1
|
Salmon A, Hao Y, Milin M, Lima O, Cavé-Radet A, Giraud D, Cruaud C, Labadie K, Istace B, Belser C, Aury JM, Wincker P, Li B, Li LF, Ainouche M. On the way to diploidization and unexpected ploidy in the grass Sporobolus section Spartina mesopolyploids. Nat Commun 2025; 16:1997. [PMID: 40011479 PMCID: PMC11865273 DOI: 10.1038/s41467-025-56983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 02/06/2025] [Indexed: 02/28/2025] Open
Abstract
Plant history is characterized by cyclical whole genome duplication and diploidization with important biological and ecological consequences. Here, we explore the genome history of two related iconic polyploid grasses (Sporobolus alterniflorus and S. maritimus), involved in a well-known example of neopolyploid speciation. We report particular genome dynamics where an ancestral Sporobolus genome (n = 2x = 20) duplicated 9.6-24.4 million years ago (MYA), which was followed by descending dysploidy resulting in a genome with an unexpected base chromosome number (n = 15). This diploidized genome duplicated again 2.1-6.2 MYA to form a tetraploid lineage (2n = 4x = 60), thus reshuffling the ploidy of these species previously thought hexaploids. We also elucidate the mechanism accompanying the speciation between S. maritimus (2n = 60) and S. alterniflorus (2n = 62), resulting from chromosome restructuring, and identify key adaptive genes in the corresponding regions. This represents critical findings to decipher molecular mechanisms underlying species expansion, adaptation to environmental challenge and invasiveness.
Collapse
Affiliation(s)
- Armel Salmon
- UMR CNRS 6553 ECOBIO University of Rennes, Campus de Beaulieu, 35042, Rennes, Cedex, France
| | - Yan Hao
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Morgane Milin
- UMR CNRS 6553 ECOBIO University of Rennes, Campus de Beaulieu, 35042, Rennes, Cedex, France
| | - Oscar Lima
- UMR CNRS 6553 ECOBIO University of Rennes, Campus de Beaulieu, 35042, Rennes, Cedex, France
| | - Armand Cavé-Radet
- UMR CNRS 6553 ECOBIO University of Rennes, Campus de Beaulieu, 35042, Rennes, Cedex, France
| | - Delphine Giraud
- UMR CNRS 6553 ECOBIO University of Rennes, Campus de Beaulieu, 35042, Rennes, Cedex, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Bo Li
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China.
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science and the Southwest United Graduate School, Yunnan University, 650500, Kunming, China.
| | - Lin-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Malika Ainouche
- UMR CNRS 6553 ECOBIO University of Rennes, Campus de Beaulieu, 35042, Rennes, Cedex, France.
| |
Collapse
|
2
|
Moraga C, Branco C, Rougemont Q, Jedlička P, Mendoza-Galindo E, Veltsos P, Hanique M, de la Vega RCR, Tannier E, Liu X, Lemaitre C, Fields PD, Cruaud C, Labadie K, Belser C, Briolay J, Santoni S, Cegan R, Linheiro R, Adam G, Filali AE, Mossion V, Boualem A, Tavares R, Chebbi A, Cordaux R, Fruchard C, Prentout D, Velt A, Spataro B, Delmotte S, Weingartner L, Toegelová H, Tulpová Z, Cápal P, Šimková H, Štorchová H, Krüger M, Abeyawardana OAJ, Taylor DR, Olson MS, Sloan DB, Karrenberg S, Delph LF, Charlesworth D, Muyle A, Giraud T, Bendahmane A, Di Genova A, Madoui MA, Hobza R, Marais GAB. The Silene latifolia genome and its giant Y chromosome. Science 2025; 387:630-636. [PMID: 39913565 PMCID: PMC11890086 DOI: 10.1126/science.adj7430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/22/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
In many species with sex chromosomes, the Y is a tiny chromosome. However, the dioecious plant Silene latifolia has a giant ~550-megabase Y chromosome, which has remained unsequenced so far. We used a long- and short-read hybrid approach to obtain a high-quality male genome. Comparative analysis of the sex chromosomes with their homologs in outgroups showed that the Y is highly rearranged and degenerated. Recombination suppression between X and Y extended in several steps and triggered a massive accumulation of repeats on the Y as well as in the nonrecombining pericentromeric region of the X, leading to giant sex chromosomes. Using sex phenotype mutants, we identified candidate sex-determining genes on the Y in locations consistent with their favoring recombination suppression events 11 and 5 million years ago.
