1
|
Reed MB, Ponce de León M, Klug S, Milz C, Silberbauer LR, Falb P, Godbersen GM, Jamadar S, Chen Z, Nics L, Hacker M, Lanzenberger R, Hahn A. Optimal filtering strategies for task-specific functional PET imaging. J Cereb Blood Flow Metab 2025:271678X251325668. [PMID: 40173035 DOI: 10.1177/0271678x251325668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Functional Positron Emission Tomography (fPET) is an effective tool for studying dynamic processes in glucose metabolism and neurotransmitter action, providing insights into brain function and disease progression. However, optimizing signal processing to extract stimulation-specific information remains challenging. This study systematically evaluates state-of-the-art filtering techniques for fPET imaging. Forty healthy participants performed a cognitive task (Tetris®) during [18F]FDG PET/MR scans. Seven filtering techniques and multiple hyperparameters were tested: including 3D and 4D Gaussian smoothing, highly constrained backprojection (HYPR), iterative HYPR (IHYPR4D), MRI-Markov Random Field (MRI-MRF) filters, and dynamic/extended dynamic Non-Local Means (dNLM/edNLM). Filters were assessed based on test-retest reliability, task signal identifiability (temporal signal-to-noise ratio, tSNR), spatial task-based activation, and sample size calculations were assessed. Compared to 3D Gaussian smoothing, edNLM, dNLM, MRI-MRF L = 10, and IHYPR4D filters improved tSNR, while edNLM and HYPR enhanced test-retest reliability. Spatial task-based activation was enhanced by NLM filters and MRI-MRF approaches. The edNLM filter reduced the required sample size by 15.4%. Simulations supported these findings. This study highlights the strengths and limitations of fPET filtering techniques, emphasizing how hyperparamter adjustments affect outcome parameters. The edNLM filter shows promise with improved performance across all metrics, but filter selection should consider specific study objectives and resource constraints.
Collapse
Affiliation(s)
- Murray Bruce Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Magdalena Ponce de León
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Sebastian Klug
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Christian Milz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Leo Robert Silberbauer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Pia Falb
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Godber Mathis Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Sharna Jamadar
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
- School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
- Department of Data Science and AI, Monash University, Melbourne, Victoria, Australia
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Deery HA, Liang EX, Moran C, Egan GF, Jamadar SD. Metabolic connectivity has greater predictive utility for age and cognition than functional connectivity. Brain Commun 2025; 7:fcaf075. [PMID: 40008331 PMCID: PMC11851278 DOI: 10.1093/braincomms/fcaf075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/04/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
Recently developed high temporal resolution functional (18F)-fluorodeoxyglucose positron emission tomography (fPET) offers promise as a method for indexing the dynamic metabolic state of the brain in vivo by directly measuring a time series of metabolism at the post-synaptic neuron. This is distinct from functional magnetic resonance imaging (fMRI) that reflects a combination of metabolic, haemodynamic and vascular components of neuronal activity. The value of using fPET to understand healthy brain ageing and cognition over fMRI is currently unclear. Here, we use simultaneous fPET/fMRI to compare metabolic and functional connectivity and test their predictive ability for ageing and cognition. Whole-brain fPET connectomes showed moderate topological similarities to fMRI connectomes in a cross-sectional comparison of 40 younger (mean age 27.9 years; range 20-42) and 46 older (mean 75.8; 60-89) adults. There were more age-related within- and between-network connectivity and graph metric differences in fPET than fMRI. fPET was also associated with performance in more cognitive domains than fMRI. These results suggest that ageing is associated with a reconfiguration of metabolic connectivity that differs from haemodynamic alterations. We conclude that metabolic connectivity has greater predictive utility for age and cognition than functional connectivity and that measuring glucodynamic changes has promise as a biomarker for age-related cognitive decline.
