1
|
Panda K, Alagarasu K, Tagore R, Paingankar M, Kumar S, Jeengar MK, Cherian S, Parashar D. RNAi-Induced Gene Silencing against Chikungunya and COVID-19: What Have We Learned So Far, and What Is the Way Forward? Viruses 2024; 16:1489. [PMID: 39339965 PMCID: PMC11437507 DOI: 10.3390/v16091489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
RNA interference (RNAi) is a process in which small RNA molecules (such as small interfering RNAs or siRNAs) bind to specific messenger RNAs (mRNAs), leading to its degradation and inhibition of protein synthesis. Our studies have shown that RNAi can effectively silence genes involved in the replication of the Chikungunya virus (CHIKV) in cells. However, these investigations were performed only in laboratory settings and have yet to be tested in human clinical trials. Researchers need to conduct more research to determine the safety and efficacy of RNAi-based therapies as a therapeutic agent to treat viral infections. In this review, the history of evolution of siRNA as an inhibitor of protein synthesis, along with its current developments, is discussed based on our experience. Moreover, this review examines the hurdles and future implications associated with siRNA based therapeutic approaches.
Collapse
Affiliation(s)
- Kingshuk Panda
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Kalichamy Alagarasu
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Rajarshee Tagore
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Mandar Paingankar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Satyendra Kumar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Manish Kumar Jeengar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Sarah Cherian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
- Bioinformatics Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India
| | - Deepti Parashar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| |
Collapse
|
2
|
AbdelMassih A, Agha H, El-Saiedi S, El-Sisi A, El Shershaby M, Gaber H, Ismail HA, El-Husseiny N, Amin AR, ElBoraie A, Ayad A, Menshawey E, Sefein F, Osman II, Moursi M, Hanafy M, Abdelaziz MS, Arsanyous MB, Khaled-Ibn-El-Walid M, Tawfik MG, Habib M, Mansour ME, Ashraf M, Khattab MA, Alshehry N, Hafez N, ElDeeb NE, Ashraf N, Khalil N, AbdElSalam NI, Shebl N, Hafez NGA, Youssef NH, Bahnan O, Ismail P, Kelada P, Menshawey R, Saeed R, Husseiny RJ, Yasser R, Sharaf S, Adel V, Naeem Y, Nicola YNF, Kamel A, Hozaien R, Fouda R. The role of miRNAs in viral myocarditis, and its possible implication in induction of mRNA-based COVID-19 vaccines-induced myocarditis. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:267. [PMID: 36415483 PMCID: PMC9672617 DOI: 10.1186/s42269-022-00955-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Several reports of unheeded complications secondary to the current mass international rollout of SARS-COV-2 vaccines, one of which is myocarditis occurring with the FDA fully approved vaccine, Pfizer, and others. MAIN BODY OF THE ABSTRACT Certain miRNAs (non-coding RNA sequences) are involved in the pathogenesis in viral myocarditis, and those miRNAs are interestingly upregulated in severe COVID-19. We hypothesize that the use of mRNA-based vaccines may be triggering the release of host miRNAs or that trigger the occurrence of myocarditis. This is based on the finding of altered host miRNA expression promoting virus-induced myocarditis. SHORT CONCLUSION In conclusion, miRNAs are likely implicated in myocarditis associated with mRNA vaccines. Our hypothesis suggests the use of miRNA as a biomarker for the diagnosis of mRNA vaccine-induced myocarditis. Additionally, the interplay between viral miRNA and the host immune system could alter inflammatory profiles, hence suggesting the use of therapeutic inhibition to prevent such complications.
