1
|
Pitchaikani S, Govindan P, Shakila H. Maternal exposure to rubella infection elevates risk of congenital rubella syndrome (CRS). INTERNATIONAL REVIEW OF NEUROBIOLOGY 2025; 180:501-526. [PMID: 40414642 DOI: 10.1016/bs.irn.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
The rise in neurodevelopmental disorders linked to maternal viral infections, particularly during the first and second trimesters of pregnancy, is concerning. Rubella, a contagious viral disease, primarily affects children and young adults, presenting as a rash and mild fever. It can also cause symptoms such as a swollen spleen, blueberry muffin skin spots, small head circumference, meningoencephalitis, developmental delays, and jaundice. When contracted in the first trimester, rubella can lead to severe birth defects or fetal death, with the risk declining after 20 weeks. Congenital rubella syndrome (CRS) caused by rubella's teratogenic effects, remains a major public health challenge, with an estimated 100,000 CRS cases annually. Following the approval of the rubella vaccine in 1969, significant strides have been made to reduce CRS and rubella incidences. This chapter provides disease management, prevention strategies, treatment options, and immunological response, focusing on prognosis and insights from current research on rubella and CRS.
Collapse
Affiliation(s)
- Sasikumar Pitchaikani
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Pothiaraj Govindan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Harshavardhan Shakila
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India.
| |
Collapse
|
2
|
Birtele M, Lancaster M, Quadrato G. Modelling human brain development and disease with organoids. Nat Rev Mol Cell Biol 2025; 26:389-412. [PMID: 39668188 DOI: 10.1038/s41580-024-00804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/14/2024]
Abstract
Organoids are systems derived from pluripotent stem cells at the interface between traditional monolayer cultures and in vivo animal models. The structural and functional characteristics of organoids enable the modelling of early stages of brain development in a physiologically relevant 3D environment. Moreover, organoids constitute a tool with which to analyse how individual genetic variation contributes to the susceptibility and progression of neurodevelopmental disorders. This Roadmap article describes the features of brain organoids, focusing on the neocortex, and their advantages and limitations - in comparison with other model systems - for the study of brain development, evolution and disease. We highlight avenues for enhancing the physiological relevance of brain organoids by integrating bioengineering techniques and unbiased high-throughput analyses, and discuss future applications. As organoids advance in mimicking human brain functions, we address the ethical and societal implications of this technology.
Collapse
Affiliation(s)
- Marcella Birtele
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Madeline Lancaster
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Giorgia Quadrato
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Almeida GM, Silva BM, Arruda E, Sebollela A. Human brain tissue cultures: a unique ex vivo model to unravel the pathogenesis of neurotropic arboviruses. Curr Opin Virol 2025; 70:101453. [PMID: 39954607 DOI: 10.1016/j.coviro.2025.101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/17/2025]
Abstract
Arboviruses are transmitted by arthropods, and their spread from endemic to nonendemic regions has been accelerated by deforestation, climate change, and global mobility. Arbovirus infection in human results in symptoms ranging from mild to life-threatening, with the impairment of central nervous system functions being reported in severe cases. Despite its clinical relevance, the mechanisms by which arboviruses led to neural dysfunction are still poorly understood. The lack of a widespread human central nervous system model to study the virus-host interaction challenges the advance of our knowledge on these mechanisms. In this context, human brain-derived ex vivo models have the advantage of preserving cellular diversity, cell connections, and tissue cytoarchitecture found in human brain, raising them as a powerful strategy to elucidate the cellular-molecular alterations underlying brain diseases. Here, we review recent advances in the field of neurotropic arboviruses obtained using ex vivo human brain tissue as the experimental model.
Collapse
Affiliation(s)
- Glaucia M Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruna M Silva
- Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Translational Medicine Research Plataform, Oswaldo Cruz Foundation, University of São Paulo, Ribeirão Preto, Brazil
| | - Eurico Arruda
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Adriano Sebollela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
4
|
Crawford G, Soper O, Kang E, Berg DA. Advancing insights into virus-induced neurodevelopmental disorders through human brain organoid modelling. Expert Rev Mol Med 2024; 27:e1. [PMID: 39587735 PMCID: PMC11707831 DOI: 10.1017/erm.2024.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/18/2024] [Accepted: 10/19/2024] [Indexed: 11/27/2024]
Abstract
Human neurodevelopment is a complex process vulnerable to disruptions, particularly during the prenatal period. Maternal viral infections represent a significant environmental factor contributing to a spectrum of congenital defects with profound and enduring impacts on affected offspring. The advent of induced pluripotent stem cell (iPSC)-derived three-dimensional (3D) human brain organoids has revolutionised our ability to model prenatal viral infections and associated neurodevelopmental disorders. Notably, human brain organoids provide a distinct advantage over traditional animal models, whose brain structures and developmental processes differ markedly from those of humans. These organoids offer a sophisticated platform for investigating viral pathogenesis, infection mechanisms and potential therapeutic interventions, as demonstrated by their pivotal role during the 2016 Zika virus outbreak. This review critically examines the utilisation of brain organoids in elucidating the mechanisms of TORCH viral infections, their impact on human brain development and contribution to associated neurodevelopmental disorders.
