1
|
Matos AC, Figueira L, Martins MH, Cardoso L, Matos M, Pinto MDL, Coelho AC. Mycobacterium avium subsp. paratuberculosis in Wild Boar ( Sus scrofa) in Portugal. Pathogens 2024; 13:389. [PMID: 38787242 PMCID: PMC11123966 DOI: 10.3390/pathogens13050389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Paratuberculosis, or Johne's disease, caused by Mycobacterium avium subsp. paratuberculosis (MAP), is a chronic granulomatous enteritis affecting both domestic and wild ruminants. The agent was also found in wild mammals such as wild boar (Sus scrofa); however, the role of wild mammals in the epidemiology of MAP is unclear. During the research period, 941 free-ranging wild boar (S. scrofa) legally hunted in two locations in the central-eastern region of Portugal were examined. Ninety-seven wild boars exhibited one or more gross lesions and were tested for the presence of Mycobacterium avium subsp. paratuberculosis using acid-fast staining, mycobacterial culture, polymerase chain reaction (PCR), and histopathological examination. Forty-five animals (46.4%, 95% CI: 36.5-56.3%) were identified as infected, as indicated by positive results in culture and/or PCR. The findings revealed that the most significant risk factor was being a juvenile compared to yearlings and adults (OR = 10.2, 95% CI: 2.2-48.0). Based on our results, 37.9% (n = 11) of the infected animals were considered suitable for human consumption. Our findings offer novel insights into mycobacterial infections in wild boar populations in Portugal and suggest that wild boar could be a source of human infection if zoonotic potential is considered.
Collapse
Affiliation(s)
- Ana Cristina Matos
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (A.C.M.); (L.F.); (M.H.M.)
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - Luis Figueira
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (A.C.M.); (L.F.); (M.H.M.)
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.d.L.P.); (A.C.C.)
| | - Maria Helena Martins
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (A.C.M.); (L.F.); (M.H.M.)
| | - Luís Cardoso
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.d.L.P.); (A.C.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Manuela Matos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Maria de Lurdes Pinto
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.d.L.P.); (A.C.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Ana Cláudia Coelho
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.d.L.P.); (A.C.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
2
|
Pires H, Cardoso L, Lopes AP, Fontes MDC, Santos-Silva S, Matos M, Pintado C, Roque N, Fonseca LF, Morgado I, Dias AS, Figueira L, Matos AC, Mesquita JR, Coelho AC. Hunting for Answers: Assessing Brucella spp. Seroprevalence and Risks in Red Deer and Wild Boar in Central Portugal. Pathogens 2024; 13:242. [PMID: 38535585 PMCID: PMC10975371 DOI: 10.3390/pathogens13030242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 01/23/2025] Open
Abstract
Between 2016 and 2023, a cross-sectional study was conducted in the central region of Portugal in order to better understand the epidemiology and public health risks resulting from the handling and consumption of game animals infected with Brucella spp. The seroprevalence and risk factors for Brucella spp. seropositivity were evaluated. Antibodies against Brucella spp. were determined using a commercial enzyme-linked immunosorbent assay (ELISA) according to the manufacturer's instructions. Results showed that in the 650 serum samples collected from red deer (n = 298) and wild boars (n = 352) in Portugal, 21.7% (n = 141; 95% CI: 18.6-25.1%) tested positive. Wild boar had a significantly higher prevalence (35.5%; 95% CI: 30.5-40.8%) than red deer (5.4%, 95% CI: 3.1-8.6%; p ≤ 0.001). Risk factors for seropositivity were investigated using multivariable logistic regression models. The odds of being seropositive was 8.39 (95% CI: 4.75-14.84; p ≤ 0.001) times higher in wild boar than in red deer. Correlations between sex, age, body condition, and seropositivity could not be observed. The higher seroprevalence in wild boar suggests that this species may primarily contribute to the Brucella spp. ecology in central Portugal.
Collapse
Affiliation(s)
- Humberto Pires
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (H.P.); (C.P.); (N.R.); (L.F.F.); (I.M.); (A.S.D.); (A.C.M.)
| | - Luís Cardoso
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.L.); (M.d.C.F.); (A.C.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Ana Patrícia Lopes
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.L.); (M.d.C.F.); (A.C.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Maria da Conceição Fontes
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.L.); (M.d.C.F.); (A.C.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Sérgio Santos-Silva
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, 4050-313 Porto, Portugal; (S.S.-S.); (J.R.M.)
| | - Manuela Matos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Cristina Pintado
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (H.P.); (C.P.); (N.R.); (L.F.F.); (I.M.); (A.S.D.); (A.C.M.)
