1
|
Vázquez-Martínez J, Molina-Torres J. Alkamide Content and Localization in Heliopsis longipes Cypselae, Obtained via Fluorescence and Double-Multiphoton Microscopy. Molecules 2024; 29:5651. [PMID: 39683810 DOI: 10.3390/molecules29235651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The alkamide content and specific tissue localization in the cypselae of Heliopsis longipes were investigated using gas chromatography-electron ionization mass spectrometry (GC-EIMS) and multiphoton fluorescence microscopy (MPFM). GC-EIMS analysis identified two olefinic alkamides: affinin (spilanthol) and N-2-methylbutyl-2E,6Z,8E-decatrienamide. Microscopic analysis revealed that alkamides are localized within the cotyledons, and specifically compartmentalized in lipid bodies, highlighting their spatial organization. The linear unmixing of fluorescence emission fingerprints showed that affinin exhibits autofluorescence at 693 nm, corresponding to the red spectral region. This emission is attributed to the conjugated double bonds in its acyl chain. This study is the first to report on the presence and precise localization of alkamides in the cypselae of H. longipes.
Collapse
Affiliation(s)
- Juan Vázquez-Martínez
- Departamento de Ingeniería Química, TecNM/ITS Irapuato, Silao-Irapuato Km 12.5 El Copal, Irapuato CP 36821, GTO, Mexico
| | - Jorge Molina-Torres
- Departamento de Biotecnología y Bioquímica, Cinvestav Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato CP 36821, GTO, Mexico
| |
Collapse
|
2
|
Hu L, Xu Z, Fan R, Wang G, Wang F, Qin X, Yan L, Ji X, Meng M, Sim S, Chen W, Hao C, Wang Q, Zhu H, Zhu S, Xu P, Zhao H, Lindsey K, Daniell H, Wendel JF, Jin S. The complex genome and adaptive evolution of polyploid Chinese pepper (Zanthoxylum armatum and Zanthoxylum bungeanum). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:78-96. [PMID: 36117410 PMCID: PMC9829393 DOI: 10.1111/pbi.13926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Zanthoxylum armatum and Zanthoxylum bungeanum, known as 'Chinese pepper', are distinguished by their extraordinary complex genomes, phenotypic innovation of adaptive evolution and species-special metabolites. Here, we report reference-grade genomes of Z. armatum and Z. bungeanum. Using high coverage sequence data and comprehensive assembly strategies, we derived 66 pseudochromosomes comprising 33 homologous phased groups of two subgenomes, including autotetraploid Z. armatum. The genomic rearrangements and two whole-genome duplications created large (~4.5 Gb) complex genomes with a high ratio of repetitive sequences (>82%) and high chromosome number (2n = 4x = 132). Further analysis of the high-quality genomes shed lights on the genomic basis of involutional reproduction, allomones biosynthesis and adaptive evolution in Chinese pepper, revealing a high consistent relationship between genomic evolution, environmental factors and phenotypic innovation. Our study provides genomic resources and new insights for investigating diversification and phenotypic innovation in Chinese pepper, with broader implications for the protection of plants under severe environmental changes.
Collapse
Affiliation(s)
- Lisong Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural SciencesWanningChina
- Ministry of Agriculture Key Laboratory of Genetic Resources Utilization of Spice and Beverage CropsWanningChina
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan ProvinceWanningChina
| | - Zhongping Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural SciencesWanningChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Rui Fan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural SciencesWanningChina
- Ministry of Agriculture Key Laboratory of Genetic Resources Utilization of Spice and Beverage CropsWanningChina
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan ProvinceWanningChina
| | - Guanying Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Fuqiu Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xiaowei Qin
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural SciencesWanningChina
- Ministry of Agriculture Key Laboratory of Genetic Resources Utilization of Spice and Beverage CropsWanningChina
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan ProvinceWanningChina
| | - Lin Yan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural SciencesWanningChina
- Ministry of Agriculture Key Laboratory of Genetic Resources Utilization of Spice and Beverage CropsWanningChina
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan ProvinceWanningChina
| | - Xunzhi Ji
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural SciencesWanningChina
- Ministry of Agriculture Key Laboratory of Genetic Resources Utilization of Spice and Beverage CropsWanningChina
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan ProvinceWanningChina
| | - Minghui Meng
- State Key Laboratory of Grassland and Agro‐Ecosystems, School of Life SciencesLanzhou UniversityLanzhouChina
| | | | - Wei Chen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural SciencesWanningChina
