1
|
Pinzari CA, Bellinger MR, Price D, Bonaccorso FJ. Genetic diversity, structure, and effective population size of an endangered, endemic hoary bat, 'ōpe'ape'a, across the Hawaiian Islands. PeerJ 2023; 11:e14365. [PMID: 36718450 PMCID: PMC9884036 DOI: 10.7717/peerj.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/19/2022] [Indexed: 01/26/2023] Open
Abstract
Island bat species are disproportionately at risk of extinction, and Hawai'i's only native terrestrial land mammal, the Hawaiian hoary bat (Lasiurus semotus) locally known as 'ōpe'ape'a, is no exception. To effectively manage this bat species with an archipelago-wide distribution, it is important to determine the population size on each island and connectivity between islands. We used 18 nuclear microsatellite loci and one mitochondrial gene from 339 individuals collected from 1988-2020 to evaluate genetic diversity, population structure and estimate effective population size on the Islands of Hawai'i, Maui, O'ahu, and Kaua'i. Genetic differentiation occurred between Hawai'i and Maui, both of which were differentiated from O'ahu and Kaua'i. The population on Maui presents the greatest per-island genetic diversity, consistent with their hypothesized status as the original founding population. A signature of isolation by distance was detected between islands, with contemporary migration analyses indicating limited gene flow in recent generations, and male-biased sex dispersal within Maui. Historical and long-term estimates of genetic effective population sizes were generally larger than contemporary estimates, although estimates of contemporary genetic effective population size lacked upper bounds in confidence intervals for Hawai'i and Kaua'i. Contemporary genetic effective population sizes were smaller on O'ahu and Maui. We also detected evidence of past bottlenecks on all islands with the exception of Hawai'i. Our study provides population-level estimates for the genetic diversity and geographic structure of 'ōpe'ape'a, that could be used by agencies tasked with wildlife conservation in Hawai'i.
Collapse
Affiliation(s)
- Corinna A. Pinzari
- Tropical Conservation Biology and Environmental Science Graduate Program, University of Hawaiʻi at Hilo, Hilo, Hawaiʻi, United States of America,Hawaiʻi Cooperative Studies Unit, University of Hawaiʻi at Hilo, Hawaiʻi National Park, Hawaiʻi, United States of America
| | - M. Renee Bellinger
- Tropical Conservation Biology and Environmental Science Graduate Program, University of Hawaiʻi at Hilo, Hilo, Hawaiʻi, United States of America,Hawaiʻi Cooperative Studies Unit, University of Hawaiʻi at Hilo, Hawaiʻi National Park, Hawaiʻi, United States of America,Pacific Island Ecosystems Research Center, U.S. Geological Survey, Hawaiʻi National Park, Hawaiʻi, United States of America
| | - Donald Price
- Tropical Conservation Biology and Environmental Science Graduate Program, University of Hawaiʻi at Hilo, Hilo, Hawaiʻi, United States of America,School of Life Sciences, University of Nevada - Las Vegas, Las Vegas, NV, United States of America
| | - Frank J. Bonaccorso
- Pacific Island Ecosystems Research Center, U.S. Geological Survey, Hawaiʻi National Park, Hawaiʻi, United States of America
| |
Collapse
|
2
|
Umbrello L, Bullen R, Shaw R, McArthur S, Byrne M, van Leeuwen S, Ottewell K. Extensive gene flow in a threatened bat (Rhinonicteris aurantia) in an arid landscape. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
3
|
Arnaout Y, Djelouadji Z, Robardet E, Cappelle J, Cliquet F, Touzalin F, Jimenez G, Hurstel S, Borel C, Picard-Meyer E. Genetic identification of bat species for pathogen surveillance across France. PLoS One 2022; 17:e0261344. [PMID: 34982782 PMCID: PMC8726466 DOI: 10.1371/journal.pone.0261344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022] Open
Abstract
With more than 1400 chiropteran species identified to date, bats comprise one-fifth of all mammalian species worldwide. Many studies have associated viral zoonoses with 45 different species of bats in the EU, which cluster within 5 families of bats. For example, the Serotine bats are infected by European Bat 1 Lyssavirus throughout Europe while Myotis bats are shown infected by coronavirus, herpesvirus and paramyxovirus. Correct host species identification is important to increase our knowledge of the ecology and evolutionary pattern of bat viruses in the EU. Bat species identification is commonly determined using morphological keys. Morphological determination of bat species from bat carcasses can be limited in some cases, due to the state of decomposition or nearly indistinguishable morphological features in juvenile bats and can lead to misidentifications. The overall objective of our study was to identify insectivorous bat species using molecular biology tools with the amplification of the partial cytochrome b gene of mitochondrial DNA. Two types of samples were tested in this study, bat wing punches and bat faeces. A total of 163 bat wing punches representing 22 species, and 31 faecal pellets representing 7 species were included in the study. From the 163 bat wing punches tested, a total of 159 were genetically identified from amplification of the partial cyt b gene. All 31 faecal pellets were genetically identified based on the cyt b gene. A comparison between morphological and genetic determination showed 21 misidentifications from the 163 wing punches, representing ~12.5% of misidentifications of morphological determination compared with the genetic method, across 11 species. In addition, genetic determination allowed the identification of 24 out of 25 morphologically non-determined bat samples. Our findings demonstrate the importance of a genetic approach as an efficient and reliable method to identify bat species precisely.