Collapse
Affiliation(s)
- Antoine AbdelMassih
- Pediatric Cardiology Unit, Pediatrics’ Department, Faculty of Medicine, Cairo University, P.O. Box 12411, Cairo, Egypt
- Pediatric Cardio-Oncology Clinic, Children Cancer Hospital of Egypt, Cairo, Egypt
| | - Hala Agha
- Pediatric Cardiology Unit, Pediatrics’ Department, Faculty of Medicine, Cairo University, P.O. Box 12411, Cairo, Egypt
| | - Sonia El-Saiedi
- Pediatric Cardiology Unit, Pediatrics’ Department, Faculty of Medicine, Cairo University, P.O. Box 12411, Cairo, Egypt
| | - Amal El-Sisi
- Pediatric Cardiology Unit, Pediatrics’ Department, Faculty of Medicine, Cairo University, P.O. Box 12411, Cairo, Egypt
| | - Meryam El Shershaby
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hanya Gaber
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Habiba-Allah Ismail
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nadine El-Husseiny
- Faculty of Dentistry, Cairo University, Cairo, Egypt
- Pixagon Graphic Design Agency, Cairo, Egypt
| | - Abeer Reda Amin
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aly ElBoraie
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aya Ayad
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Esraa Menshawey
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fady Sefein
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ibrahim Ihab Osman
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mai Moursi
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maram Hanafy
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mariam Sherif Abdelaziz
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mariem Badr Arsanyous
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mariam Khaled-Ibn-El-Walid
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marwa Gamal Tawfik
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Menna Habib
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mina Ehab Mansour
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mirette Ashraf
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Ayman Khattab
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nada Alshehry
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nada Hafez
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Naheel Essam ElDeeb
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nirvana Ashraf
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha Khalil
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noheir Ismail AbdElSalam
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noura Shebl
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nouran Gamal Ali Hafez
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nourhan Hatem Youssef
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Odette Bahnan
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Passant Ismail
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Peter Kelada
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rahma Menshawey
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rana Saeed
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Reem Jalal Husseiny
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Reem Yasser
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Safa Sharaf
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Veronia Adel
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Youstina Naeem
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Youstina Nagy Farid Nicola
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aya Kamel
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rafeef Hozaien
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Raghda Fouda
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Ning L, Liu M, Gou Y, Yang Y, He B, Huang J. Development and application of ribonucleic acid therapy strategies against COVID-19. Int J Biol Sci 2022; 18:5070-5085. [PMID: 35982905 PMCID: PMC9379410 DOI: 10.7150/ijbs.72706] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome 2 coronavirus (SARS-CoV-2), remaining a global health crisis since its outbreak until now. Advanced biotechnology and research findings have revealed many suitable viral and host targets for a wide range of therapeutic strategies. The emerging ribonucleic acid therapy can modulate gene expression by post-transcriptional gene silencing (PTGS) based on Watson-Crick base pairing. RNA therapies, including antisense oligonucleotides (ASO), ribozymes, RNA interference (RNAi), aptamers, etc., were used to treat SARS-CoV whose genome is similar to SARV-CoV-2, and the past experience also applies for the treatment of COVID-19. Several studies against SARS-CoV-2 based on RNA therapeutic strategy have been reported, and a dozen of relevant preclinical or clinical trials are in process globally. RNA therapy has been a very active and important part of COVID-19 treatment. In this review, we focus on the progress of ribonucleic acid therapeutic strategies development and application, discuss corresponding problems and challenges, and suggest new strategies and solutions.