Collapse
Affiliation(s)
- Carol Moraga
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Centro UOH de Bioingenieria (CUBI), Universidad de O’Higgins, Rancagua, Chile
| | - Catarina Branco
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Quentin Rougemont
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, Gif-sur-Yvette, France
| | - Pavel Jedlička
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Eddy Mendoza-Galindo
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Paris Veltsos
- Ecology, Evolution and Genetics Research Group, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Melissa Hanique
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Gif-sur-Yvette, France
| | - Ricardo C. Rodríguez de la Vega
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, Gif-sur-Yvette, France
| | - Eric Tannier
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- Inria Lyon Research Center, Villeurbanne, France
| | - Xiaodong Liu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Claire Lemaitre
- Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes, Inria, CNRS, Rennes, France
| | - Peter D. Fields
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Évry, France
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Évry, France
| | - Caroline Belser
- Genoscope, Institut François Jacob, CEA, CNRS, Université d’Évry, Université Paris-Saclay, Évry, France
| | - Jerome Briolay
- Développement de Techniques et Analyse Moléculaire de la Biodiversité (DTAMB), Université Claude Bernard Lyon 1, Campus de la Doua, Villeurbanne, France
| | - Sylvain Santoni
- Genomic Platform, Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), Université de Montpellier, CIRAD, INRAE, Montpellier, France
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Raquel Linheiro
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Gabriele Adam
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Gif-sur-Yvette, France
| | - Adil El Filali
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Vinciane Mossion
- Department of Ecology and Genetics, Division of Plant Ecology and Evolution, Uppsala University, Uppsala, Sweden
| | - Adnane Boualem
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Gif-sur-Yvette, France
| | - Raquel Tavares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Amine Chebbi
- Efor, Grosspeter Tower (Spaces), Basel, Switzerland
| | - Richard Cordaux
- Évolution Génomes Comportement Écologie, Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, France
| | - Cécile Fruchard
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Djivan Prentout
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Amandine Velt
- Santé de la Vigne et Qualité du Vin (SVQV), INRAE, Colmar, France
| | - Bruno Spataro
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Stephane Delmotte
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Laura Weingartner
- University of Louisville School of Medicine, Undergraduate Medical Education, Louisville, KY, USA
| | - Helena Toegelová
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Zuzana Tulpová
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Helena Štorchová
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Manuela Krüger
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Oushadee A. J. Abeyawardana
- Plant Reproduction Laboratory, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Douglas R. Taylor
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Matthew S. Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Sophie Karrenberg
- Department of Ecology and Genetics, Division of Plant Ecology and Evolution, Uppsala University, Uppsala, Sweden
| | - Lynda F. Delph
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Deborah Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, UK
| | - Aline Muyle
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, Gif-sur-Yvette, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Gif-sur-Yvette, France
| | - Alex Di Genova
- Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Centro UOH de Bioingenieria (CUBI), Universidad de O’Higgins, Rancagua, Chile
- Center for Mathematical Modeling, UMI-CNRS 2807, Santiago, Chile
| | - Mohammed-Amin Madoui
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Service d’Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Gabriel A. B. Marais
- Laboratoire Biométrie et Biologie Evolutive (LBBE), CNRS/Université Claude Bernard Lyon 1, Villeurbanne, France
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- GreenUPorto–Sustainable Agrifood Production Research Centre, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Vairão, Portugal
| |
Collapse
|
3
|
Aury JM, Engelen S, Istace B, Monat C, Lasserre-Zuber P, Belser C, Cruaud C, Rimbert H, Leroy P, Arribat S, Dufau I, Bellec A, Grimbichler D, Papon N, Paux E, Ranoux M, Alberti A, Wincker P, Choulet F. Long-read and chromosome-scale assembly of the hexaploid wheat genome achieves high resolution for research and breeding. Gigascience 2022; 11:giac034. [PMID: 35482491 PMCID: PMC9049114 DOI: 10.1093/gigascience/giac034] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/17/2021] [Accepted: 03/15/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The sequencing of the wheat (Triticum aestivum) genome has been a methodological challenge for many years owing to its large size (15.5 Gb), repeat content, and hexaploidy. Many initiatives aiming at obtaining a reference genome of cultivar Chinese Spring have been launched in the past years and it was achieved in 2018 as the result of a huge effort to combine short-read sequencing with many other resources. Reference-quality genome assemblies were then produced for other accessions, but the rapid evolution of sequencing technologies offers opportunities to reach high-quality standards at lower cost. RESULTS Here, we report on an optimized procedure based on long reads produced on the Oxford Nanopore Technology PromethION device to assemble the genome of the French bread wheat cultivar Renan. CONCLUSIONS We provide the most contiguous chromosome-scale assembly of a bread wheat genome to date. Coupled with an annotation based on RNA-sequencing data, this resource will be valuable for the crop community and will facilitate the rapid selection of agronomically important traits. We also provide a framework to generate high-quality assemblies of complex genomes using ONT.