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal;
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - Natália Roque
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (H.P.); (C.P.); (N.R.); (L.F.F.); (I.M.); (A.S.D.); (A.C.M.)
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal;
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - Leonardo Filipe Fonseca
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (H.P.); (C.P.); (N.R.); (L.F.F.); (I.M.); (A.S.D.); (A.C.M.)
| | - Inês Morgado
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (H.P.); (C.P.); (N.R.); (L.F.F.); (I.M.); (A.S.D.); (A.C.M.)
| | - Ana Sofia Dias
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (H.P.); (C.P.); (N.R.); (L.F.F.); (I.M.); (A.S.D.); (A.C.M.)
| | - Luís Figueira
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal;
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - Ana Cristina Matos
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (H.P.); (C.P.); (N.R.); (L.F.F.); (I.M.); (A.S.D.); (A.C.M.)
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal;
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - João Rodrigo Mesquita
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, 4050-313 Porto, Portugal; (S.S.-S.); (J.R.M.)
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Ana Cláudia Coelho
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.L.); (M.d.C.F.); (A.C.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Di Donato A, Gambi L, Ravaioli V, Perulli S, Cirasella L, Rossini R, Luppi A, Tosi G, Fiorentini L. First Report of Caseous Lymphadenitis by Corynebacterium pseudotubercolosis and Pulmonary Verminosis in a Roe Deer ( Capreolus capreolus Linnaeus, 1758) in Italy. Animals (Basel) 2024; 14:566. [PMID: 38396534 PMCID: PMC10885920 DOI: 10.3390/ani14040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Caseous lymphadenitis is a chronic debilitating disease typical of small ruminants, but it is also noted in several other domestic and wild species. In this report, we present the first documented case in Italy of pseudotuberculosis in a roe deer (Capreolus capreolus, Linnaeus 1758) found dead in the mountains of Forlì-Cesena province, Emilia Romagna region. The carcass underwent necropsy according to standard protocols, revealing generalized lymphadenopathy and severe apostematous pneumonia with multifocal and encapsulated abscesses. Corynebacterium pseudotuberculosis was isolated from the lung parenchyma, lymph nodes and abscesses. Additionally, severe parasitic bronchopneumonia of the caudal lobes and gastrointestinal strongyle infestation were detected. To our knowledge, this is the first documented case of CLA referable to C. pseudotubercolosis in a roe deer in Italy.
Collapse
Affiliation(s)
- Alessandra Di Donato
- Istituto Zooprofilattico Sperimentale Della Lombardia e dell’Emilia Romagna (IZSLER), 47122 Forlì, Italy; (A.D.D.); (L.G.); (V.R.); (S.P.); (R.R.); (G.T.); (L.F.)
| | - Lorenzo Gambi
- Istituto Zooprofilattico Sperimentale Della Lombardia e dell’Emilia Romagna (IZSLER), 47122 Forlì, Italy; (A.D.D.); (L.G.); (V.R.); (S.P.); (R.R.); (G.T.); (L.F.)
| | - Valentina Ravaioli
- Istituto Zooprofilattico Sperimentale Della Lombardia e dell’Emilia Romagna (IZSLER), 47122 Forlì, Italy; (A.D.D.); (L.G.); (V.R.); (S.P.); (R.R.); (G.T.); (L.F.)
| | - Simona Perulli
- Istituto Zooprofilattico Sperimentale Della Lombardia e dell’Emilia Romagna (IZSLER), 47122 Forlì, Italy; (A.D.D.); (L.G.); (V.R.); (S.P.); (R.R.); (G.T.); (L.F.)
| | - Letizia Cirasella
- Istituto Zooprofilattico Sperimentale Della Lombardia e dell’Emilia Romagna (IZSLER), 47122 Forlì, Italy; (A.D.D.); (L.G.); (V.R.); (S.P.); (R.R.); (G.T.); (L.F.)