Collapse
Affiliation(s)
- Youssef Arnaout
- ANSES-Nancy Laboratory for Rabies and Wildlife, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Malzéville, France
- VetAgro Sup Lyon Laboratory for Leptospira, Marcy l’Etoile, France
| | | | - Emmanuelle Robardet
- ANSES-Nancy Laboratory for Rabies and Wildlife, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Malzéville, France
| | - Julien Cappelle
- UMR ASTRE, CIRAD, INRAE, Université de Montpellier, Montpellier, France
- UMR EPIA, INRAE, VetAgro Sup, Theix, France
| | - Florence Cliquet
- ANSES-Nancy Laboratory for Rabies and Wildlife, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Malzéville, France
| | - Frédéric Touzalin
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Dublin, Ireland
| | | | - Suzel Hurstel
- GEPMA, Strasbourg, France
- LPO Alsace, Rosenwiller, France
| | | | - Evelyne Picard-Meyer
- ANSES-Nancy Laboratory for Rabies and Wildlife, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Malzéville, France
- * E-mail:
| |
Collapse
|
4
|
Hale AM, Hein CD, Straw BR. Acoustic and Genetic Data Can Reduce Uncertainty Regarding Populations of Migratory Tree-Roosting Bats Impacted by Wind Energy. Animals (Basel) 2021; 12:81. [PMID: 35011186 PMCID: PMC8749617 DOI: 10.3390/ani12010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Wind turbine-related mortality may pose a population-level threat for migratory tree-roosting bats, such as the hoary bat (Lasiurus cinereus) in North America. These species are dispersed within their range, making it impractical to estimate census populations size using traditional survey methods. Nonetheless, understanding population size and trends is essential for evaluating and mitigating risk from wind turbine mortality. Using various sampling techniques, including systematic acoustic sampling and genetic analyses, we argue that building a weight of evidence regarding bat population status and trends is possible to (1) assess the sustainability of mortality associated with wind turbines; (2) determine the level of mitigation required; and (3) evaluate the effectiveness of mitigation measures to ensure population viability for these species. Long-term, systematic data collection remains the most viable option for reducing uncertainty regarding population trends for migratory tree-roosting bats. We recommend collecting acoustic data using the statistically robust North American Bat Monitoring Program (NABat) protocols and that genetic diversity is monitored at repeated time intervals to show species trends. There are no short-term actions to resolve these population-level questions; however, we discuss opportunities for relatively short-term investments that will lead to long-term success in reducing uncertainty.
Collapse
Affiliation(s)
- Amanda M. Hale
- Department of Biology, Texas Christian University, Fort Worth, TX 76129, USA
| | - Cris D. Hein
- National Renewable Energy Laboratory, Arvada, CO 80007, USA;
| | - Bethany R. Straw
- Fort Collins Science Center, U. S. Geological Survey, Fort Collins, CO 80526, USA;
| |
Collapse
|
5
|
Trejo-Salazar RE, Castellanos-Morales G, Hernández-Rosales D, Gámez N, Gasca-Pineda J, Morales Garza MR, Medellin R, Eguiarte LE. Discordance in maternal and paternal genetic markers in lesser long-nosed bat Leptonycteris yerbabuenae, a migratory bat: recent expansion to the North and male phylopatry. PeerJ 2021; 9:e12168. [PMID: 34703665 PMCID: PMC8487242 DOI: 10.7717/peerj.12168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/26/2021] [Indexed: 11/20/2022] Open
Abstract
Leptonycteris yerbabuenae, the lesser long-nosed bat is an abundant migratory nectar-feeding bat found in most of Mexico, and in some areas of northern Central America and small sections of southwestern USA. We analyzed the distribution of the maternal and paternal lineages of this species with phylogeographic methods based on two mitochondrial markers, Cyt-b and D-loop, and a marker located in the Y chromosome, DBY. We obtained tissue samples from 220 individuals from 23 localities. Levels of genetic diversity (haplotype diversity, Hd ) were high (Cyt-b = 0.757; D-loop = 0.8082; DBY = 0.9137). No clear patterns of population genetic structure were found for mitochondrial markers, while male genetic differentiation suggested the presence of two lineages: one from Mexican Pacific coast states and another from central-southern Mexico; in accordance to strong male philopatry and higher female migration. We used genealogical reconstructions based on Bayesian tools to calculate divergence times, and to test coalescent models to explain changes in L. yerbabuenae historical demography. Our results show that recent demographic changes were consistent with global climatic changes (∼130,000 kyr ago for Cyt-b and ∼160,000 kyr for D-loop) and divergence times dated from molecular genealogies exhibited older divergence times, Cyt-b (4.03 mya), D-loop (10.26 mya) and DBY (12.23 mya). Accordingly, the female lineage underwent demographic expansion associated to Pleistocene climate change, whereas the male lineage remained constant.
Collapse
Affiliation(s)
- Roberto-Emiliano Trejo-Salazar
- Pograma de Doctorado en Ciencias Biomédicas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico, México
- Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | | | - DulceCarolina Hernández-Rosales
- Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Niza Gámez
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de Mexico, Ciudad de Mexico, Mexico
| | - Jaime Gasca-Pineda
- Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Miguel Rene Morales Garza
- Facultad de Ciencia y Tecnología, Universidad Simón Bolívar, Ciudad de Mexico, Ciudad de Mexico, Mexico
| | - Rodrigo Medellin
- Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de Mexico, Ciudad de Mexico, Mexico
| | - Luis E. Eguiarte
- Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| |
Collapse
|