Collapse
Affiliation(s)
- Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Stefan Engelen
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Cécile Monat
- GDEC, Université Clermont Auvergne, INRAE, UMR1095, 63000 Clermont-Ferrand, France
| | | | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Corinne Cruaud
- Commissariat à l'Energie Atomique (CEA), Institut François Jacob, Genoscope, F-91057 Evry, France
| | - Hélène Rimbert
- GDEC, Université Clermont Auvergne, INRAE, UMR1095, 63000 Clermont-Ferrand, France
| | - Philippe Leroy
- GDEC, Université Clermont Auvergne, INRAE, UMR1095, 63000 Clermont-Ferrand, France
| | - Sandrine Arribat
- INRAE, CNRGV French Plant Genomic Resource Center, F-31320, Castanet Tolosan, France
| | - Isabelle Dufau
- INRAE, CNRGV French Plant Genomic Resource Center, F-31320, Castanet Tolosan, France
| | - Arnaud Bellec
- INRAE, CNRGV French Plant Genomic Resource Center, F-31320, Castanet Tolosan, France
| | - David Grimbichler
- Mésocentre Clermont Auvergne, DOSI / Bâtiment Turing, 7 avenue Blaise Pascal, 63178 Aubière, France
| | - Nathan Papon
- GDEC, Université Clermont Auvergne, INRAE, UMR1095, 63000 Clermont-Ferrand, France
| | - Etienne Paux
- GDEC, Université Clermont Auvergne, INRAE, UMR1095, 63000 Clermont-Ferrand, France
| | - Marion Ranoux
- GDEC, Université Clermont Auvergne, INRAE, UMR1095, 63000 Clermont-Ferrand, France
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Frédéric Choulet
- GDEC, Université Clermont Auvergne, INRAE, UMR1095, 63000 Clermont-Ferrand, France
| |
Collapse
|
4
|
Huang B, Wei G, Wang B, Ju F, Zhong Y, Shi Z, Sun S, Bu D. Filling gaps of genome scaffolds via probabilistic searching optical maps against assembly graph. BMC Bioinformatics 2021; 22:533. [PMID: 34717539 PMCID: PMC8557617 DOI: 10.1186/s12859-021-04448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Optical maps record locations of specific enzyme recognition sites within long genome fragments. This long-distance information enables aligning genome assembly contigs onto optical maps and ordering contigs into scaffolds. The generated scaffolds, however, often contain a large amount of gaps. To fill these gaps, a feasible way is to search genome assembly graph for the best-matching contig paths that connect boundary contigs of gaps. The combination of searching and evaluation procedures might be "searching followed by evaluation", which is infeasible for long gaps, or "searching by evaluation", which heavily relies on heuristics and thus usually yields unreliable contig paths. RESULTS We here report an accurate and efficient approach to filling gaps of genome scaffolds with aids of optical maps. Using simulated data from 12 species and real data from 3 species, we demonstrate the successful application of our approach in gap filling with improved accuracy and completeness of genome scaffolds. CONCLUSION Our approach applies a sequential Bayesian updating technique to measure the similarity between optical maps and candidate contig paths. Using this similarity to guide path searching, our approach achieves higher accuracy than the existing "searching by evaluation" strategy that relies on heuristics. Furthermore, unlike the "searching followed by evaluation" strategy enumerating all possible paths, our approach prunes the unlikely sub-paths and extends the highly-probable ones only, thus significantly increasing searching efficiency.
