1
|
Anaia RA, Chiocchio I, Sontowski R, Swinkels B, Vergara F, van Dam NM. Ontogeny and organ-specific steroidal glycoside diversity is associated with differential expression of steroidal glycoside pathway genes in two Solanum dulcamara leaf chemotypes. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39150982 DOI: 10.1111/plb.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/25/2024] [Indexed: 08/18/2024]
Abstract
Solanaceous plants, such as Solanum dulcamara, produce steroidal glycosides (SGs). Leaf SG profiles vary among S. dulcamara individuals, leading to distinct phytochemical phenotypes ('chemotypes') and intraspecific phytochemical diversity ('chemodiversity'). However, if and how SG chemodiversity varies among organs and across ontogeny, and how this relates to SG metabolism gene expression is unknown. Among organs and across ontogeny, S. dulcamara plants with saturated (S) and unsaturated (U) SG leaf chemotypes were selected and clonally propagated. Roots, stems and leaves were harvested from vegetative and flowering plants. Extracts were analysed using untargeted LC-MS. Expression of candidate genes in SG metabolism (SdGAME9, SdGAME4, SdGAME25, SdS5αR2 and SdDPS) was analysed using RT-qPCRs. Our analyses showed that SG chemodiversity varies among organs and across ontogeny in S. dulcamara; SG richness (Dmg) was higher in flowering than vegetative plants. In vegetative plants, Dmg was higher for leaves than for roots. Lack of SdGAME25 expression in U-chemotype leaves, while readily expressed in roots and stems, suggests a pivotal role for SdGAME25 in differentiation of leaf chemotypes in vegetative and flowering plants. By acting as an ontogeny-dependent chemotypic switch, differential regulation of SdGAME25 enables adaptive allocation of SGs, thereby increasing SG chemodiversity in leaves. This indicates that differential expression and/or regulation of glycoalkaloid metabolism genes, rather than their presence or absence, explains observed chemotypic variation in SG chemodiversity among organs and across ontogeny.
Collapse
Affiliation(s)
- R A Anaia
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- Plant and Animal Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - I Chiocchio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - R Sontowski
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - B Swinkels
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Plant and Animal Biology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - F Vergara
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - N M van Dam
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| |
Collapse
|
2
|
Zhang C, Chen W, Wang B, Wang Y, Li N, Li R, Yan Y, Sun Y, He J. Potato glycoside alkaloids exhibit antifungal activity by regulating the tricarboxylic acid cycle pathway of Fusarium solani. Front Microbiol 2024; 15:1390269. [PMID: 38686115 PMCID: PMC11056507 DOI: 10.3389/fmicb.2024.1390269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Fusarium solani is a pathogenic fungus that causes significant harm, leading to crop yield reduction, fruit quality reduction, postharvest decay, and other diseases. This study used potato glycoside alkaloids (PGA) as inhibitors to investigate their effects on the mitochondrial structure and tricarboxylic acid (TCA) cycle pathway of F. solani. The results showed that PGA could inhibit the colony growth of F. solani (54.49%), resulting in the disappearance of the mitochondrial membrane and the loss of contents. PGA significantly decreased the activities of aconitase (ACO), isocitrate dehydrogenase (IDH), α-ketoglutarate dehydrogenase (α-KGDH), succinate dehydrogenase (SDH), fumarase (FH), malate dehydrogenase (MDH), succinyl-CoA synthetase (SCS), and increased the activity of citrate synthase (CS) in F. solani. After PGA treatment, the contents of acetyl coenzyme A (CoA), citric acid (CA), malic acid (L-MA), and α-ketoglutaric acid (α-KG) in F. solani were significantly decreased. The contents of isocitric acid (ICA), succinyl coenzyme A (S-CoA), succinic acid (SA), fumaric acid (FA), and oxaloacetic acid (OA) were significantly increased. Transcriptomic analysis showed that PGA could significantly affect the expression levels of 19 genes related to TCA cycle in F. solani. RT-qPCR results showed that the expression levels of ACO, IDH, α-KGDH, and MDH-related genes were significantly down-regulated, and the expression levels of SDH and FH-related genes were significantly up-regulated, which was consistent with the results of transcriptomics. In summary, PGA can achieve antifungal effects by reducing the tricarboxylic acid cycle's flow and regulating key genes' expression levels. This study reveals the antifungal mechanism of PGA from the perspective of TCA cycle, and provides a theoretical basis for the development and application of PGA as a biopesticide.
Collapse
Affiliation(s)
- Chongqing Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Wei Chen
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Bin Wang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Yupeng Wang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Nan Li
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Ruiyun Li
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Yuke Yan
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Yuyan Sun
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Jing He
- College of Forestry, Gansu Agricultural University, Lanzhou, China
- Wolfberry Harmless Cultivation Engineering Research Center of Gansu Province, Lanzhou, China
| |
Collapse
|
3
|
Muñoz Hoyos L, Anisha WP, Meng C, Kleigrewe K, Dawid C, Hückelhoven R, Stam R. Untargeted metabolomics reveals PTI-associated metabolites. PLANT, CELL & ENVIRONMENT 2024; 47:1224-1237. [PMID: 38164085 DOI: 10.1111/pce.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Plants employ a multilayered immune system to combat pathogens. In one layer, recognition of Pathogen- or Microbe-Associated Molecular Patterns or elicitors, triggers a cascade that leads to defence against the pathogen and Pattern Triggered Immunity. Secondary or specialised metabolites (SMs) are expected to play a role, because they are potentially anti-fungal compounds. Tomato (Solanum lycopersicum) plants inoculated with Alternaria solani s.l. show symptoms of infection after inoculation. Plants inoculated with Alternaria alternata remain symptomless. We hypothesised that pattern-triggered induction of resistance related metabolites in tomato contributes to the resistance against A. alternata. We compared the metabolomic profile (metabolome) of tomato after treatments with A. alternata, A. solani and the fungal elicitor chitin, and identified SMs involved in early defence of tomato plants. We revealed differential metabolome fingerprints. The composition of A. alternata and chitin induced metabolomes show larger overlap with each other than with the A. solani induced metabolome. We identify 65 metabolites possibly associated with PTI in tomato plants, including NAD and trigonelline. We confirm that trigonelline inhibits fungal growth in vitro at physiological concentrations. Thus, a true pattern-triggered, chemical defence is mounted against A. alternata, which contains anti-fungal compounds that could be interesting for crop protection strategies.
Collapse
Affiliation(s)
- Lina Muñoz Hoyos
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Wan Petra Anisha
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Chen Meng
- TUM School of Life Sciences, Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Karin Kleigrewe
- TUM School of Life Sciences, Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Corinna Dawid
- TUM School of Life Sciences, Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Remco Stam
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Department of Phytopathology and Crop protection, Institute of Phytopathology, Kiel University, Kiel, Germany
| |
Collapse
|