Collapse
Affiliation(s)
- Hamish A Deery
- School of Psychological Sciences, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
| | - Emma X Liang
- School of Psychological Sciences, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
| | - Chris Moran
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
| | - Sharna D Jamadar
- School of Psychological Sciences, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
| |
Collapse
|
3
|
Zürcher NR, Chen JE, Wey HY. PET-MRI Applications and Future Prospects in Psychiatry. J Magn Reson Imaging 2025; 61:568-578. [PMID: 38838352 PMCID: PMC11617601 DOI: 10.1002/jmri.29471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
This article reviews the synergistic application of positron emission tomography-magnetic resonance imaging (PET-MRI) in neuroscience with relevance for psychiatry, particularly examining neurotransmission, epigenetics, and dynamic imaging methodologies. We begin by discussing the complementary insights that PET and MRI modalities provide into neuroreceptor systems, with a focus on dopamine, opioids, and serotonin receptors, and their implications for understanding and treating psychiatric disorders. We further highlight recent PET-MRI studies using a radioligand that enables the quantification of epigenetic enzymes, specifically histone deacetylases, in the brain in vivo. Imaging epigenetics is used to exemplify the impact the quantification of novel molecular targets may have, including new treatment approaches for psychiatric disorders. Finally, we discuss innovative designs involving functional PET using [18F]FDG (fPET-FDG), which provides detailed information regarding dynamic changes in glucose metabolism. Concurrent acquisitions of fPET-FDG and functional MRI provide a time-resolved approach to studying brain function, yielding simultaneous metabolic and hemodynamic information and thereby opening new avenues for psychiatric research. Collectively, the review underscores the potential of a multimodal PET-MRI approach to advance our understanding of brain structure and function in health and disease, which could improve clinical care based on objective neurobiological features and treatment response monitoring. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Nicole R. Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Jingyuan E. Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| |
Collapse
|
4
|
Hahn A, Reed MB, Murgaš M, Vraka C, Klug S, Schmidt C, Godbersen GM, Eggerstorfer B, Gomola D, Silberbauer LR, Nics L, Philippe C, Hacker M, Lanzenberger R. Dynamics of human serotonin synthesis differentially link to reward anticipation and feedback. Mol Psychiatry 2025; 30:600-607. [PMID: 39179904 PMCID: PMC11746133 DOI: 10.1038/s41380-024-02696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Serotonin (5-HT) plays an essential role in reward processing, however, the possibilities to investigate 5-HT action in humans during emotional stimulation are particularly limited. Here we demonstrate the feasibility of assessing reward-specific dynamics in 5-HT synthesis using functional PET (fPET), combining its molecular specificity with the high temporal resolution of blood oxygen level dependent (BOLD) fMRI. Sixteen healthy volunteers underwent simultaneous fPET/fMRI with the radioligand [11C]AMT, a substrate for tryptophan hydroxylase. During the scan, participants completed the monetary incentive delay task and arterial blood samples were acquired for quantifying 5-HT synthesis rates. BOLD fMRI was recorded as a proxy of neuronal activation, allowing differentiation of reward anticipation and feedback. Monetary gain and loss resulted in substantial increases in 5-HT synthesis in the ventral striatum (VStr, +21% from baseline) and the anterior insula (+41%). In the VStr, task-specific 5-HT synthesis was further correlated with BOLD signal changes during reward feedback (ρ = -0.65), but not anticipation. Conversely, 5-HT synthesis in the anterior insula correlated with BOLD reward anticipation (ρ = -0.61), but not feedback. In sum, we provide a robust tool to identify task-induced changes in 5-HT action in humans, linking the dynamics of 5-HT synthesis to distinct phases of reward processing in a regionally specific manner. Given the relevance of altered reward processing in psychiatric disorders such as addiction, depression and schizophrenia, our approach offers a tailored assessment of impaired 5-HT signaling during cognitive and emotional processing.
Collapse
Affiliation(s)
- Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| | - Murray B Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Sebastian Klug
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Clemens Schmidt
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Benjamin Eggerstorfer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - David Gomola
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Leo R Silberbauer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Haas S, Bravo F, Ionescu TM, Gonzalez-Menendez I, Quintanilla-Martinez L, Dunkel G, Kuebler L, Hahn A, Lanzenberger R, Weigelin B, Reischl G, Pichler BJ, Herfert K. Functional PET/MRI reveals active inhibition of neuronal activity during optogenetic activation of the nigrostriatal pathway. SCIENCE ADVANCES 2024; 10:eadn2776. [PMID: 39454014 PMCID: PMC11506239 DOI: 10.1126/sciadv.adn2776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/23/2024] [Indexed: 10/27/2024]
Abstract
The dopaminergic system is a central component of the brain's neurobiological framework, governing motor control and reward responses and playing an essential role in various brain disorders. Within this complex network, the nigrostriatal pathway represents a critical circuit for dopamine neurotransmission from the substantia nigra to the striatum. However, stand-alone functional magnetic resonance imaging is unable to study the intricate interplay between brain activation and its molecular underpinnings. In our study, the use of a functional [fluorine-18]2-fluor-2-deoxy-d-glucose positron emission tomography approach, simultaneously with blood oxygen level-dependent functional magnetic resonance imaging, provided an important insight that demonstrates an active suppression of the nigrostriatal activity during optogenetic stimulation. This result increases our understanding of the molecular mechanisms of brain function and provides an important perspective on how dopamine influences hemodynamic responses in the brain.