Collapse
Affiliation(s)
- Bin Huang
- Key Lab of Intelligent Information Processing, Big-Data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China
- Institute of Biology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Guozheng Wei
- Key Lab of Intelligent Information Processing, Big-Data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China
- Institute of Biology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Bing Wang
- Key Lab of Intelligent Information Processing, Big-Data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China
- Institute of Biology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fusong Ju
- Key Lab of Intelligent Information Processing, Big-Data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China
- Institute of Biology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yi Zhong
- School of Computer Science, University of Washington, Seattle, 98195 USA
| | - Zhuozheng Shi
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, 92093 USA
| | - Shiwei Sun
- Key Lab of Intelligent Information Processing, Big-Data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China
- Institute of Biology, University of Chinese Academy of Sciences, Beijing, 100049 China
- Zhongke Big Data Academy, Zhengzhou, 450046 Henan China
| | - Dongbo Bu
- Key Lab of Intelligent Information Processing, Big-Data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China
- Institute of Biology, University of Chinese Academy of Sciences, Beijing, 100049 China
- Zhongke Big Data Academy, Zhengzhou, 450046 Henan China
| |
Collapse
|
5
|
Belser C, Baurens FC, Noel B, Martin G, Cruaud C, Istace B, Yahiaoui N, Labadie K, Hřibová E, Doležel J, Lemainque A, Wincker P, D'Hont A, Aury JM. Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Commun Biol 2021; 4:1047. [PMID: 34493830 PMCID: PMC8423783 DOI: 10.1038/s42003-021-02559-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
Long-read technologies hold the promise to obtain more complete genome assemblies and to make them easier. Coupled with long-range technologies, they can reveal the architecture of complex regions, like centromeres or rDNA clusters. These technologies also make it possible to know the complete organization of chromosomes, which remained complicated before even when using genetic maps. However, generating a gapless and telomere-to-telomere assembly is still not trivial, and requires a combination of several technologies and the choice of suitable software. Here, we report a chromosome-scale assembly of a banana genome (Musa acuminata) generated using Oxford Nanopore long-reads. We generated a genome coverage of 177X from a single PromethION flowcell with near 17X with reads longer than 75 kbp. From the 11 chromosomes, 5 were entirely reconstructed in a single contig from telomere to telomere, revealing for the first time the content of complex regions like centromeres or clusters of paralogous genes.
Collapse
Affiliation(s)
- Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Franc-Christophe Baurens
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Guillaume Martin
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Corinne Cruaud
- Commissariat à l'Energie Atomique (CEA), Institut François Jacob, Genoscope, Evry, France
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Nabila Yahiaoui
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Karine Labadie
- Commissariat à l'Energie Atomique (CEA), Institut François Jacob, Genoscope, Evry, France
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Arnaud Lemainque
- Commissariat à l'Energie Atomique (CEA), Institut François Jacob, Genoscope, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Angélique D'Hont
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.