Collapse
Affiliation(s)
- Gabriella Crawford
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Olivia Soper
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Eunchai Kang
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Daniel A. Berg
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
5
|
Li M, Yuan Y, Hou Z, Hao S, Jin L, Wang B. Human brain organoid: trends, evolution, and remaining challenges. Neural Regen Res 2024; 19:2387-2399. [PMID: 38526275 PMCID: PMC11090441 DOI: 10.4103/1673-5374.390972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/26/2023] [Accepted: 10/28/2023] [Indexed: 03/26/2024] Open
Abstract
Advanced brain organoids provide promising platforms for deciphering the cellular and molecular processes of human neural development and diseases. Although various studies and reviews have described developments and advancements in brain organoids, few studies have comprehensively summarized and analyzed the global trends in this area of neuroscience. To identify and further facilitate the development of cerebral organoids, we utilized bibliometrics and visualization methods to analyze the global trends and evolution of brain organoids in the last 10 years. First, annual publications, countries/regions, organizations, journals, authors, co-citations, and keywords relating to brain organoids were identified. The hotspots in this field were also systematically identified. Subsequently, current applications for brain organoids in neuroscience, including human neural development, neural disorders, infectious diseases, regenerative medicine, drug discovery, and toxicity assessment studies, are comprehensively discussed. Towards that end, several considerations regarding the current challenges in brain organoid research and future strategies to advance neuroscience will be presented to further promote their application in neurological research.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zongkun Hou
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Lorkiewicz P, Waszkiewicz N. Viral infections in etiology of mental disorders: a broad analysis of cytokine profile similarities - a narrative review. Front Cell Infect Microbiol 2024; 14:1423739. [PMID: 39206043 PMCID: PMC11349683 DOI: 10.3389/fcimb.2024.1423739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
The recent pandemic caused by the SARS-CoV-2 virus and the associated mental health complications have renewed scholarly interest in the relationship between viral infections and the development of mental illnesses, a topic that was extensively discussed in the previous century in the context of other viruses, such as influenza. The most probable and analyzable mechanism through which viruses influence the onset of mental illnesses is the inflammation they provoke. Both infections and mental illnesses share a common characteristic: an imbalance in inflammatory factors. In this study, we sought to analyze and compare cytokine profiles in individuals infected with viruses and those suffering from mental illnesses. The objective was to determine whether specific viral diseases can increase the risk of specific mental disorders and whether this risk can be predicted based on the cytokine profile of the viral disease. To this end, we reviewed existing literature, constructed cytokine profiles for various mental and viral diseases, and conducted comparative analyses. The collected data indicate that the risk of developing a specific mental illness cannot be determined solely based on cytokine profiles. However, it was observed that the combination of IL-8 and IL-10 is frequently associated with psychotic symptoms. Therefore, to assess the risk of mental disorders in infected patients, it is imperative to consider the type of virus, the mental complications commonly associated with it, the predominant cytokines to evaluate the risk of psychotic symptoms, and additional patient-specific risk factors.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Białystok, Poland
| | | |
Collapse
|
7
|
Teo F, Kok CYL, Tan MJ, Je HS. Human pluripotent stem cell (hPSC)-derived microglia for the study of brain disorders. A comprehensive review of existing protocols. IBRO Neurosci Rep 2024; 16:497-508. [PMID: 38655500 PMCID: PMC11035045 DOI: 10.1016/j.ibneur.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/06/2024] [Indexed: 04/26/2024] Open
Abstract
Microglia, resident immune cells of the brain that originate from the yolk sac, play a critical role in maintaining brain homeostasis by monitoring and phagocytosing pathogens and cellular debris in the central nervous system (CNS). While they share characteristics with myeloid cells, they are distinct from macrophages. In response to injury, microglia release pro-inflammatory factors and contribute to brain homeostasis through activities such as synapse pruning and neurogenesis. To better understand their role in neurological disorders, the generation of in vitro models of human microglia has become essential. These models, derived from patient-specific induced pluripotent stem cells (iPSCs), provide a controlled environment to study the molecular and cellular mechanisms underlying microglia-mediated neuroinflammation and neurodegeneration. The incorporation or generation of microglia into three-dimensional (3D) organoid cultures provides a more physiologically relevant environment that offers further opportunities to study microglial dynamics and disease modeling. This review describes several protocols that have been recently developed for the generation of human-induced microglia. Importantly, it highlights the promise of these in vitro models in advancing our understanding of brain disorders and facilitating personalized drug screening.