Collapse
Affiliation(s)
- Sabrina Haas
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Fernando Bravo
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Tudor M. Ionescu
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Gina Dunkel
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Laura Kuebler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Bettina Weigelin
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Gerald Reischl
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Bernd J. Pichler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Kristina Herfert
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
6
|
Coursey SE, Mandeville J, Reed MB, Hartung GA, Garimella A, Sari H, Lanzenberger R, Price JC, Polimeni JR, Greve DN, Hahn A, Chen JE. On the analysis of functional PET (fPET)-FDG: baseline mischaracterization can introduce artifactual metabolic (de)activations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618550. [PMID: 39484579 PMCID: PMC11526866 DOI: 10.1101/2024.10.17.618550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Functional Positron Emission Tomography (fPET) with (bolus plus) constant infusion of [18F]-fluorodeoxyglucose FDG), known as fPET-FDG, is a recently introduced technique in human neuroimaging, enabling the detection of dynamic glucose metabolism changes within a single scan. However, the statistical analysis of fPET-FDG data remains challenging because its signal and noise characteristics differ from both classic bolus-administration FDG PET and from functional Magnetic Resonance Imaging (fMRI), which together compose the primary sources of inspiration for analytical methods used by fPET-FDG researchers. In this study, we present an investigate of how inaccuracies in modeling baseline FDG uptake can introduce artifactual patterns to detrended TAC residuals, potentially introducing spurious (de)activations to general linear model (GLM) analyses. By combining simulations and empirical data from both constant infusion and bolus-plus-constant infusion protocols, we evaluate the effects of various baseline modeling methods, including polynomial detrending, regression against the global mean time-activity curve, and two analytical methods based on tissue compartment model kinetics. Our findings indicate that improper baseline removal can introduce statistically significant artifactual effects, although these effects characterized in this study (~2-8%) are generally smaller than those reported by previous literature employing robust sensory stimulation (~10-30%). We discuss potential strategies to mitigate this issue, including informed baseline modeling, optimized tracer administration protocols, and careful experimental design. These insights aim to enhance the reliability of fPET-FDG in capturing true metabolic dynamics in neuroimaging research.
Collapse
Affiliation(s)
- Sean E. Coursey
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- College of Science, Northeastern University, Boston, MA, USA
| | - Joseph Mandeville
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Murray B. Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Grant A. Hartung
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Arun Garimella
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Hasan Sari
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Julie C. Price
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Douglas N. Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Jingyuan E. Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Klug S, Murgaš M, Godbersen GM, Hacker M, Lanzenberger R, Hahn A. Synaptic signaling modeled by functional connectivity predicts metabolic demands of the human brain. Neuroimage 2024; 295:120658. [PMID: 38810891 DOI: 10.1016/j.neuroimage.2024.120658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
PURPOSE The human brain is characterized by interacting large-scale functional networks fueled by glucose metabolism. Since former studies could not sufficiently clarify how these functional connections shape glucose metabolism, we aimed to provide a neurophysiologically-based approach. METHODS 51 healthy volunteers underwent simultaneous PET/MRI to obtain BOLD functional connectivity and [18F]FDG glucose metabolism. These multimodal imaging proxies of fMRI and PET were combined in a whole-brain extension of metabolic connectivity mapping. Specifically, functional connectivity of all brain regions were used as input to explain glucose metabolism of a given target region. This enabled the modeling of postsynaptic energy demands by incoming signals from distinct brain regions. RESULTS Functional connectivity input explained a substantial part of metabolic demands but with pronounced regional variations (34 - 76%). During cognitive task performance this multimodal association revealed a shift to higher network integration compared to resting state. In healthy aging, a dedifferentiation (decreased segregated/modular structure of the brain) of brain networks during rest was observed. Furthermore, by including data from mRNA maps, [11C]UCB-J synaptic density and aerobic glycolysis (oxygen-to-glucose index from PET data), we show that whole-brain functional input reflects non-oxidative, on-demand metabolism of synaptic signaling. The metabolically-derived directionality of functional inputs further marked them as top-down predictions. In addition, the approach uncovered formerly hidden networks with superior efficiency through metabolically informed network partitioning. CONCLUSIONS Applying multimodal imaging, we decipher a crucial part of the metabolic and neurophysiological basis of functional connections in the brain as interregional on-demand synaptic signaling fueled by anaerobic metabolism. The observed task- and age-related effects indicate promising future applications to characterize human brain function and clinical alterations.