| |
Collapse
|
6
|
Using de novo assembly to identify structural variation of eight complex immune system gene regions. PLoS Comput Biol 2021; 17:e1009254. [PMID: 34343164 PMCID: PMC8363018 DOI: 10.1371/journal.pcbi.1009254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/13/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022] Open
Abstract
Driven by the necessity to survive environmental pathogens, the human immune system has evolved exceptional diversity and plasticity, to which several factors contribute including inheritable structural polymorphism of the underlying genes. Characterizing this variation is challenging due to the complexity of these loci, which contain extensive regions of paralogy, segmental duplication and high copy-number repeats, but recent progress in long-read sequencing and optical mapping techniques suggests this problem may now be tractable. Here we assess this by using long-read sequencing platforms from PacBio and Oxford Nanopore, supplemented with short-read sequencing and Bionano optical mapping, to sequence DNA extracted from CD14+ monocytes and peripheral blood mononuclear cells from a single European individual identified as HV31. We use this data to build a de novo assembly of eight genomic regions encoding four key components of the immune system, namely the human leukocyte antigen, immunoglobulins, T cell receptors, and killer-cell immunoglobulin-like receptors. Validation of our assembly using k-mer based and alignment approaches suggests that it has high accuracy, with estimated base-level error rates below 1 in 10 kb, although we identify a small number of remaining structural errors. We use the assembly to identify heterozygous and homozygous structural variation in comparison to GRCh38. Despite analyzing only a single individual, we find multiple large structural variants affecting core genes at all three immunoglobulin regions and at two of the three T cell receptor regions. Several of these variants are not accurately callable using current algorithms, implying that further methodological improvements are needed. Our results demonstrate that assessing haplotype variation in these regions is possible given sufficiently accurate long-read and associated data. Continued reductions in the cost of these technologies will enable application of these methods to larger samples and provide a broader catalogue of germline structural variation at these loci, an important step toward making these regions accessible to large-scale genetic association studies. The human immune system is incredibly versatile underlying its capacity to defend the body against thousands of pathogens. At a molecular level, it recognizes pathogens using large libraries of antibodies and related protein receptors. These molecules are encoded by gene families that are particularly difficult to analyze due to their unusually complex patterns of similarities and differences between genes and individuals. To overcome this, we applied several sequencing methods to DNA from a single individual and developed methods to reconstruct the underlying sequence at eight of the immune-associated regions. Importantly, we used DNA extracted from monocytes to avoid capturing the further rearrangements that occur in active immune cells. We generated accurate assemblies by integrating multiple complementary data types, although we noted a small subset of locations that remain challenging. Moreover, we found that this individual contains multiple structural differences between the two inherited chromosomes and compared to previously analyzed genomes, affecting the copy number of immune system genes. Application of these methods in larger numbers of individuals will clearly uncover much more variation than is currently known, and might lead to new understanding of the effect of genetic variation on the broad range of human diseases determined by the immune response.
Collapse
|
7
|
Istace B, Belser C, Falentin C, Labadie K, Boideau F, Deniot G, Maillet L, Cruaud C, Bertrand L, Chèvre AM, Wincker P, Rousseau-Gueutin M, Aury JM. Sequencing and Chromosome-Scale Assembly of Plant Genomes, Brassica rapa as a Use Case. BIOLOGY 2021; 10:732. [PMID: 34439964 PMCID: PMC8389630 DOI: 10.3390/biology10080732] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022]
Abstract
With the rise of long-read sequencers and long-range technologies, delivering high-quality plant genome assemblies is no longer reserved to large consortia. Not only sequencing techniques, but also computer algorithms have reached a point where the reconstruction of assemblies at the chromosome scale is now feasible at the laboratory scale. Current technologies, in particular long-range technologies, are numerous, and selecting the most promising one for the genome of interest is crucial to obtain optimal results. In this study, we resequenced the genome of the yellow sarson, Brassica rapa cv. Z1, using the Oxford Nanopore PromethION sequencer and assembled the sequenced data using current assemblers. To reconstruct complete chromosomes, we used and compared three long-range scaffolding techniques, optical mapping, Omni-C, and Pore-C sequencing libraries, commercialized by Bionano Genomics, Dovetail Genomics, and Oxford Nanopore Technologies, respectively, or a combination of the three, in order to evaluate the capability of each technology.
Collapse
Affiliation(s)
- Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057 Evry, France; (B.I.); (C.B.); (L.B.); (P.W.)
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057 Evry, France; (B.I.); (C.B.); (L.B.); (P.W.)
| | - Cyril Falentin
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653 Le Rheu, France; (C.F.); (F.B.); (G.D.); (L.M.); (A.-M.C.); (M.R.-G.)
| | - Karine Labadie
- Genoscope, Institut François Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057 Evry, France; (K.L.); (C.C.)
| | - Franz Boideau
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653 Le Rheu, France; (C.F.); (F.B.); (G.D.); (L.M.); (A.-M.C.); (M.R.-G.)
| | - Gwenaëlle Deniot
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653 Le Rheu, France; (C.F.); (F.B.); (G.D.); (L.M.); (A.-M.C.); (M.R.-G.)
| | - Loeiz Maillet
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653 Le Rheu, France; (C.F.); (F.B.); (G.D.); (L.M.); (A.-M.C.); (M.R.-G.)
