1
|
Yang B, Yang KD. Immunopathogenesis of Different Emerging Viral Infections: Evasion, Fatal Mechanism, and Prevention. Front Immunol 2021; 12:690976. [PMID: 34335596 PMCID: PMC8320726 DOI: 10.3389/fimmu.2021.690976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Different emerging viral infections may emerge in different regions of the world and pose a global pandemic threat with high fatality. Clarification of the immunopathogenesis of different emerging viral infections can provide a plan for the crisis management and prevention of emerging infections. This perspective article describes how an emerging viral infection evolves from microbial mutation, zoonotic and/or vector-borne transmission that progresses to a fatal infection due to overt viremia, tissue-specific cytotropic damage or/and immunopathology. We classified immunopathogenesis of common emerging viral infections into 4 categories: 1) deficient immunity with disseminated viremia (e.g., Ebola); 2) pneumocytotropism with/without later hyperinflammation (e.g., COVID-19); 3) augmented immunopathology (e.g., Hanta); and 4) antibody-dependent enhancement of infection with altered immunity (e.g., Dengue). A practical guide to early blocking of viral evasion, limiting viral load and identifying the fatal mechanism of an emerging viral infection is provided to prevent and reduce the transmission, and to do rapid diagnoses followed by the early treatment of virus neutralization for reduction of morbidity and mortality of an emerging viral infection such as COVID-19.
Collapse
Affiliation(s)
- Betsy Yang
- Department of Medicine, Kaiser Permanente Oakland Medical Center, Oakland, CA, United States
| | - Kuender D. Yang
- DIvision of Medical Research, Mackay Children’s Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan
- Department of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
2
|
Iyer GR, Samajder S, Zubeda S, S DSN, Mali V, Pv SK, Sharma A, Abbas NZ, Bora NS, Narravula A, Hasan Q. Infectivity and Progression of COVID-19 Based on Selected Host Candidate Gene Variants. Front Genet 2020; 11:861. [PMID: 33101356 PMCID: PMC7500201 DOI: 10.3389/fgene.2020.00861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022] Open
Abstract
Introduction: Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has spread around the globe. Susceptibility has been associated with age, biological sex, and other prior existing health conditions. However, host genes are involved in viral infectivity and pathogenicity, and polymorphisms in these could be responsible for the interethnic/interindividual variability observed in infection and progression of COVID-19. Materials and Methods: Clinical exome data of 103 individuals was analyzed to identify sequence variants in five selected candidate genes: ACE2, TMPRSS2, CD209, IFITM3, and MUC5B to assess their prevalence and role to understand the COVID-19 infectivity and progression in our population. Results: A total of 497 polymorphisms were identified in the five selected genes in the exomes analyzed. Thirty-eight polymorphisms identified in our cohort have been reported earlier in literature and have functional significance or association with health conditions. These variants were classified into three groups: protective, susceptible, and responsible for comorbidities. Discussion and Conclusion: The two polymorphisms described in literature as risk inducing are rs35705950 in MUC5B gene and TMPRSS2 haplotype (rs463727, rs34624090, rs55964536, rs734056, rs4290734, rs34783969, rs11702475, rs35899679, and rs35041537) were absent in our cohort explaining the slower infectivity of the disease in this part of India. The 38 functional variants identified can be used as a predisposition panel for the COVID-19 infectivity and progression and stratify individuals as "high or low risk," which would help in planning appropriate surveillance and management protocols. A larger study from different regions of India is warranted to validate these results.
Collapse
Affiliation(s)
- Gayatri R Iyer
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India.,Department of Genetics, Osmania University, Hyderabad, India
| | - Sayani Samajder
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India
| | - Syeda Zubeda
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India
| | | | - Vishakha Mali
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India
| | - Sharath Krishnan Pv
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India
| | - Anuradha Sharma
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India
| | | | | | - Amulya Narravula
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India
| | - Qurratulain Hasan
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, India
| |
Collapse
|
3
|
Yu L, Dong J, Liu Y, Zhang L, Liang P, Wang L, Huang L, Xu Z, Song C. Genome-wide analysis of long noncoding RNA profiles in Vero cells infected with porcine epidemic diarrhea virus. Arch Virol 2020; 165:1969-1977. [PMID: 32529459 DOI: 10.1007/s00705-020-04694-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 05/10/2020] [Indexed: 10/24/2022]
Abstract
Porcine epidemic diarrhea (PED) is an acute enteric disease caused by porcine epidemic diarrhea virus (PEDV). In China, variant PEDV causes severe watery diarrhea, vomiting, and dehydration in piglets, leading to very high morbidity and mortality. However, the pathogenesis of PEDV is still not fully understood. In our study, we analyzed the long noncoding RNA (lncRNA) and mRNA expression profiles of PEDV GDgh16 in infected Vero cells at 60 h postinfection. A total of 61,790 annotated mRNAs, 14,247 annotated lncRNAs and 1290 novel lncRNAs were identified. A total of 227 annotated lncRNAs and 13 novel lncRNAs were significantly and differentially expressed after viral infection. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases were used to identify genes adjacent to the lncRNAs, and it was found that these lncRNAs were enriched in pathways related to immune and antiviral responses. Next, we selected candidate lncRNAs and their predicted target genes for study. RT-qPCR demonstrated that these lncRNAs and genes were differentially expressed after PEDV infection. Our study investigated the function of lncRNAs involved in PEDV infection, providing new insight into the pathogenic mechanisms of PEDV.
Collapse
Affiliation(s)
- Linyang Yu
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China
| | - Jianguo Dong
- School of Animal Husbandry and Medical Engineering, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Yanling Liu
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China
| | - Leyi Zhang
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China
| | - Pengshuai Liang
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China
| | - Lei Wang
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China
| | - Li Huang
- School of Animal Husbandry and Medical Engineering, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Zheng Xu
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China.
| | - Changxu Song
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China.
| |
Collapse
|