Collapse
Affiliation(s)
- Sebastian Klug
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria.
| |
Collapse
|
8
|
Reed MB, Handschuh PA, Schmidt C, Murgaš M, Gomola D, Milz C, Klug S, Eggerstorfer B, Aichinger L, Godbersen GM, Nics L, Traub-Weidinger T, Hacker M, Lanzenberger R, Hahn A. Validation of cardiac image-derived input functions for functional PET quantification. Eur J Nucl Med Mol Imaging 2024; 51:2625-2637. [PMID: 38676734 PMCID: PMC11224076 DOI: 10.1007/s00259-024-06716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE Functional PET (fPET) is a novel technique for studying dynamic changes in brain metabolism and neurotransmitter signaling. Accurate quantification of fPET relies on measuring the arterial input function (AIF), traditionally achieved through invasive arterial blood sampling. While non-invasive image-derived input functions (IDIF) offer an alternative, they suffer from limited spatial resolution and field of view. To overcome these issues, we developed and validated a scan protocol for brain fPET utilizing cardiac IDIF, aiming to mitigate known IDIF limitations. METHODS Twenty healthy individuals underwent fPET/MR scans using [18F]FDG or 6-[18F]FDOPA, utilizing bed motion shuttling to capture cardiac IDIF and brain task-induced changes. Arterial and venous blood sampling was used to validate IDIFs. Participants performed a monetary incentive delay task. IDIFs from various blood pools and composites estimated from a linear fit over all IDIF blood pools (3VOI) and further supplemented with venous blood samples (3VOIVB) were compared to the AIF. Quantitative task-specific images from both tracers were compared to assess the performance of each input function to the gold standard. RESULTS For both radiotracer cohorts, moderate to high agreement (r: 0.60-0.89) between IDIFs and AIF for both radiotracer cohorts was observed, with further improvement (r: 0.87-0.93) for composite IDIFs (3VOI and 3VOIVB). Both methods showed equivalent quantitative values and high agreement (r: 0.975-0.998) with AIF-derived measurements. CONCLUSION Our proposed protocol enables accurate non-invasive estimation of the input function with full quantification of task-specific changes, addressing the limitations of IDIF for brain imaging by sampling larger blood pools over the thorax. These advancements increase applicability to any PET scanner and clinical research setting by reducing experimental complexity and increasing patient comfort.
Collapse
Affiliation(s)
- Murray Bruce Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Patricia Anna Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Clemens Schmidt
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - David Gomola
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Christian Milz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Sebastian Klug
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Benjamin Eggerstorfer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Lisa Aichinger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Godber Mathis Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Tatjana Traub-Weidinger
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Godbersen GM, Falb P, Klug S, Silberbauer LR, Reed MB, Nics L, Hacker M, Lanzenberger R, Hahn A. Non-invasive assessment of stimulation-specific changes in cerebral glucose metabolism with functional PET. Eur J Nucl Med Mol Imaging 2024; 51:2283-2292. [PMID: 38491215 PMCID: PMC11178598 DOI: 10.1007/s00259-024-06675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE Functional positron emission tomography (fPET) with [18F]FDG allows quantification of stimulation-induced changes in glucose metabolism independent of neurovascular coupling. However, the gold standard for quantification requires invasive arterial blood sampling, limiting its widespread use. Here, we introduce a novel fPET method without the need for an input function. METHODS We validated the approach using two datasets (DS). For DS1, 52 volunteers (23.2 ± 3.3 years, 24 females) performed Tetris® during a [18F]FDG fPET scan (bolus + constant infusion). For DS2, 18 participants (24.2 ± 4.3 years, 8 females) performed an eyes-open/finger tapping task (constant infusion). Task-specific changes in metabolism were assessed with the general linear model (GLM) and cerebral metabolic rate of glucose (CMRGlu) was quantified with the Patlak plot as reference. We then estimated simplified outcome parameters, including GLM beta values and percent signal change (%SC), and compared them, region and whole-brain-wise. RESULTS We observed higher agreement with the reference for DS1 than DS2. Both DS resulted in strong correlations between regional task-specific beta estimates and CMRGlu (r = 0.763…0.912). %SC of beta values exhibited strong agreement with %SC of CMRGlu (r = 0.909…0.999). Average activation maps showed a high spatial similarity between CMRGlu and beta estimates (Dice = 0.870…0.979) as well as %SC (Dice = 0.932…0.997), respectively. CONCLUSION The non-invasive method reliably estimates task-specific changes in glucose metabolism without blood sampling. This streamlines fPET, albeit with the trade-off of being unable to quantify baseline metabolism. The simplification enhances its applicability in research and clinical settings.