| | - Rachele Rossini
- Istituto Zooprofilattico Sperimentale Della Lombardia e dell’Emilia Romagna (IZSLER), 47122 Forlì, Italy; (A.D.D.); (L.G.); (V.R.); (S.P.); (R.R.); (G.T.); (L.F.)
| | - Andrea Luppi
- Istituto Zooprofilattico Sperimentale Della Lombardia e dell’Emilia Romagna (IZSLER), 43126 Parma, Italy;
| | - Giovanni Tosi
- Istituto Zooprofilattico Sperimentale Della Lombardia e dell’Emilia Romagna (IZSLER), 47122 Forlì, Italy; (A.D.D.); (L.G.); (V.R.); (S.P.); (R.R.); (G.T.); (L.F.)
| | - Laura Fiorentini
- Istituto Zooprofilattico Sperimentale Della Lombardia e dell’Emilia Romagna (IZSLER), 47122 Forlì, Italy; (A.D.D.); (L.G.); (V.R.); (S.P.); (R.R.); (G.T.); (L.F.)
| |
Collapse
|
4
|
Pires H, Cardoso L, Lopes AP, Fontes MDC, Santos-Silva S, Matos M, Pintado C, Figueira L, Matos AC, Mesquita JR, Coelho AC. Prevalence and Risk Factors for Hepatitis E Virus in Wild Boar and Red Deer in Portugal. Microorganisms 2023; 11:2576. [PMID: 37894234 PMCID: PMC10609178 DOI: 10.3390/microorganisms11102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatitis E virus (HEV) is a zoonotic foodborne virus with an annual infection prevalence of 20 million human cases, which seriously affects public health and economic development in both developed and developing countries. To better understand the epidemiology of HEV in Central Portugal, a cross-sectional study was conducted from 2016 to 2023 with sera samples from wild ungulates. The seroprevalence and risk factors for HEV seropositivity were evaluated in the present study. Specifically, antibodies against HEV were determined by a commercial enzyme-linked immune-sorbent assay (ELISA). Our results show that in the 650 sera samples collected from 298 wild red deer and 352 wild boars in Portugal, 9.1% red deer and 1.7% wild boar were positive for antibodies to HEV. Regarding age, the seropositivity in juvenile wild ungulates was 1.3%, whereas it was 7.2% in adults. Logistic regression models investigated risk factors for seropositivity. The odds of being seropositive was 3.6 times higher in adults than in juveniles, and the risk was 4.2 times higher in red deer than in wild boar. Both wild ungulate species were exposed to HEV. The higher seroprevalence in red deer suggests that this species may make a major contribution to the ecology of HEV in Central Portugal. Further research is needed to understand how wildlife affects the epidemiology of HEV infections in Portugal.
Collapse
Affiliation(s)
- Humberto Pires
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (H.P.); (C.P.); (A.C.M.)
| | - Luís Cardoso
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.P.L.); (M.d.C.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Ana Patrícia Lopes
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.P.L.); (M.d.C.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Maria da Conceição Fontes
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.P.L.); (M.d.C.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Sérgio Santos-Silva
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, 4050-313 Porto, Portugal; (S.S.-S.); (J.R.M.)
| | - Manuela Matos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
| | - Cristina Pintado
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (H.P.); (C.P.); (A.C.M.)
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal;
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - Luís Figueira
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal;
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - Ana Cristina Matos
- Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal; (H.P.); (C.P.); (A.C.M.)
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal;
- Quality of Life in the Rural World (Q-RURAL), Polytechnic Institute of Castelo Branco, 6001-909 Castelo Branco, Portugal
| | - João Rodrigo Mesquita
- School of Medicine and Biomedical Sciences (ICBAS), Porto University, 4050-313 Porto, Portugal; (S.S.-S.); (J.R.M.)