Collapse
Affiliation(s)
- Fionicca Teo
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Catherine Yen Li Kok
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Mao-Jia Tan
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - H. Shawn Je
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Advanced Bioimaging Centre, SingHealth, Academia, 20 College Road, Singapore 169856, Singapore
| |
Collapse
|
8
|
Deng C, Whalen S, Steyert M, Ziffra R, Przytycki PF, Inoue F, Pereira DA, Capauto D, Norton S, Vaccarino FM, PsychENCODE Consortium, Pollen AA, Nowakowski TJ, Ahituv N, Pollard KS. Massively parallel characterization of regulatory elements in the developing human cortex. Science 2024; 384:eadh0559. [PMID: 38781390 PMCID: PMC12085231 DOI: 10.1126/science.adh0559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/13/2024] [Indexed: 05/25/2024]
Abstract
Nucleotide changes in gene regulatory elements are important determinants of neuronal development and diseases. Using massively parallel reporter assays in primary human cells from mid-gestation cortex and cerebral organoids, we interrogated the cis-regulatory activity of 102,767 open chromatin regions, including thousands of sequences with cell type-specific accessibility and variants associated with brain gene regulation. In primary cells, we identified 46,802 active enhancer sequences and 164 variants that alter enhancer activity. Activity was comparable in organoids and primary cells, suggesting that organoids provide an adequate model for the developing cortex. Using deep learning we decoded the sequence basis and upstream regulators of enhancer activity. This work establishes a comprehensive catalog of functional gene regulatory elements and variants in human neuronal development.
Collapse
Affiliation(s)
- Chengyu Deng
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sean Whalen
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Marilyn Steyert
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Ryan Ziffra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Daniela A. Pereira
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
- Graduate Program of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Davide Capauto
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Scott Norton
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Flora M. Vaccarino
- Child Study Center, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| | | | - Alex A. Pollen
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J. Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Katherine S. Pollard
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
9
|
Swaminath S, Russell AB. The use of single-cell RNA-seq to study heterogeneity at varying levels of virus-host interactions. PLoS Pathog 2024; 20:e1011898. [PMID: 38236826 PMCID: PMC10796064 DOI: 10.1371/journal.ppat.1011898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The outcome of viral infection depends on the diversity of the infecting viral population and the heterogeneity of the cell population that is infected. Until almost a decade ago, the study of these dynamic processes during viral infection was challenging and limited to certain targeted measurements. Presently, with the use of single-cell sequencing technology, the complex interface defined by the interactions of cells with infecting virus can now be studied across the breadth of the transcriptome in thousands of individual cells simultaneously. In this review, we will describe the use of single-cell RNA sequencing (scRNA-seq) to study the heterogeneity of viral infections, ranging from individual virions to the immune response between infected individuals. In addition, we highlight certain key experimental limitations and methodological decisions that are critical to analyzing scRNA-seq data at each scale.
Collapse
Affiliation(s)
- Sharmada Swaminath
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Alistair B. Russell
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
10
|
Reef SE, Icenogle JP, Plotkin SA. The path to eradication of rubella. Vaccine 2023; 41:7525-7531. [PMID: 37973510 DOI: 10.1016/j.vaccine.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Since 1969, rubella and its harmful effect on fetuses infected in utero can be prevented by rubella vaccine, usually given in combination with measles vaccine. The rubella vaccine is highly protective both in children and in adults including women intending to become pregnant. Owing to the use of combined measles and rubella vaccines, congenital rubella infection has been eliminated from the Western Hemisphere and nearly all of Europe. Such combined vaccination is now being applied throughout the world, posing the possibility of eventual rubella eradication. The existence of viruses of animals related to rubella does not appear to be a barrier to eradication of the human virus. However, persistent rubella virus in infants infected in utero and of immunosuppressed patients with granulomas may pose a problem for eradication. Nevertheless, this review posits that eradication of rubella is now feasible if routine vaccination of infants and surveillance for chronic infection are correctly applied.
Collapse
Affiliation(s)
| | | | - Stanley A Plotkin
- University of Pennsylvania, Vaxconsult, 4650 Wismer Rd., Doylestown, PA 18902, USA.
| |
Collapse
|
11
|
Epifanova E, Nguyen L. The dangers of rubella virus. eLife 2023; 12:e89265. [PMID: 37327049 PMCID: PMC10275635 DOI: 10.7554/elife.89265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
The rubella virus can interfere with fetal brain development by infecting immune cells called microglia during pregnancy.
Collapse
Affiliation(s)
- Ekaterina Epifanova
- Laboratory of Molecular Regulation of Neurogenesis, GIGA‐Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA‐R), University of LiègeLiègeBelgium
| | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA‐Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA‐R), University of LiègeLiègeBelgium
- WELBIO department, WEL Research InstituteWavresBelgium
| |
Collapse
|