Collapse
Affiliation(s)
- Godber Mathis Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Pia Falb
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Sebastian Klug
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Leo R Silberbauer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Murray Bruce Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Wang X, Krieger-Redwood K, Lyu B, Lowndes R, Wu G, Souter NE, Wang X, Kong R, Shafiei G, Bernhardt BC, Cui Z, Smallwood J, Du Y, Jefferies E. The Brain's Topographical Organization Shapes Dynamic Interaction Patterns That Support Flexible Behavior Based on Rules and Long-Term Knowledge. J Neurosci 2024; 44:e2223232024. [PMID: 38527807 PMCID: PMC11140685 DOI: 10.1523/jneurosci.2223-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/27/2024] Open
Abstract
Adaptive behavior relies both on specific rules that vary across situations and stable long-term knowledge gained from experience. The frontoparietal control network (FPCN) is implicated in the brain's ability to balance these different influences on action. Here, we investigate how the topographical organization of the cortex supports behavioral flexibility within the FPCN. Functional properties of this network might reflect its juxtaposition between the dorsal attention network (DAN) and the default mode network (DMN), two large-scale systems implicated in top-down attention and memory-guided cognition, respectively. Our study tests whether subnetworks of FPCN are topographically proximal to the DAN and the DMN, respectively, and how these topographical differences relate to functional differences: the proximity of each subnetwork is anticipated to play a pivotal role in generating distinct cognitive modes relevant to working memory and long-term memory. We show that FPCN subsystems share multiple anatomical and functional similarities with their neighboring systems (DAN and DMN) and that this topographical architecture supports distinct interaction patterns that give rise to different patterns of functional behavior. The FPCN acts as a unified system when long-term knowledge supports behavior but becomes segregated into discrete subsystems with different patterns of interaction when long-term memory is less relevant. In this way, our study suggests that the topographical organization of the FPCN and the connections it forms with distant regions of cortex are important influences on how this system supports flexible behavior.
Collapse
Affiliation(s)
- Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Katya Krieger-Redwood
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Baihan Lyu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rebecca Lowndes
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Guowei Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nicholas E Souter
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Xiaokang Wang
- Department of Biomedical Engineering, University of California, Davis, California 95616
| | - Ru Kong
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jonathan Smallwood
- Department of Psychology, Queens University, Kingston, Ontario K7L 3N6, Canada
| | - Yi Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China
| | - Elizabeth Jefferies
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
11
|
Hahn A, Reed MB, Vraka C, Godbersen GM, Klug S, Komorowski A, Falb P, Nics L, Traub-Weidinger T, Hacker M, Lanzenberger R. High-temporal resolution functional PET/MRI reveals coupling between human metabolic and hemodynamic brain response. Eur J Nucl Med Mol Imaging 2024; 51:1310-1322. [PMID: 38052927 PMCID: PMC11399190 DOI: 10.1007/s00259-023-06542-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE Positron emission tomography (PET) provides precise molecular information on physiological processes, but its low temporal resolution is a major obstacle. Consequently, we characterized the metabolic response of the human brain to working memory performance using an optimized functional PET (fPET) framework at a temporal resolution of 3 s. METHODS Thirty-five healthy volunteers underwent fPET with [18F]FDG bolus plus constant infusion, 19 of those at a hybrid PET/MRI scanner. During the scan, an n-back working memory paradigm was completed. fPET data were reconstructed to 3 s temporal resolution and processed with a novel sliding window filter to increase signal to noise ratio. BOLD fMRI signals were acquired at 2 s. RESULTS Consistent with simulated kinetic modeling, we observed a constant increase in the [18F]FDG signal during task execution, followed by a rapid return to baseline after stimulation ceased. These task-specific changes were robustly observed in brain regions involved in working memory processing. The simultaneous acquisition of BOLD fMRI revealed that the temporal coupling between hemodynamic and metabolic signals in the primary motor cortex was related to individual behavioral performance during working memory. Furthermore, task-induced BOLD deactivations in the posteromedial default mode network were accompanied by distinct temporal patterns in glucose metabolism, which were dependent on the metabolic demands of the corresponding task-positive networks. CONCLUSIONS In sum, the proposed approach enables the advancement from parallel to truly synchronized investigation of metabolic and hemodynamic responses during cognitive processing. This allows to capture unique information in the temporal domain, which is not accessible to conventional PET imaging.