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4050-600 Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-600 Porto, Portugal
| | - Ana Cláudia Coelho
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (L.C.); (A.P.L.); (M.d.C.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
5
|
Pires H, Cardoso L, Lopes AP, Fontes MDC, Matos M, Pintado C, Figueira L, Mesquita JR, Matos AC, Coelho AC. Seropositivity for Coxiella burnetii in Wild Boar ( Sus scrofa) and Red Deer ( Cervus elaphus) in Portugal. Pathogens 2023; 12:421. [PMID: 36986343 PMCID: PMC10057195 DOI: 10.3390/pathogens12030421] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Q fever is caused by the pathogen Coxiella burnetii and is a zoonosis that naturally infects goats, sheep, and cats, but can also infect humans, birds, reptiles, or arthropods. A survey was conducted for the detection of antibodies against C. burnetii in a sample of 617 free-ranging wild ruminants, 358 wild boar (Sus scrofa) and 259 red deer (Cervus elaphus), in east-central Portugal during the 2016-2022 hunting seasons. Only adult animals were sampled in this study. Antibodies specific to C. burnetii were detected using a commercial enzyme-linked immunosorbent assay (ELISA; IDVet®, Montpellier, France) according to the manufacturer's instructions. The seroprevalence of C. burnetii infection was 1.5% (n = 9; 95% confidence interval [CI]: 0.7-2.8%). Antibodies against C. burnetii were detected in 4/358 wild boar (1.1%; 95% CI: CI: 0.3-2.8%) and 5/259 red deer (1.9%; 0.6-4.5%). Results of the present study indicate that antibodies against C. burnetii were present in wild boar and red deer in Portugal. These findings can help local health authorities to focus on the problem of C. burnetii in wildlife and facilitate the application of a One Health approach to its prevention and control.
Collapse
Affiliation(s)
- Humberto Pires
- Polytechnic Institute of Castelo Branco, 5200-130 Castelo Branco, Portugal
| | - Luís Cardoso
- Animal and Veterinary Research Centre, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801556 Vila Real, Portugal
| | - Ana Patrícia Lopes
- Animal and Veterinary Research Centre, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801556 Vila Real, Portugal
| | - Maria da Conceição Fontes
- Animal and Veterinary Research Centre, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801556 Vila Real, Portugal
| | - Manuela Matos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5000-556 Vila Real, Portugal
| | - Cristina Pintado
- Polytechnic Institute of Castelo Branco, 5200-130 Castelo Branco, Portugal
| | - Luís Figueira
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 5200-130 Castelo Branco, Portugal
- Researcher at Q-RURAL—Quality of Life in the Rural World, Polytechnic Institute of Castelo Branco, 5200-130 Castelo Branco, Portugal
| | - João Rodrigo Mesquita
- ICBAS—School of Medicine and Biomedical Sciences, Porto University, 4099-002 Porto, Portugal
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, 4099-002 Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4099-002 Porto, Portugal
| | - Ana Cristina Matos
- Research Center for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco, 5200-130 Castelo Branco, Portugal
- Researcher at Q-RURAL—Quality of Life in the Rural World, Polytechnic Institute of Castelo Branco, 5200-130 Castelo Branco, Portugal
| | - Ana Cláudia Coelho
- Animal and Veterinary Research Centre, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801556 Vila Real, Portugal
| |
Collapse
|
6
|
Hernández-Jarguín AM, Martínez-Burnes J, Molina-Salinas GM, de la Cruz-Hernández NI, Palomares-Rangel JL, López Mayagoitia A, Barrios-García HB. Isolation and Histopathological Changes Associated with Non-Tuberculous Mycobacteria in Lymph Nodes Condemned at a Bovine Slaughterhouse. Vet Sci 2020; 7:vetsci7040172. [PMID: 33182568 PMCID: PMC7712099 DOI: 10.3390/vetsci7040172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 01/11/2023] Open
Abstract
Background: non-tuberculous mycobacteria (NTM) infect humans and animals and have a critical confounding effect on the diagnosis of bovine tuberculosis. The Official Mexican Standard (Norma Oficial Mexicana, NOM-ZOO-031-1995) for food safety regulates Mycobacterium bovis in cattle, but not the NTM species. The study's objective was to isolate and identify the NTM present in condemned bovine lymph nodes in a slaughterhouse, characterize the histological lesions, and correlate bacteriological and microscopic findings with the antemortem tuberculin skin test. Methods: from 528 cattle, one or two pooled samples of lymph nodes from each animal were cultured for Mycobacteria spp. and processed for histopathology. Results: mycobacteria were isolated from 54/528 (10.2%) of the condemned lymph nodes; 25/54 (46.2%) of these isolates were NTM; 4 bacteriological cultures with fungal contamination were discarded. Granulomatous and pyogranulomatous inflammation were present in 6/21 (28.6%) and 7/21 (33.3%) of the NTM-positive lymph nodes, respectively. The species of NTM associated with granulomatous lymphadenitis were M. scrofulaceum, M. triviale, M. terrae, and M. szulgai, while those causing pyogranulomatous lesions were M. szulgai, M. kansasii, M. phlei, and M. scrofulaceum. Conclusions: the NTM infections can cause false-positive results in the tuberculin test because of cross immune reactivity and interference with the postmortem identification of M. bovis in cattle.