- Ministry of Agriculture Key Laboratory of Genetic Resources Utilization of Spice and Beverage CropsWanningChina
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan ProvinceWanningChina
| | - Qinghuang Wang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural SciencesWanningChina
- Ministry of Agriculture Key Laboratory of Genetic Resources Utilization of Spice and Beverage CropsWanningChina
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan ProvinceWanningChina
| | - Huaguo Zhu
- College of Biology and Agricultural ResourcesHuanggang Normal UniversityHuanggangHubeiChina
| | - Shu Zhu
- Jinjiaohong Spice Research InstituteJinjiaohong Agricultural Technology Group CorporationNanjingChina
| | - Pan Xu
- State Key Laboratory of Grassland and Agro‐Ecosystems, School of Life SciencesLanzhou UniversityLanzhouChina
| | - Hui Zhao
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off‐Season Reproduction RegionsHaikouChina
- Sanya Research Institute of Chinese Academy of Tropical Agricultural SciencesSanyaChina
| | | | - Henry Daniell
- Department of Biochemistry, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jonathan F. Wendel
- Department Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
3
|
Peddinti G, Hotti H, Teeri TH, Rischer H. De novo transcriptome assembly of Conium maculatum L. to identify candidate genes for coniine biosynthesis. Sci Rep 2022; 12:17562. [PMID: 36266299 PMCID: PMC9584964 DOI: 10.1038/s41598-022-21728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/30/2022] [Indexed: 01/13/2023] Open
Abstract
Poison hemlock (Conium maculatum L.) is a notorious weed containing the potent alkaloid coniine. Only some of the enzymes in the coniine biosynthesis have so far been characterized. Here, we utilize the next-generation RNA sequencing approach to report the first-ever transcriptome sequencing of five organs of poison hemlock: developing fruit, flower, root, leaf, and stem. Using a de novo assembly approach, we derived a transcriptome assembly containing 123,240 transcripts. The assembly is deemed high quality, representing over 88% of the near-universal ortholog genes of the Eudicots clade. Nearly 80% of the transcripts were functionally annotated using a combination of three approaches. The current study focuses on describing the coniine pathway by identifying in silico transcript candidates for polyketide reductase, L-alanine:5-keto-octanal aminotransferase, γ-coniceine reductase, and S-adenosyl-L-methionine:coniine methyltransferase. In vitro testing will be needed to confirm the assigned functions of the selected candidates.
Collapse
Affiliation(s)
- Gopal Peddinti
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, VTT, P.O. Box 1000, 02044, Espoo, Finland
| | - Hannu Hotti
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, VTT, P.O. Box 1000, 02044, Espoo, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 56, 00014, Helsinki, Finland
| | - Teemu H Teeri
- Viikki Plant Science Centre, Department of Agricultural Sciences, University of Helsinki, PO Box 27, 00014, Helsinki, Finland
| | - Heiko Rischer
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, VTT, P.O. Box 1000, 02044, Espoo, Finland.
| |
Collapse
|
4
|
Scott S, Cahoon EB, Busta L. Variation on a theme: the structures and biosynthesis of specialized fatty acid natural products in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:954-965. [PMID: 35749584 PMCID: PMC9546235 DOI: 10.1111/tpj.15878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Plants are able to construct lineage-specific natural products from a wide array of their core metabolic pathways. Considerable progress has been made toward documenting and understanding, for example, phenylpropanoid natural products derived from phosphoenolpyruvate via the shikimate pathway, terpenoid compounds built using isopentyl pyrophosphate, and alkaloids generated by the extensive modification of amino acids. By comparison, natural products derived from fatty acids have received little attention, except for unusual fatty acids in seed oils and jasmonate-like oxylipins. However, scattered but numerous reports show that plants are able to generate many structurally diverse compounds from fatty acids, including some with highly elaborate and unique structural features that have novel bioproduct functionalities. Furthermore, although recent work has shed light on multiple new fatty acid natural product biosynthesis pathways and products in diverse plant species, these discoveries have not been reviewed. The aims of this work, therefore, are to (i) review and systematize our current knowledge of the structures and biosynthesis of fatty acid-derived natural products that are not seed oils or jasmonate-type oxylipins, specifically, polyacetylenic, very-long-chain, and aromatic fatty acid-derived natural products, and (ii) suggest priorities for future investigative steps that will bring our knowledge of fatty acid-derived natural products closer to the levels of knowledge that we have attained for other phytochemical classes.