Collapse
Affiliation(s)
- Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| | - Murray B Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Sebastian Klug
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Arkadiusz Komorowski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Pia Falb
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Tatjana Traub-Weidinger
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Godbersen GM, Klug S, Wadsak W, Pichler V, Raitanen J, Rieckmann A, Stiernman L, Cocchi L, Breakspear M, Hacker M, Lanzenberger R, Hahn A. Task-evoked metabolic demands of the posteromedial default mode network are shaped by dorsal attention and frontoparietal control networks. eLife 2023; 12:e84683. [PMID: 37226880 PMCID: PMC10229117 DOI: 10.7554/elife.84683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
External tasks evoke characteristic fMRI BOLD signal deactivations in the default mode network (DMN). However, for the corresponding metabolic glucose demands both decreases and increases have been reported. To resolve this discrepancy, functional PET/MRI data from 50 healthy subjects performing Tetris were combined with previously published data sets of working memory, visual and motor stimulation. We show that the glucose metabolism of the posteromedial DMN is dependent on the metabolic demands of the correspondingly engaged task-positive networks. Specifically, the dorsal attention and frontoparietal network shape the glucose metabolism of the posteromedial DMN in opposing directions. While tasks that mainly require an external focus of attention lead to a consistent downregulation of both metabolism and the BOLD signal in the posteromedial DMN, cognitive control during working memory requires a metabolically expensive BOLD suppression. This indicates that two types of BOLD deactivations with different oxygen-to-glucose index may occur in this region. We further speculate that consistent downregulation of the two signals is mediated by decreased glutamate signaling, while divergence may be subject to active GABAergic inhibition. The results demonstrate that the DMN relates to cognitive processing in a flexible manner and does not always act as a cohesive task-negative network in isolation.
Collapse
Affiliation(s)
- Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of ViennaViennaAustria
| | - Sebastian Klug
- Department of Psychiatry and Psychotherapy, Medical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of ViennaViennaAustria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of ViennaViennaAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Verena Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of ViennaViennaAustria
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of ViennaViennaAustria
| | - Julia Raitanen
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of ViennaViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsViennaAustria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of ViennaViennaAustria
| | - Anna Rieckmann
- Department of Integrative Medical Biology, Umeå UniversityUmeåSweden
- Department of Radiation Sciences, Umeå UniversityUmeåSweden
- Umeå Center for Functional Brain Imaging, Umeå UniversityUmeåSweden
- The Munich Center for the Economics of Aging, Max Planck Institute for Social Law and Social PolicyMunichGermany
| | - Lars Stiernman
- Department of Integrative Medical Biology, Umeå UniversityUmeåSweden
- Umeå Center for Functional Brain Imaging, Umeå UniversityUmeåSweden
| | - Luca Cocchi
- Clinical Brain Networks Group, QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- School of Biomedical Sciences, Faculty of Medicine, University of QueenslandBrisbaneAustralia
| | - Michael Breakspear
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of NewcastleCallaghanAustralia
- School of Psychological Sciences, College of Engineering, Science and Environment, The University of NewcastleCallaghanAustralia
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of ViennaViennaAustria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of ViennaViennaAustria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of ViennaViennaAustria
| |
Collapse
|