Collapse
Affiliation(s)
- Lin Ning
- School of Healthcare Technology, Chengdu Neusoft University, Sichuan, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Sichuan, China
| | - Mujiexin Liu
- Ineye Hospital of Chengdu University of TCM, Sichuan, China
| | - Yushu Gou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Sichuan, China
| | - Yue Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Sichuan, China
| | - Bifang He
- Medical College, Guizhou University, Guizhou, China
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Sichuan, China
| |
Collapse
|
4
|
Sartaj Sohrab S, Aly El-Kafrawy S, Ibraheem Azhar E. In silico prediction and experimental evaluation of potential siRNAs against SARS-CoV-2 inhibition in Vero E6 cells. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:102049. [PMID: 35493709 PMCID: PMC9040457 DOI: 10.1016/j.jksus.2022.102049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/13/2021] [Accepted: 04/18/2022] [Indexed: 11/21/2022]
Abstract
Objective The acute cases of pneumonia (COVID-19) were first reported from China in December 2019, and the pathogen was identified as SARS-CoV-2. Currently, many vaccines have been developed against this virus by using multiple genes, applying different platforms, and used for the vaccinations of the human population. Spike protein genes play an important role in host cell attachment and viral entry and have been extensively used for the development of vaccine and antiviral therapeutics. Short interfering RNA is also known as silencing RNA and contribute a significant role to regulate the expression of a specific gene. By using this technology, virus inhibition has been demonstrated against many viral diseases. Methods In this work, we have reported the Insilico prediction, designing, and experimental validation of siRNAs antiviral potency against SARS-CoV-2-S-RBD. The siDirect 2.0 was selected for siRNAs prediction, and secondary structure was predicted by RNAfold while the HNADOCK was used for molecular docking analysis and specific binding of siRNAs to the selected target. We have used and evaluated four siRNAs for cellular toxicity and determination of antiviral efficiency based on the Ct value of q-real-time PCR in Vero E6 cells. Results Based on the experimental evaluation and analysis of results from generated data, we observed that there is no cytotoxicity for any tested siRNAs in Vero E6 cells. Total four siRNA were filtered out from twenty-one siRNAs following the strict selection and scoring criteria. The better antiviral efficiency was observed in 3rd siRNAs based on the Ct value of q-real-time PCR. The results that emerged from this study encouraged us to validate the efficiency of these siRNAs in multiple cells by using alone and in a combination of two or more siRNAs to inhibit the SARS-CoV-2 proliferation. Conclusion The Insilico prediction, molecular docking analysis provided the selection of better siRNAs. Based on the experimental evaluation only 3rd siRNA was found to be more effective than others and showed better antiviral efficiency. These siRNAs should also be evaluated in other cell lines either separately or in combination against SARS-CoV-2 to determine their antiviral efficiency.
Collapse
|
5
|
Sohrab SS, El-Kafrawy SA, Azhar EI. Effect of insilico predicted and designed potential siRNAs on inhibition of SARS-CoV-2 in HEK-293 cells. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:101965. [PMID: 35313445 PMCID: PMC8925144 DOI: 10.1016/j.jksus.2022.101965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022]
Abstract
Objectives The COVID-19 was identified for the first time from the sea food market, Wuhan city, China in 2019 and the pathogenic organism was identified as SARS-CoV-2. Currently, this virus has spread to 223 countries and territories and known as a serious issue for the global human community. Many vaccines have been developed and used for immunization. Methods We have reported the insilico prediction, designing, secondary structure prediction, molecular docking analysis, and in vitro assessment of siRNAs against SARS-CoV-2. The online bioinformatic approach was used for siRNAs selection and designing. The selected siRNAs were evaluated for antiviral efficacy by using Lipofectamine 2000 as delivery agent to HEK-293 cells. The MTT assay was used for cytotoxicity determination. The antiviral efficacy of potential siRNAs was determined based on the Ct value of q-RT-PCR and the data analysis was done by Prism-GraphPad software. Results The analyzed data resulted in the selection of only three siRNAs out of twenty-six siRNAs generated by online software. The secondary structure prediction and molecular docking analysis of siRNAs revealed the efficient binding to the target. There was no cellular toxicity observed in the HEK-293 cells at any tested concentrations of siRNAs. The purification of RNA was completed from inoculated cells and subjected to q-RT-PCR. The highest Ct value was observed in siRNA 3 than the others. The results offered valuable evidence and invigorated us to assess the potency of siRNAs by using alone or in combination in other human cells. Conclusion The data generated from this study indicates the significance of in silico prediction and narrow down the potential siRNA' against SARS-CoV-2, and molecular docking investigation offered the effective siRNAs binding with the target. Finally, it is concluded that the online bioinformatics approach provided the prediction and selection of siRNAs with better antiviral efficacy. The siRNA-3 was observed to be the best for reduction of viral RNA in cells.
