. [PMID: 37894758 PMCID: PMC10606218 DOI: 10.3390/ijms242015076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Transmembrane carriers of the Slc11 family catalyze proton (H+)-dependent uptake of divalent metal ions (Me2+) such as manganese and iron-vital elements coveted during infection. The Slc11 mechanism of high-affinity Me2+ cell import is selective and conserved between prokaryotic (MntH) and eukaryotic (Nramp) homologs, though processes coupling the use of the proton motive force to Me2+ uptake evolved repeatedly. Adding bacterial piracy of Nramp genes spread in distinct environmental niches suggests selective gain of function that may benefit opportunistic pathogens. To better understand Slc11 evolution, Alphafold (AF2)/Colabfold (CF) 3D predictions for bacterial sequences from sister clades of eukaryotic descent (MCb and MCg) were compared using both native and mutant templates. AF2/CF model an array of native MCb intermediates spanning the transition from outwardly open (OO) to inwardly open (IO) carriers. In silico mutagenesis targeting (i) a set of (evolutionarily coupled) sites that may define Slc11 function (putative synapomorphy) and (ii) residues from networked communities evolving during MCb transition indicates that Slc11 synapomorphy primarily instructs a Me2+-selective conformation switch which unlocks carrier inner gate and contributes to Me2+ binding site occlusion and outer gate locking. Inner gate opening apparently proceeds from interaction between transmembrane helix (h) h5, h8 and h1a. MCg1 xenologs revealed marked differences in carrier shape and plasticity, owing partly to an altered intramolecular H+ network. Yet, targeting Slc11 synapomorphy also converted MCg1 IO models to an OO state, apparently mobilizing the same residues to control gates. But MCg1 response to mutagenesis differed, with extensive divergence within this clade correlating with MCb-like modeling properties. Notably, MCg1 divergent epistasis marks the emergence of the genus Bordetella-Achromobacter. Slc11 synapomorphy localizes to the 3D areas that deviate least among MCb and MCg1 models (either IO or OO) implying that it constitutes a 3D network of residues articulating a Me2+-selective carrier conformation switch which is maintained in fast-evolving clades at the cost of divergent epistatic interactions impacting carrier shape and dynamics.
Collapse
Affiliation(s)
- Mathieu F M Cellier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC H7V 1B7, Canada
| |
Collapse
|
15
|
Pasquadibisceglie A, Bonaccorsi di Patti MC, Musci G, Polticelli F. Membrane Transporters Involved in Iron Trafficking: Physiological and Pathological Aspects. Biomolecules 2023; 13:1172. [PMID: 37627237 PMCID: PMC10452680 DOI: 10.3390/biom13081172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Iron is an essential transition metal for its involvement in several crucial biological functions, the most notable being oxygen storage and transport. Due to its high reactivity and potential toxicity, intracellular and extracellular iron levels must be tightly regulated. This is achieved through transport systems that mediate cellular uptake and efflux both at the level of the plasma membrane and on the membranes of lysosomes, endosomes and mitochondria. Among these transport systems, the key players are ferroportin, the only known transporter mediating iron efflux from cells; DMT1, ZIP8 and ZIP14, which on the contrary, mediate iron influx into the cytoplasm, acting on the plasma membrane and on the membranes of lysosomes and endosomes; and mitoferrin, involved in iron transport into the mitochondria for heme synthesis and Fe-S cluster assembly. The focus of this review is to provide an updated view of the physiological role of these membrane proteins and of the pathologies that arise from defects of these transport systems.
Collapse
Affiliation(s)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Fabio Polticelli
- Department of Sciences, University Roma Tre, 00146 Rome, Italy;
- National Institute of Nuclear Physics, Roma Tre Section, 00146 Rome, Italy
| |
Collapse
|
16
|
Ray S, Gaudet R. Structures and coordination chemistry of transporters involved in manganese and iron homeostasis. Biochem Soc Trans 2023; 51:897-923. [PMID: 37283482 PMCID: PMC10330786 DOI: 10.1042/bst20210699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
A repertoire of transporters plays a crucial role in maintaining homeostasis of biologically essential transition metals, manganese, and iron, thus ensuring cell viability. Elucidating the structure and function of many of these transporters has provided substantial understanding into how these proteins help maintain the optimal cellular concentrations of these metals. In particular, recent high-resolution structures of several transporters bound to different metals enable an examination of how the coordination chemistry of metal ion-protein complexes can help us understand metal selectivity and specificity. In this review, we first provide a comprehensive list of both specific and broad-based transporters that contribute to cellular homeostasis of manganese (Mn2+) and iron (Fe2+ and Fe3+) in bacteria, plants, fungi, and animals. Furthermore, we explore the metal-binding sites of the available high-resolution metal-bound transporter structures (Nramps, ABC transporters, P-type ATPase) and provide a detailed analysis of their coordination spheres (ligands, bond lengths, bond angles, and overall geometry and coordination number). Combining this information with the measured binding affinity of the transporters towards different metals sheds light into the molecular basis of substrate selectivity and transport. Moreover, comparison of the transporters with some metal scavenging and storage proteins, which bind metal with high affinity, reveal how the coordination geometry and affinity trends reflect the biological role of individual proteins involved in the homeostasis of these essential transition metals.
Collapse
Affiliation(s)
- Shamayeeta Ray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| |
Collapse
|
17
|
Ray S, Berry SP, Wilson EA, Zhang CH, Shekhar M, Singharoy A, Gaudet R. High-resolution structures with bound Mn 2+ and Cd 2+ map the metal import pathway in an Nramp transporter. eLife 2023; 12:e84006. [PMID: 37039477 PMCID: PMC10185341 DOI: 10.7554/elife.84006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Transporters of the Nramp (Natural resistance-associated macrophage protein) family import divalent transition metal ions into cells of most organisms. By supporting metal homeostasis, Nramps prevent diseases and disorders related to metal insufficiency or overload. Previous studies revealed that Nramps take on a LeuT fold and identified the metal-binding site. We present high-resolution structures of Deinococcus radiodurans (Dra)Nramp in three stable conformations of the transport cycle revealing that global conformational changes are supported by distinct coordination geometries of its physiological substrate, Mn2+, across conformations, and by conserved networks of polar residues lining the inner and outer gates. In addition, a high-resolution Cd2+-bound structure highlights differences in how Cd2+ and Mn2+ are coordinated by DraNramp. Complementary metal binding studies using isothermal titration calorimetry with a series of mutated DraNramp proteins indicate that the thermodynamic landscape for binding and transporting physiological metals like Mn2+ is different and more robust to perturbation than for transporting the toxic Cd2+ metal. Overall, the affinity measurements and high-resolution structural information on metal substrate binding provide a foundation for understanding the substrate selectivity of essential metal ion transporters like Nramps.
Collapse
Affiliation(s)
- Shamayeeta Ray
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Samuel P Berry
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Eric A Wilson
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
| | - Casey H Zhang
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | | | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|