1
|
Tanaka M, Lum L, Hu KH, Chaudhary P, Hughes S, Ledezma-Soto C, Samad B, Superville D, Ng K, Chumber A, Benson C, Adams ZN, Kersten K, Aguilar OA, Fong L, Combes AJ, Krummel MF, Reeves MQ. Tumor cell heterogeneity drives spatial organization of the intratumoral immune response. J Exp Med 2025; 222:e20242282. [PMID: 40167599 PMCID: PMC11960709 DOI: 10.1084/jem.20242282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Intratumoral heterogeneity (ITH)-defined as genetic and cellular diversity within a tumor-is linked to failure of immunotherapy and an inferior anti-tumor immune response. We modeled heterogeneous tumors comprised of "hot" and "cold" tumor populations (giving rise to T cell-rich and T cell-poor tumors, respectively) and introduced fluorescent labels to enable precise spatial tracking. We found the cold tumor cell population exerted a "dominant cold" effect in mixed tumors. Strikingly, spatial analysis revealed that the tumor cells themselves created distinct local microenvironments within heterogeneous tumors: regions occupied by cold tumor cells showed pronounced immunosuppression, harboring increased CD206Hi macrophages and diminished local T cell function. This inferior T cell activity in cold regions persisted even after immunotherapy and mechanistically was mediated by CX3CL1 produced by the cold tumor cells. An immune cold tumor population within a heterogeneous tumor thus impairs tumor immunity on both a tumor-wide and a highly localized spatial scale.
Collapse
Affiliation(s)
- Miho Tanaka
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Lotus Lum
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Kenneth H. Hu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Piyush Chaudhary
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Savannah Hughes
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Cecilia Ledezma-Soto
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Bushra Samad
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
| | - Daphne Superville
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Kenneth Ng
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Arun Chumber
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ciara Benson
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Zoe N. Adams
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Kelly Kersten
- Cancer Metabolism and Microenvironment Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, LA Jolla, CA, USA
| | - Oscar A. Aguilar
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California San Francisco, San Francisco, CA, USA
| | - Lawrence Fong
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alexis J. Combes
- UCSF CoLabs, University of California San Francisco, San Francisco, CA, USA
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Matthew F. Krummel
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Melissa Q. Reeves
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Roerden M, Spranger S. Cancer immune evasion, immunoediting and intratumour heterogeneity. Nat Rev Immunol 2025; 25:353-369. [PMID: 39748116 DOI: 10.1038/s41577-024-01111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Cancers can avoid immune-mediated elimination by acquiring traits that disrupt antitumour immunity. These mechanisms of immune evasion are selected and reinforced during tumour evolution under immune pressure. Some immunogenic subclones are effectively eliminated by antitumour T cell responses (a process known as immunoediting), which results in a clonally selected tumour. Other cancer cells arise to resist immunoediting, which leads to a tumour that includes several distinct cancer cell populations (referred to as intratumour heterogeneity (ITH)). Tumours with high ITH are associated with poor patient outcomes and a lack of responsiveness to immune checkpoint blockade therapy. In this Review, we discuss the different ways that cancer cells evade the immune system and how these mechanisms impact immunoediting and tumour evolution. We also describe how subclonal antigen presentation in tumours with high ITH can result in immune evasion.
Collapse
Affiliation(s)
- Malte Roerden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, MA, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute for Technology, Cambridge, MA, USA.
- Ragon Institute of Mass General Hospital, Massachusetts Institute for Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Tanaka M, Letchworth R, Barnes AA, Lum L, Hughes S, Schlauderaff G, Chaudhary P, Ng KM, Superville D, Luna CM, Gonzalez M, Grossmann A, Reeves MQ. CIT tumor lines: A novel series of immunogenic squamous cell skin carcinoma cell lines derived from chemical carcinogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647071. [PMID: 40291731 PMCID: PMC12026586 DOI: 10.1101/2025.04.03.647071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Immunotherapy is now widely used to treat cancer, but its efficacy in many cancer types remains modest. To overcome current barriers, preclinical mouse models that faithfully recapitulate the diversity of cancer types, tumor genetics, mutation burdens, and neoantigen patterns of human tumors are essential. Currently, there are relatively few transplantable murine models of squamous cell carcinomas (SCC). Here we describe a novel series of 11 skin SCC tumor lines, the Carcinogen-Induced Tumor (CIT) lines, syngeneic to the FVB strain. The CIT lines were established from skin carcinomas induced by DMBA and TPA treatment, and harbor genetic drivers and overall tumor mutational burdens that recapitulate those found across multiple human SCCs. Each CIT line gives rise to tumors with a consistent immune infiltration pattern, ranging from T cell-rich "hot" tumors to T cell-poor "cold" tumors. Hot CIT lines exhibit partial responses to treatment with immune checkpoint inhibitors, and we have identified two neoantigens present in an immunotherapy-responsive CIT line. The CIT lines thus provide a valuable new series of preclinical models for studying anti-tumor immune responses and developing strategies to improve immunotherapy efficacy in SCCs.