Collapse
Affiliation(s)
- Angélica M. Hernández-Jarguín
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas. Cd. Victoria, Tamaulipas C.P. 87000, Mexico; (J.M.-B.); (N.I.d.l.C.-H.); (J.L.P.-R.); (H.B.B.-G.)
- Correspondence:
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas. Cd. Victoria, Tamaulipas C.P. 87000, Mexico; (J.M.-B.); (N.I.d.l.C.-H.); (J.L.P.-R.); (H.B.B.-G.)
| | - Gloria M. Molina-Salinas
- Unidad de Investigación Médica Yucatán, Unidad Médica de Alta Especialidad Hospital de Especialidades 1 Mérida, Yucatán, Instituto Mexicano del Seguro Social, CP 97150, Mexico;
| | - Ned I. de la Cruz-Hernández
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas. Cd. Victoria, Tamaulipas C.P. 87000, Mexico; (J.M.-B.); (N.I.d.l.C.-H.); (J.L.P.-R.); (H.B.B.-G.)
| | - José L. Palomares-Rangel
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas. Cd. Victoria, Tamaulipas C.P. 87000, Mexico; (J.M.-B.); (N.I.d.l.C.-H.); (J.L.P.-R.); (H.B.B.-G.)
| | - Alfonso López Mayagoitia
- Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A4P3, Canada;
| | - Hugo B. Barrios-García
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas. Cd. Victoria, Tamaulipas C.P. 87000, Mexico; (J.M.-B.); (N.I.d.l.C.-H.); (J.L.P.-R.); (H.B.B.-G.)
| |
Collapse
|
7
|
Flueck WT. Functional limb anatomy in a refugee species: The endangered Patagonian huemul deer (Hippocamelus bisulcus). Anat Histol Embryol 2020; 50:411-416. [PMID: 33045110 DOI: 10.1111/ahe.12624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/12/2020] [Accepted: 09/24/2020] [Indexed: 11/29/2022]
Abstract
Early naturalists already considered huemul rare, refuged and a stocky, short-legged mountain deer, 163 years before declared endangered (1972). Anatomically, huemul do not overlap with rock-climbers previously considered analogous, as corroborated in this paper by including additional huemul cases. Assertions that population declines are caused principally via livestock infections remain unfounded. Instead, osteopathology in multiple populations across 1,000 km, affecting 57% among dead and 86% among live specimens, may relate to micronutrient deficiencies. Historically classified a mountain deer, widespread osteopathology, micronutrient deficiencies and lack of recovery qualify huemul as a refugee species. Recovery strategies thus must include repopulating historical distribution sites.