Collapse
|
6
|
Maranini B, Ciancio G, Ferracin M, Cultrera R, Negrini M, Sabbioni S, Govoni M. microRNAs and Inflammatory Immune Response in SARS-CoV-2 Infection: A Narrative Review. Life (Basel) 2022; 12:life12020288. [PMID: 35207576 PMCID: PMC8879390 DOI: 10.3390/life12020288] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
The current SARS-CoV-2 pandemic has emerged as an international challenge with strong medical and socioeconomic impact. The spectrum of clinical manifestations of SARS-CoV-2 is wide, covering asymptomatic or mild cases up to severe and life-threatening complications. Critical courses of SARS-CoV-2 infection are thought to be driven by the so-called “cytokine storm”, derived from an excessive immune response that induces the release of proinflammatory cytokines and chemokines. In recent years, non-coding RNAs (ncRNAs) emerged as potential diagnostic and therapeutic biomarkers in both inflammatory and infectious diseases. Therefore, the identification of SARS-CoV-2 miRNAs and host miRNAs is an important research topic, investigating the host–virus crosstalk in COVID-19 infection, trying to answer the pressing question of whether miRNA-based therapeutics can be employed to tackle SARS-CoV-2 complications. In this review, we aimed to directly address ncRNA role in SARS-CoV-2-immune system crosstalk upon COVID-19 infection, particularly focusing on inflammatory pathways and cytokine storm syndromes.
Collapse
Affiliation(s)
- Beatrice Maranini
- Rheumatology Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.C.); (M.G.)
- Correspondence:
| | - Giovanni Ciancio
- Rheumatology Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.C.); (M.G.)
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy;
| | - Rosario Cultrera
- Infectious Diseases, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Massimo Negrini
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Silvia Sabbioni
- Department of Life Sciences and Biotechnologies, University of Ferrara, 44121 Ferrara, Italy;
| | - Marcello Govoni
- Rheumatology Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.C.); (M.G.)
| |
Collapse
|
7
|
Bock R, Babayeva M, Loewy ZG. COVID-19 Pharmacotherapy: Drug Development, Repurposing of Drugs, and the Role of Pharmacogenomics. Methods Mol Biol 2022; 2547:187-199. [PMID: 36068465 DOI: 10.1007/978-1-0716-2573-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The SARS-CoV-2 virus has been the subject of intense pharmacological research. Various pharmacotherapeutic approaches including antiviral and immunotherapy are being explored. A pandemic, however, cannot depend on the development of new drugs; the time required for conventional drug discovery and development is far too lengthy. As such, repurposing drugs is being used as a viable approach for identifying pharmacological agents for COVID-19 infections. Evaluation of repurposed drug candidates with pharmacogenomic analysis is being used to identify near-term pharmacological remedies for COVID-19.
Collapse
Affiliation(s)
- Rebecca Bock
- Stern College for Women, Yeshiva University, New York, NY, USA
| | | | - Zvi G Loewy
- Touro College of Pharmacy, New York, NY, USA.