Collapse
|
4
|
Rodriguez LIL, Amadio R, Piperno GM, Benvenuti F. Tissue-specific properties of type 1 dendritic cells in lung cancer: implications for immunotherapy. J Immunother Cancer 2025; 13:e010547. [PMID: 40132908 PMCID: PMC11938230 DOI: 10.1136/jitc-2024-010547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/22/2025] [Indexed: 03/27/2025] Open
Abstract
Checkpoint inhibitors have led to remarkable benefits in non-small cell lung cancer (NSCLC), yet response rates remain below expectations. High-dimensional analysis and mechanistic experiments in clinical samples and relevant NSCLC models uncovered the immune composition of lung cancer tissues, providing invaluable insights into the functional properties of tumor-infiltrating T cells and myeloid cells. Among myeloid cells, type 1 conventional dendritic cells (cDC1s) stand out for their unique ability to induce effector CD8 T cells against neoantigens and coordinate antitumoral immunity. Notably, lung resident cDC1 are particularly abundant and long-lived and express a unique tissue-specific gene program, underscoring their central role in lung immunity. Here, we discuss recent insights on the induction and regulation of antitumoral T cell responses in lung cancer, separating it from the tissue-agnostic knowledge generated from heterogeneous tumor models. We focus on the most recent studies dissecting functional states and spatial distribution of lung cDC1 across tumor stages and their impact on T cell responses to neoantigens. Finally, we highlight relevant gaps and emerging strategies to harness lung cDC1 immunostimulatory potential.
Collapse
Affiliation(s)
| | - Roberto Amadio
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Life Sciences (DSV), University of Trieste, Trieste, Italy
| | - Giulia Maria Piperno
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
5
|
Bhandarkar V, Dinter T, Spranger S. Architects of immunity: How dendritic cells shape CD8 + T cell fate in cancer. Sci Immunol 2025; 10:eadf4726. [PMID: 39823318 PMCID: PMC11970844 DOI: 10.1126/sciimmunol.adf4726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
Immune responses against cancer are dominated by T cell exhaustion and dysfunction. Recent advances have underscored the critical role of early priming interactions in establishing T cell fates. In this review, we explore the importance of dendritic cell (DC) signals in specifying CD8+ T cell fates in cancer, drawing on insights from acute and chronic viral infection models. We highlight the role of DCs in lymph nodes and tumors in maintaining stem-like CD8+ T cells, which are critical for durable antitumor immune responses. Understanding how CD8+ T cell fates are determined will enable the rational design of immunotherapies, particularly therapeutic cancer vaccines, that can modulate DC-T cell interactions to generate beneficial CD8+ T cell fates.
Collapse
Affiliation(s)
- Vidit Bhandarkar
- Koch Institute at MIT, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Teresa Dinter
- Koch Institute at MIT, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Stefani Spranger
- Koch Institute at MIT, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
6
|
Ahrberg Y, Dallmann J, Freitag J, Hassan A, Jung C, Kiefer J, Muralidharan AM, Peter M, Beck JD. CIMT 2024: Report on the 21st Annual Meeting of the Association for Cancer Immunotherapy. Hum Vaccin Immunother 2024; 20:2381925. [PMID: 39043196 PMCID: PMC11268217 DOI: 10.1080/21645515.2024.2381925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
The 21st Association for Cancer Immunotherapy (CIMT) Annual Meeting took place from May 15th to May 17th in Mainz, Germany, and was attended by a total of 855 academic and clinical professionals hailing from 33 different countries. The conference served as a platform for these experts to convene and discuss the latest breakthroughs in cancer immunology and immunotherapy research. Dedicated sessions covering advancements in artificial intelligence tools for cancer immunotherapy research, as well as the landscape of cancer care and cancer immunotherapy trials on the African continent, prompted lively and informative discussions among the attendees. This report aims to provide an overview of the most noteworthy highlights and key takeaways from CIMT2024.