Collapse
Affiliation(s)
- Werner T Flueck
- National Council of Scientific and Technological Research (CONICET), Buenos Aires, Argentina.,Argentine National Park Administration, Bariloche, Argentina.,Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Bernardes JS, Eberle RJ, Vieira FRJ, Coronado MA. A comparative pan-genomic analysis of 53 C. pseudotuberculosis strains based on functional domains. J Biomol Struct Dyn 2020; 39:6974-6986. [PMID: 32779519 DOI: 10.1080/07391102.2020.1805017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Corynebacterium pseudotuberculosis is a pathogenic bacterium with great veterinary and economic importance. It is classified into two biovars: ovis, nitrate-negative, that causes lymphadenitis in small ruminants and equi, nitrate-positive, causing ulcerative lymphangitis in equines. With the explosive growth of available genomes of several strains, pan-genome analysis has opened new opportunities for understanding the dynamics and evolution of C. pseudotuberculosis. However, few pan-genomic studies have compared biovars equi and ovis. Such studies have considered a reduced number of strains and compared entire genomes. Here we conducted an original pan-genome analysis based on protein sequences and their functional domains. We considered 53 C. pseudotuberculosis strains from both biovars isolated from different hosts and countries. We have analysed conserved domains, common domains more frequently found in each biovar and biovar-specific (unique) domains. Our results demonstrated that biovar equi is more variable; there is a significant difference in the number of proteins per strains, probably indicating the occurrence of more gene loss/gain events. Moreover, strains of biovar equi presented a higher number of biovar-specific domains, 77 against only eight in biovar ovis, most of them are associated with virulence mechanisms. With this domain analysis, we have identified functional differences among strains of biovars ovis and equi that could be related to niche-adaptation and probably help to better understanding mechanisms of virulence and pathogenesis. The distribution patterns of functional domains identified in this work might have impacts on bacterial physiology and lifestyle, encouraging the development of new diagnoses, vaccines, and treatments for C. pseudotuberculosis diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Juliana S Bernardes
- Laboratoire de Biologie Computationelle et Quantitative, UMR 7238, CNRS, Sorbonne Université, Paris, France
| | - Raphael J Eberle
- Multiuser Center for Biomolecular Innovation, Department of Physics, Instituto de Biociências, Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, Brazil
| | - Fabio R J Vieira
- Institut de Biologie de l'École Normale Supérieure (IBENS), Paris, France
| | - Mônika A Coronado
- Multiuser Center for Biomolecular Innovation, Department of Physics, Instituto de Biociências, Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, Brazil.,Institute of Biological Information Processing (IBI-7: Strucutral Biochemistry), Forschungszentrum Juelich, Juelich, Germany
| |
Collapse
|
9
|
Flueck WT, Smith-Flueck JAM. The next frontier for recovering endangered huemul (Hippocamelus bisulcus): how to avoid recurrent misdiagnoses of health status and risks. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Context
The currently remaining 350–500 huemuls in Argentina are not recovering. We evaluated live huemuls, along with animals that died soon after confinement, or those that had died recently. Although information on the health status is highly valuable, repeated misdiagnoses of the health status indicate a need for other strategies.
Aims
. Discrepancies between clinical and postmortem diagnoses are critical for improving subsequent management decisions.
Methods
Initial clinical interpretations and risk assessments were reinterpreted on the basis of necropsies and other data.
Results
Two debilitated huemul individuals examined by veterinarians died soon afterwards, supposedly one being intoxicated and one being without lesions. Necropsies showed osteopathology and fluorosis (fluorine concentrations of 2209 and 2979 mg/kg). Another male was tied up, with authorities and veterinarians arriving the next day. After being sedated, and judged healthy, the animal was translocated. Because there was no reversal, this animal died 22 h post-capture. Exhumation showed severe osteopathology. Elsewhere, huemuls were considered adequate in selenium because values below the detection limit were excluded. However, when all values were included, 75% of the animals were selenium-deficient; this population had numerous cases of osteopathology. Recently, specialists went to Torres del Paine Park suspecting caseous lymphadenitis, reporting of which has been obligatory since 1937. However, many cases documented in 1999–2007 have not elicited responses since that time by health professionals. Selenium deficiency negatively affects antibody responses against caseous lymphadenitis. One province had denied huemul capture (2012 and 2013) on recommendation of scientific advisors. Because of the right for transparency, it was found out in 2016 that authorities had requested advice from only one veterinarian who assessed that darting was too risky. Another 2016 project proposed to dart the first huemul in Argentina. Two weeks earlier, that same team was called to rescue a tied-up huemul; the team opted not to involve a laboratory with drugs and radios that was only 1 h away. This huemul died and was left in the woods. Finally, the first huemul enclosure in Argentina was proposed (1995), but the permission was denied. Again, in 2000, the first huemul centre with private funding secured for 30 years was proposed. However, the Regional Delegation for Patagonian National Parks prevented aerial surveys, and advised not to provide a permit for the centre.
Conclusions
Future assessments should consider osteopathology. Risk assessments should be transparent and based on assessment by multiple qualified professionals.
Implications
Clinical misdiagnoses may reduce life expectancy, in contrast to taking individuals to enclosures, which would also allow valuable reintroductions. Not permitting captures, censusses and enclosures has resulted in unwarranted delays in conservation progress.