Collapse
Affiliation(s)
- Samuel Scott
- Department of Chemistry and BiochemistryUniversity of Minnesota DuluthDuluth55812MNUSA
| | - Edgar B. Cahoon
- Department of BiochemistryUniversity of Nebraska LincolnLincoln68588NEUSA
- Center for Plant Science InnovationUniversity of Nebraska LincolnLincoln68588NEUSA
| | - Lucas Busta
- Department of Chemistry and BiochemistryUniversity of Minnesota DuluthDuluth55812MNUSA
| |
Collapse
|
5
|
Durán-Medina Y, Ruiz-Cortés BE, Guerrero-Largo H, Marsch-Martínez N. Specialized metabolism and development: An unexpected friendship. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102142. [PMID: 34856480 DOI: 10.1016/j.pbi.2021.102142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Plants produce a myriad of metabolites. Some of them have been regarded for a long time as secondary or specialized metabolites and are considered to have functions mostly in defense and the adaptation of plants to their environment. However, in the last years, new research has shown that these metabolites can also have roles in the regulation of plant growth and development, some acting as signals, through the interaction with hormonal pathways, and some independently of them. These reports provide a glimpse of the functional possibilities that specialized metabolites present in the modulation of plant development and encourage more research in this direction.
Collapse
Affiliation(s)
- Yolanda Durán-Medina
- Biotecnology and Biochemistry Department, Centre for Research and Advanced Studies (CINVESTAV-IPN) Irapuato Unit, Mexico
| | - Beatriz Esperanza Ruiz-Cortés
- Biotecnology and Biochemistry Department, Centre for Research and Advanced Studies (CINVESTAV-IPN) Irapuato Unit, Mexico
| | - Herenia Guerrero-Largo
- Biotecnology and Biochemistry Department, Centre for Research and Advanced Studies (CINVESTAV-IPN) Irapuato Unit, Mexico
| | - Nayelli Marsch-Martínez
- Biotecnology and Biochemistry Department, Centre for Research and Advanced Studies (CINVESTAV-IPN) Irapuato Unit, Mexico.
| |
Collapse
|
6
|
Buitimea-Cantúa GV, Magaña-Barajas E, Buitimea-Cantúa NE, Leija Gutiérrez HM, Del Refugio Rocha-Pizaña M, Rosas-Burgos EC, Hernández-Morales A, Molina-Torres J. Down-regulation of aflatoxin biosynthetic genes in Aspergillus parasiticus by Heliopsis longipes roots and affinin for reduction of aflatoxin production. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:899-908. [PMID: 34487477 DOI: 10.1080/03601234.2021.1974273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Affinin present in Heliopsis longipes roots has been identified as an anti-aflatoxin molecule. However, its mechanism of action has yet to be clarified. Aflatoxins biosynthesis involves not less than 27 enzymatic reactions. In this work, the genes aflG, aflH, aflI, aflK, aflL, aflM, aflO, aflP, and aflQ of the aflatoxins cluster and the aflS gene encoding an internal regulatory factor involved in aflatoxins biosynthesis in Aspergillus parasiticus, were studied by qRT-PCR. Results demonstrated that ethanolic extract of H. longipes roots and affinin inhibit aflatoxin biosynthesis and fungal growth in a dose-dependent manner. At 300 µg/mL, ethanolic extract and affinin presented the highest inhibition of radial growth (86% and 94%) and aflatoxin production (68% and 80%). The qRT-PCR analysis demonstrated that nine tested genes were down-regulated by affinin and ethanolic extract. The most down-regulated was the aflK, a gene that encodes an enzyme cyclase with double function during the aflatoxin biosynthesis. While no significant down-regulation was obtaining for aflH gene. Exposure to affinin also resulted in decreased transcript levels of the internal regulator factor aflS. Based on our results, a model showing the regulatory mechanism in aflatoxin biosynthesis and its role in gene expression was proposed. In conclusion, affinin modulates the expression of several aflatoxin biosynthetic genes, leading to mycotoxin biosynthesis inhibition. Therefore, H. longipes roots is a suitable candidate to developed control strategies via lowering gene expressions as a future perspective in reducing aflatoxin contamination.
Collapse
Affiliation(s)
- Génesis V Buitimea-Cantúa
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León, México
- Departamento de Biotecnología y Bioquímica, CINVESTAV, Irapuato, Guanajuato, México
| | - Elisa Magaña-Barajas
- Programa de Ingeniería en Tecnologías de Alimentos, Universidad Estatal de Sonora, Hermosillo, México
| | - Nydia E Buitimea-Cantúa
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León, México
| | - Héctor Manuel Leija Gutiérrez
- Universidad Autónoma de Nuevo León, CICFM-Facultad de Ciencias Físico Matemáticas. San Nicolás de los Garza, NL, México
| | | | - Ema Carina Rosas-Burgos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
| | - Alejandro Hernández-Morales
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Jorge Molina-Torres
- Departamento de Biotecnología y Bioquímica, CINVESTAV, Irapuato, Guanajuato, México
| |
Collapse
|