Collapse
Affiliation(s)
- Yasemin Ahrberg
- TRON-Translational Oncology, University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | | | - Janina Freitag
- TRON-Translational Oncology, University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | | | | | | | - Anindhita Meena Muralidharan
- TRON-Translational Oncology, University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Matthias Peter
- TRON-Translational Oncology, University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | | |
Collapse
|
7
|
Wang C, Zhao Y, Liang W. Biomarkers to predict the benefits of immune‑checkpoint blockade‑based therapy in patients with malignant peritoneal mesothelioma (Review). Oncol Lett 2024; 28:600. [PMID: 39483967 PMCID: PMC11525615 DOI: 10.3892/ol.2024.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/26/2024] [Indexed: 11/03/2024] Open
Abstract
Malignant peritoneal mesothelioma (MPeM) is a type of rare and highly lethal tumor. Immune checkpoint blockade (ICB)-based therapy has shown encouraging clinical activity for MPeM. However, no definitive biomarkers have been identified for predicting which patients with MPeM will benefit from ICB-based therapy. At present, there are several novel potential biomarkers proposed for predicting the response to ICB-based therapy, and biomarkers available in MPeM cells and in the tumor microenvironment have been identified with the potential to predict the efficacy of ICB-based therapy in MPeM. According to the molecular characteristics of MPeM itself, the feasibility of biomarkers in practice, and the body of available evidence, we hypothesize that the following five types of biomarkers can be used to predict the response of ICB-based therapy in patients with MPeM: Tertiary lymphoid structures, immune checkpoints and their ligands, fusion gene neoantigen burden, BRCA1-associated protein-1 haploinsufficiency and transcriptome-based biomarkers. The present review discusses the value and limitations of each type of biomarker, and potential solutions to address the limitations are proposed. The aim of the present review is to provide a background for future studies on ICB-based therapy for MPeM.
Collapse
Affiliation(s)
- Chunhong Wang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yan Zhao
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Wanru Liang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
8
|
Roerden M, Castro AB, Cui Y, Harake N, Kim B, Dye J, Maiorino L, White FM, Irvine DJ, Litchfield K, Spranger S. Neoantigen architectures define immunogenicity and drive immune evasion of tumors with heterogenous neoantigen expression. J Immunother Cancer 2024; 12:e010249. [PMID: 39521615 PMCID: PMC11552027 DOI: 10.1136/jitc-2024-010249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Intratumoral heterogeneity (ITH) and subclonal antigen expression blunt antitumor immunity and are associated with poor responses to immune-checkpoint blockade immunotherapy (ICB) in patients with cancer. The underlying mechanisms however thus far remained elusive, preventing the design of novel treatment approaches for patients with high ITH tumors. METHODS We developed a mouse model of lung adenocarcinoma with defined expression of different neoantigens (NeoAg), enabling us to analyze how these impact antitumor T-cell immunity and to study underlying mechanisms. Data from a large cancer patient cohort was used to study whether NeoAg architecture characteristics found to define tumor immunogenicity in our mouse models are linked to ICB responses in patients with cancer. RESULTS We demonstrate that concurrent expression and clonality define NeoAg architectures which determine the immunogenicity of individual NeoAg and drive immune evasion of tumors with heterogenous NeoAg expression. Mechanistically, we identified concerted interplays between concurrent T-cell responses induced by cross-presenting dendritic cells (cDC1) mirroring the tumor NeoAg architecture during T-cell priming in the lymph node. Depending on the characteristics and clonality of respective NeoAg, this interplay mutually benefited concurrent T-cell responses or led to competition between T-cell responses to different NeoAg. In tumors with heterogenous NeoAg expression, NeoAg architecture-induced suppression of T-cell responses against branches of the tumor drove immune evasion and caused resistance to ICB. Therapeutic RNA-based vaccination targeting immune-suppressed T-cell responses synergized with ICB to enable control of tumors with subclonal NeoAg expression. A pan-cancer clinical data analysis indicated that competition and synergy between T-cell responses define responsiveness to ICB in patients with cancer. CONCLUSIONS NeoAg architectures modulate the immunogenicity of NeoAg and tumors by dictating the interplay between concurrent T-cell responses mediated by cDC1. Impaired induction of T-cell responses supports immune evasion in tumors with heterogenous NeoAg expression but is amenable to NeoAg architecture-informed vaccination, which in combination with ICB portrays a promising treatment approach for patients with tumors exhibiting high ITH.