- School of Medicine, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
8
|
Ambike S, Cheng CC, Feuerherd M, Velkov S, Baldassi D, Afridi SQ, Porras-Gonzalez D, Wei X, Hagen P, Kneidinger N, Stoleriu MG, Grass V, Burgstaller G, Pichlmair A, Merkel OM, Ko C, Michler T. Targeting genomic SARS-CoV-2 RNA with siRNAs allows efficient inhibition of viral replication and spread. Nucleic Acids Res 2021; 50:333-349. [PMID: 34928377 PMCID: PMC8754636 DOI: 10.1093/nar/gkab1248] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 11/10/2021] [Accepted: 12/05/2021] [Indexed: 01/08/2023] Open
Abstract
A promising approach to tackle the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) could be small interfering (si)RNAs. So far it is unclear, which viral replication steps can be efficiently inhibited with siRNAs. Here, we report that siRNAs can target genomic RNA (gRNA) of SARS-CoV-2 after cell entry, and thereby terminate replication before start of transcription and prevent virus-induced cell death. Coronaviruses replicate via negative sense RNA intermediates using a unique discontinuous transcription process. As a result, each viral RNA contains identical sequences at the 5′ and 3′ end. Surprisingly, siRNAs were not active against intermediate negative sense transcripts. Targeting common sequences shared by all viral transcripts allowed simultaneous suppression of gRNA and subgenomic (sg)RNAs by a single siRNA. The most effective suppression of viral replication and spread, however, was achieved by siRNAs that targeted open reading frame 1 (ORF1) which only exists in gRNA. In contrast, siRNAs that targeted the common regions of transcripts were outcompeted by the highly abundant sgRNAs leading to an impaired antiviral efficacy. Verifying the translational relevance of these findings, we show that a chemically modified siRNA that targets a highly conserved region of ORF1, inhibited SARS-CoV-2 replication ex vivo in explants of the human lung. Our work encourages the development of siRNA-based therapies for COVID-19 and suggests that early therapy start, or prophylactic application, together with specifically targeting gRNA, might be key for high antiviral efficacy.
Collapse
Affiliation(s)
- Shubhankar Ambike
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Cho-Chin Cheng
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Martin Feuerherd
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Stoyan Velkov
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Domizia Baldassi
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstraße 5, 81377 Munich, Germany
| | - Suliman Qadir Afridi
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Diana Porras-Gonzalez
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Xin Wei
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Philipp Hagen
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Nikolaus Kneidinger
- Department of Medicine V, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Mircea Gabriel Stoleriu
- Center for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Pulmonary Hospital; Marchioninistraße 15, 81377 Munich and Robert-Koch-Allee 2, 82131 Gauting, Germany
| | - Vincent Grass
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany
| | - Gerald Burgstaller
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andreas Pichlmair
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany.,German Center for Infection Research (DZIF), Munich partner site, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstraße 5, 81377 Munich, Germany.,Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Chunkyu Ko
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany.,Infectious Diseases Therapeutic Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), 34114 Daejeon, Republic of Korea
| | - Thomas Michler
- Institute of Virology, School of Medicine, Technische Universität München / Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany.,German Center for Infection Research (DZIF), Munich partner site, Germany
| |
Collapse
|
9
|
Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov 2021; 20:629-651. [PMID: 34145432 PMCID: PMC8212082 DOI: 10.1038/s41573-021-00219-z] [Citation(s) in RCA: 964] [Impact Index Per Article: 241.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Therapeutic targeting of noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), represents an attractive approach for the treatment of cancers, as well as many other diseases. Over the past decade, substantial effort has been made towards the clinical application of RNA-based therapeutics, employing mostly antisense oligonucleotides and small interfering RNAs, with several gaining FDA approval. However, trial results have so far been ambivalent, with some studies reporting potent effects whereas others demonstrated limited efficacy or toxicity. Alternative entities such as antimiRNAs are undergoing clinical testing, and lncRNA-based therapeutics are gaining interest. In this Perspective, we discuss key challenges facing ncRNA therapeutics - including issues associated with specificity, delivery and tolerability - and focus on promising emerging approaches that aim to boost their success.
Collapse
Affiliation(s)
- Melanie Winkle
- Translational Molecular Pathology, MD Anderson Cancer Center, Texas State University, Houston, TX, USA
| | - Sherien M El-Daly
- Medical Biochemistry Department, Medical Research Division - Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences - National Research Centre, Cairo, Egypt
| | - Muller Fabbri
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - George A Calin
- Translational Molecular Pathology, MD Anderson Cancer Center, Texas State University, Houston, TX, USA.
- The RNA Interference and Non-codingRNA Center, MD Anderson Cancer Center, Texas State University, Houston, TX, USA.
| |
Collapse
|