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057 Evry, France; (K.L.); (C.C.)
| | - Laurie Bertrand
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057 Evry, France; (B.I.); (C.B.); (L.B.); (P.W.)
| | - Anne-Marie Chèvre
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653 Le Rheu, France; (C.F.); (F.B.); (G.D.); (L.M.); (A.-M.C.); (M.R.-G.)
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057 Evry, France; (B.I.); (C.B.); (L.B.); (P.W.)
| | - Mathieu Rousseau-Gueutin
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653 Le Rheu, France; (C.F.); (F.B.); (G.D.); (L.M.); (A.-M.C.); (M.R.-G.)
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057 Evry, France; (B.I.); (C.B.); (L.B.); (P.W.)
| |
Collapse
|
8
|
Groppi A, Liu S, Cornille A, Decroocq S, Bui QT, Tricon D, Cruaud C, Arribat S, Belser C, Marande W, Salse J, Huneau C, Rodde N, Rhalloussi W, Cauet S, Istace B, Denis E, Carrère S, Audergon JM, Roch G, Lambert P, Zhebentyayeva T, Liu WS, Bouchez O, Lopez-Roques C, Serre RF, Debuchy R, Tran J, Wincker P, Chen X, Pétriacq P, Barre A, Nikolski M, Aury JM, Abbott AG, Giraud T, Decroocq V. Population genomics of apricots unravels domestication history and adaptive events. Nat Commun 2021; 12:3956. [PMID: 34172741 PMCID: PMC8233370 DOI: 10.1038/s41467-021-24283-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/08/2021] [Indexed: 01/27/2023] Open
Abstract
Among crop fruit trees, the apricot (Prunus armeniaca) provides an excellent model to study divergence and adaptation processes. Here, we obtain nearly 600 Armeniaca apricot genomes and four high-quality assemblies anchored on genetic maps. Chinese and European apricots form two differentiated gene pools with high genetic diversity, resulting from independent domestication events from distinct wild Central Asian populations, and with subsequent gene flow. A relatively low proportion of the genome is affected by selection. Different genomic regions show footprints of selection in European and Chinese cultivated apricots, despite convergent phenotypic traits, with predicted functions in both groups involved in the perennial life cycle, fruit quality and disease resistance. Selection footprints appear more abundant in European apricots, with a hotspot on chromosome 4, while admixture is more pervasive in Chinese cultivated apricots. Our study provides clues to the biology of selected traits and targets for fruit tree research and breeding.
Collapse
Affiliation(s)
- Alexis Groppi
- Univ. Bordeaux, Centre de Bioinformatique de Bordeaux (CBiB), Bordeaux, 33076, France
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, 33077, France
| | - Shuo Liu
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
- Liaoning Institute of Pomology, Tiedong Street, Xiongyue, Bayuquan District, Yingkou City, 115009, Liaoning, China
| | - Amandine Cornille
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, Gif-sur-Yvette, 91190, France
| | - Stéphane Decroocq
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
| | - Quynh Trang Bui
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
| | - David Tricon
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Sandrine Arribat
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Caroline Belser
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - William Marande
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Jérôme Salse
- INRAE/UBP UMR 1095 GDEC Genetique, Diversite et Ecophysiologie des Cereales, Laboratory PaleoEVO Paleogenomics & Evolution, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Cécile Huneau
- INRAE/UBP UMR 1095 GDEC Genetique, Diversite et Ecophysiologie des Cereales, Laboratory PaleoEVO Paleogenomics & Evolution, 5 Chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Nathalie Rodde
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Wassim Rhalloussi
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Stéphane Cauet
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Benjamin Istace
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Erwan Denis
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Sébastien Carrère
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Jean-Marc Audergon
- INRAE UR1052 GAFL, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Guillaume Roch
- INRAE UR1052 GAFL, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
- CEP INNOVATION, 23 Rue Jean Baldassini, Lyon, 69364, Cedex 07, France
| | - Patrick Lambert
- INRAE UR1052 GAFL, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Tetyana Zhebentyayeva
- The Schatz Center for Tree Molecular Genetics, Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, 16802, PA, USA
| | - Wei-Sheng Liu
- Liaoning Institute of Pomology, Tiedong Street, Xiongyue, Bayuquan District, Yingkou City, 115009, Liaoning, China
| | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, 31326, France
| | | | - Rémy-Félix Serre
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, 31326, France
| | - Robert Debuchy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Joseph Tran
- EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux, ISVV, Villenave d'Ornon, 33882, France
| | - Patrick Wincker
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Xilong Chen
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, Gif-sur-Yvette, 91190, France
| | - Pierre Pétriacq
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France
| | - Aurélien Barre
- Univ. Bordeaux, Centre de Bioinformatique de Bordeaux (CBiB), Bordeaux, 33076, France
| | - Macha Nikolski
- Univ. Bordeaux, Centre de Bioinformatique de Bordeaux (CBiB), Bordeaux, 33076, France
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, 33077, France
| | - Jean-Marc Aury
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Albert Glenn Abbott
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, USA
| | - Tatiana Giraud
- Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay AgroParisTech, Orsay, 91400, France.