Collapse
|
10
|
Hulinova Stromerova N, Faldyna M. Mycobacterium avium complex infection in pigs: A review. Comp Immunol Microbiol Infect Dis 2018; 57:62-68. [PMID: 30017080 DOI: 10.1016/j.cimid.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/18/2018] [Accepted: 06/10/2018] [Indexed: 11/19/2022]
Abstract
Mycobacterial infections in pigs are caused particularly by the Mycobacterium avium complex (MAC) and these infections lead to great economic losses mainly within the countries with high pork meat production. The importance of the MAC infections in humans is rising because of its higher prevalence and also higher mortality rates particularly in advanced countries. In addition, treatment of the MAC infections in humans tends to be complicated because of its increasing resistance to antimicrobial agents. Several studies across Europe have documented the MAC occurrence in the slaughtered pigs - not only in their lymph nodes and tonsils, which are the most frequent, but also in the diaphragmas, other organs and not least in meat. This is why we need both more specific and more sensitive methods for the MAC infection detection. Different PCR assays were established as well as advanced intravital testing by the gamma interferon release test. On the other hand, tuberculin skin test is still one of the cheapest methods of mycobacterial infections detection.
Collapse
Affiliation(s)
- Nikola Hulinova Stromerova
- State Veterinary Institute Olomouc, Jakoubka ze Stříbra 1, 779 00 Olomouc, Czech Republic; Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Martin Faldyna
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic.
| |
Collapse
|
11
|
Domenis L, Spedicato R, Pepe E, Orusa R, Robetto S. Caseous Lymphadenitis Caused by Corynebacterium pseudotuberculosis in Alpine Chamois ( Rupicapra r. rupicapra ): a Review of 98 Cases. J Comp Pathol 2018; 161:11-19. [DOI: 10.1016/j.jcpa.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 11/16/2022]
|
12
|
Corynebacterium pseudotuberculosis Infection in Patagonian Huemul (Hippocamelus bisulcus). J Wildl Dis 2017; 53:621-624. [DOI: 10.7589/2016-09-213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Haas DJ, Dorneles EMS, Spier SJ, Carroll SP, Edman J, Azevedo VA, Heinemann MB, Lage AP. Molecular epidemiology of Corynebacterium pseudotuberculosis isolated from horses in California. INFECTION GENETICS AND EVOLUTION 2016; 49:186-194. [PMID: 27979735 DOI: 10.1016/j.meegid.2016.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/10/2016] [Accepted: 12/10/2016] [Indexed: 11/26/2022]
Abstract
Corynebacterium pseudotuberculosis biovar Equi is an important pathogen of horses. It is increasing in frequency in the United States, and is responsible for various clinical forms of infection, including external abscesses, internal abscesses of the abdominal or thoracic cavities, and ulcerative lymphangitis. The host/pathogen factors dictating the form or severity of infection are currently unknown. Our recent investigations have shown that genotyping C. pseudotuberculosis isolates using enterobacterial repetitive intergenic consensus (ERIC)-PCR is useful for understanding the evolutionary genetics of the species as well for molecular epidemiology studies. The aims of the present study were to assess (i) the genetic diversity of C. pseudotuberculosis strains isolated from horses in California, United States and (ii) the epidemiologic relationships among isolates. One hundred and seven C. pseudotuberculosis biovar Equi isolates from ninety-five horses, and two C. pseudotuberculosis biovar Ovis strains, C. pseudotuberculosis ATCC 19410T type strain and C. pseudotuberculosis 1002 vaccine strain, were fingerprinted using the ERIC 1+2-PCR. C. pseudotuberculosis isolated from horses showed a high genetic diversity, clustering in twenty-seven genotypes with a diversity index of 0.91. Minimal spanning tree showed four major clonal complexes with a pattern of temporal clustering. Strains isolated from the same horse showed identical ERIC 1+2-PCR genotype, with the exception of two strains isolated from the same animal that showed distinct genotypes, suggesting a co-infection. We found no strong genetic signals related to clinical form (including internal versus external infections). However, temporal clustering of genotypes was observed.
Collapse
Affiliation(s)
- Dionei J Haas
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine M S Dorneles
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Sharon J Spier
- Department of Medicine and Epidemiology, University of California, Davis, California, USA
| | - Scott P Carroll
- Department of Medicine and Epidemiology, University of California, Davis, California, USA
| | - Judy Edman
- Department of Medicine and Epidemiology, University of California, Davis, California, USA
| | - Vasco A Azevedo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcos B Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Andrey P Lage
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|