Collapse
Affiliation(s)
- Malte Roerden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
| | - Andrea B Castro
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Yufei Cui
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
| | - Noora Harake
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
| | - Byungji Kim
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
| | - Jonathan Dye
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
| | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
- Ragon Institute at MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA
- Ragon Institute at MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Wang C, Chen L, Fu D, Liu W, Puri A, Kellis M, Yang J. Antigen presenting cells in cancer immunity and mediation of immune checkpoint blockade. Clin Exp Metastasis 2024; 41:333-349. [PMID: 38261139 PMCID: PMC11374820 DOI: 10.1007/s10585-023-10257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Antigen-presenting cells (APCs) are pivotal mediators of immune responses. Their role has increasingly been spotlighted in the realm of cancer immunology, particularly as our understanding of immunotherapy continues to evolve and improve. There is growing evidence that these cells play a non-trivial role in cancer immunity and have roles dependent on surface markers, growth factors, transcription factors, and their surrounding environment. The main dendritic cell (DC) subsets found in cancer are conventional DCs (cDC1 and cDC2), monocyte-derived DCs (moDC), plasmacytoid DCs (pDC), and mature and regulatory DCs (mregDC). The notable subsets of monocytes and macrophages include classical and non-classical monocytes, macrophages, which demonstrate a continuum from a pro-inflammatory (M1) phenotype to an anti-inflammatory (M2) phenotype, and tumor-associated macrophages (TAMs). Despite their classification in the same cell type, each subset may take on an immune-activating or immunosuppressive phenotype, shaped by factors in the tumor microenvironment (TME). In this review, we introduce the role of DCs, monocytes, and macrophages and recent studies investigating them in the cancer immunity context. Additionally, we review how certain characteristics such as abundance, surface markers, and indirect or direct signaling pathways of DCs and macrophages may influence tumor response to immune checkpoint blockade (ICB) therapy. We also highlight existing knowledge gaps regarding the precise contributions of different myeloid cell subsets in influencing the response to ICB therapy. These findings provide a summary of our current understanding of myeloid cells in mediating cancer immunity and ICB and offer insight into alternative or combination therapies that may enhance the success of ICB in cancers.
Collapse
Affiliation(s)
- Cassia Wang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lee Chen
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Doris Fu
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wendi Liu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Anusha Puri
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jiekun Yang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
López L, Morosi LG, La Terza F, Bourdely P, Rospo G, Amadio R, Piperno GM, Russo V, Volponi C, Vodret S, Joshi S, Giannese F, Lazarevic D, Germano G, Stoitzner P, Bardelli A, Dalod M, Pace L, Caronni N, Guermonprez P, Benvenuti F. Dendritic cell-targeted therapy expands CD8 T cell responses to bona-fide neoantigens in lung tumors. Nat Commun 2024; 15:2280. [PMID: 38480738 PMCID: PMC10937682 DOI: 10.1038/s41467-024-46685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Cross-presentation by type 1 DCs (cDC1) is critical to induce and sustain antitumoral CD8 T cell responses to model antigens, in various tumor settings. However, the impact of cross-presenting cDC1 and the potential of DC-based therapies in tumors carrying varied levels of bona-fide neoantigens (neoAgs) remain unclear. Here we develop a hypermutated model of non-small cell lung cancer in female mice, encoding genuine MHC-I neoepitopes to study neoAgs-specific CD8 T cell responses in spontaneous settings and upon Flt3L + αCD40 (DC-therapy). We find that cDC1 are required to generate broad CD8 responses against a range of diverse neoAgs. DC-therapy promotes immunogenicity of weaker neoAgs and strongly inhibits the growth of high tumor-mutational burden (TMB) tumors. In contrast, low TMB tumors respond poorly to DC-therapy, generating mild CD8 T cell responses that are not sufficient to block progression. scRNA transcriptional analysis, immune profiling and functional assays unveil the changes induced by DC-therapy in lung tissues, which comprise accumulation of cDC1 with increased immunostimulatory properties and less exhausted effector CD8 T cells. We conclude that boosting cDC1 activity is critical to broaden the diversity of anti-tumoral CD8 T cell responses and to leverage neoAgs content for therapeutic advantage.
Collapse
Affiliation(s)
- Lucía López
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Luciano Gastón Morosi
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Federica La Terza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pierre Bourdely
- Université Paris Cité, Institut Cochin, INSERM 1016, Paris, France
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, KU Leuven, Leuven, Belgium
| | - Giuseppe Rospo
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Turin, Italy
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Roberto Amadio
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Giulia Maria Piperno
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Valentina Russo
- G. Armenise-Harvard Immune Regulation Unit, IIGM, Candiolo, TO, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - Camilla Volponi
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
- Cellular and Molecular Oncoimmunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Simone Vodret
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Sonal Joshi
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Francesca Giannese
- Center for Omics Sciences, IRCCS San Raffaele Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Germano
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Turin, Italy
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alberto Bardelli
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Turin, Italy
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Luigia Pace
- G. Armenise-Harvard Immune Regulation Unit, IIGM, Candiolo, TO, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - Nicoletta Caronni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy.
| |
Collapse
|