| | - Véronique Decroocq
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, 71 Av. E. Bourlaux, Villenave d'Ornon, 33140, France.
| |
Collapse
|
9
|
Rousseau-Gueutin M, Belser C, Da Silva C, Richard G, Istace B, Cruaud C, Falentin C, Boideau F, Boutte J, Delourme R, Deniot G, Engelen S, de Carvalho JF, Lemainque A, Maillet L, Morice J, Wincker P, Denoeud F, Chèvre AM, Aury JM. Long-read assembly of the Brassica napus reference genome Darmor-bzh. Gigascience 2020; 9:giaa137. [PMID: 33319912 PMCID: PMC7736779 DOI: 10.1093/gigascience/giaa137] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/18/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The combination of long reads and long-range information to produce genome assemblies is now accepted as a common standard. This strategy not only allows access to the gene catalogue of a given species but also reveals the architecture and organization of chromosomes, including complex regions such as telomeres and centromeres. The Brassica genus is not exempt, and many assemblies based on long reads are now available. The reference genome for Brassica napus, Darmor-bzh, which was published in 2014, was produced using short reads and its contiguity was extremely low compared with current assemblies of the Brassica genus. FINDINGS Herein, we report the new long-read assembly of Darmor-bzh genome (Brassica napus) generated by combining long-read sequencing data and optical and genetic maps. Using the PromethION device and 6 flowcells, we generated ∼16 million long reads representing 93× coverage and, more importantly, 6× with reads longer than 100 kb. This ultralong-read dataset allows us to generate one of the most contiguous and complete assemblies of a Brassica genome to date (contig N50 > 10 Mb). In addition, we exploited all the advantages of the nanopore technology to detect modified bases and sequence transcriptomic data using direct RNA to annotate the genome and focus on resistance genes. CONCLUSION Using these cutting-edge technologies, and in particular by relying on all the advantages of the nanopore technology, we provide the most contiguous Brassica napus assembly, a resource that will be valuable to the Brassica community for crop improvement and will facilitate the rapid selection of agronomically important traits.
Collapse
Affiliation(s)
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Gautier Richard
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653 Le Rheu, France
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Cyril Falentin
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653 Le Rheu, France
| | - Franz Boideau
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653 Le Rheu, France
| | - Julien Boutte
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653 Le Rheu, France
| | - Regine Delourme
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653 Le Rheu, France
| | - Gwenaëlle Deniot
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653 Le Rheu, France
| | - Stefan Engelen
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 rue Gaston Crémieux, 91057 Evry, France
| | | | - Arnaud Lemainque
- Genoscope, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Loeiz Maillet
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653 Le Rheu, France
| | - Jérôme Morice
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653 Le Rheu, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 rue Gaston Crémieux, 91057 Evry, France
| | - France Denoeud
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Anne-Marie Chèvre
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653 Le Rheu, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 rue Gaston Crémieux, 91057 Evry, France
| |
Collapse
|