1
|
Grimm M, Ziegler L, Seglias A, Mademilov M, Magdieva K, Mirzalieva G, Taalaibekova A, Suter S, Schneider SR, Zoller F, Bissig V, Reinhard L, Bauer M, Müller J, Ulrich TL, Carta AF, Bader PR, Bitos K, Reiser AE, Champigneulle B, Ashyralieva D, Scheiwiller PM, Ulrich S, Sooronbaev TM, Furian M, Bloch KE. SARS-CoV-2 Transmission during High-Altitude Field Studies. High Alt Med Biol 2024; 25:197-204. [PMID: 38634740 DOI: 10.1089/ham.2023.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Grimm, Mirjam, Lucie Ziegler, Annina Seglias, Maamed Mademilov, Kamila Magdieva, Gulzada Mirzalieva, Aijan Taalaibekova, Simone Suter, Simon R. Schneider, Fiona Zoller, Vera Bissig, Lukas Reinhard, Meret Bauer, Julian Müller, Tanja L. Ulrich, Arcangelo F. Carta, Patrick R. Bader, Konstantinos Bitos, Aurelia E. Reiser, Benoit Champigneulle, Damira Ashyralieva, Philipp M. Scheiwiller, Silvia Ulrich, Talant M. Sooronbaev, Michael Furian, and Konrad E. Bloch. SARS-CoV-2 Transmission during High-Altitude Field Studies. High Alt Med Biol. 25:197-204, 2024. Background: Throughout the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic, virus transmission during clinical research was of concern. Therefore, during high-altitude field studies performed in 2021, we took specific COVID-19 precautions and investigated the occurrence of SARS-CoV-2 infection. Methods: From May to September 2021, we performed studies in patients with chronic obstructive pulmonary disease (COPD) and in healthy school-age children in Kyrgyzstan in high-altitude facilities at 3,100 m and 3,250 m and at 760 m. The various implemented COVID-19 safety measures included systematic SARS-CoV-2 rapid antigen testing (RAT). Main outcomes were SARS-CoV-2-RAT-positive rate among participants and staff at initial presentation (prevalence) and SARS-CoV-2-RAT-positive conversion during and within 10 days after studies (incidence). Results: Among 338 participants and staff, SARS-CoV-2-RAT-positive prevalence was 15 (4.4%). During mean ± SD duration of individual study participation of 3.1 ± 1.0 day and within 10 days, RAT-positive conversion occurred in 1/237(0.4%) participants. Among staff working in studies for 31.5 ± 29.3 days, SARS-CoV-2-RAT-positive conversion was 11/101(10.9%). In all 338 individuals involved in the studies over the course of 15.6 weeks, the median SARS-CoV-2-RAT-positive incidence was 0.00%/week (quartiles 0.00; 0.64). Over the same period, the median background incidence among the total Kyrgyz population of 6,636 million was 0.06%/week (0.03; 0.11), p = 0.013 (Wilcoxon rank sum test). Conclusions: Taking precautions by implementing specific safety measures, SARS-CoV-2 transmission during clinical studies was very rare, and the SARS-CoV-2 incidence among participants and staff was lower than that in the general population during the same period. The results are reassuring and may help in decision-making on the conduct of clinical research in similar settings.
Collapse
Affiliation(s)
- Mirjam Grimm
- Department of Respiratory Medicine, University Hospital of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Lucie Ziegler
- Department of Respiratory Medicine, University Hospital of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Annina Seglias
- Department of Respiratory Medicine, University Hospital of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Maamed Mademilov
- Department of Respiratory Medicine, National Center for Cardiology and Internal Medicine, Bishkek, Kyrgyz Republic
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Kamila Magdieva
- Department of Respiratory Medicine, National Center for Cardiology and Internal Medicine, Bishkek, Kyrgyz Republic
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Gulzada Mirzalieva
- Department of Respiratory Medicine, National Center for Cardiology and Internal Medicine, Bishkek, Kyrgyz Republic
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Aijan Taalaibekova
- Department of Respiratory Medicine, National Center for Cardiology and Internal Medicine, Bishkek, Kyrgyz Republic
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Simone Suter
- Department of Respiratory Medicine, University Hospital of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Simon R Schneider
- Department of Respiratory Medicine, University Hospital of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Fiona Zoller
- Department of Respiratory Medicine, University Hospital of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Vera Bissig
- Department of Respiratory Medicine, University Hospital of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Lukas Reinhard
- Department of Respiratory Medicine, University Hospital of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Meret Bauer
- Department of Respiratory Medicine, University Hospital of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Julian Müller
- Department of Respiratory Medicine, University Hospital of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Tanja L Ulrich
- Department of Respiratory Medicine, University Hospital of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Arcangelo F Carta
- Department of Respiratory Medicine, University Hospital of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Patrick R Bader
- Department of Respiratory Medicine, University Hospital of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Konstantinos Bitos
- Department of Respiratory Medicine, University Hospital of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Aurelia E Reiser
- Department of Respiratory Medicine, University Hospital of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | | | - Damira Ashyralieva
- National Institute of Public Health, Ministry of Health, Bishkek, Kyrgyz Republic
| | - Philipp M Scheiwiller
- Department of Respiratory Medicine, University Hospital of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Silvia Ulrich
- Department of Respiratory Medicine, University Hospital of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Talant M Sooronbaev
- Department of Respiratory Medicine, National Center for Cardiology and Internal Medicine, Bishkek, Kyrgyz Republic
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Michael Furian
- Department of Respiratory Medicine, University Hospital of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| | - Konrad E Bloch
- Department of Respiratory Medicine, University Hospital of Zurich, Zurich, Switzerland
- Swiss-Kyrgyz High Altitude Medicine and Research Initiative, Zurich, Switzerland
| |
Collapse
|
2
|
Aboagye FT, Annison L, Hackman HK, Acquah ME, Ashong Y, Owusu-Frimpong I, Egyam BC, Annison S, Osei-Adjei G, Antwi-Baffour S. Comparative evaluation of RT-PCR and antigen-based rapid diagnostic tests (Ag-RDTs) for SARS-CoV-2 detection: performance, variant specificity, and clinical implications. Microbiol Spectr 2024; 12:e0007324. [PMID: 38683014 PMCID: PMC11237673 DOI: 10.1128/spectrum.00073-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
The COVID-19 pandemic has highlighted the critical need for accurate and efficient diagnostic tools for detecting severe acute respiratory coronavirus 2 (SARS-CoV-2) infections. This study presents a comparison of two diagnostic tests: RT-PCR and antigen detection rapid diagnostic tests (Ag-RDTs). This study focused on their performance, variant specificity, and their clinical implications. A simultaneous testing of 268 samples was carried out for SARS-CoV-2 using RT-PCR and Ag-RDTs [flourescence immunoassay (FIA) and lateral flow immunoassay (LFIA)]. Viral load was quantified, and variant identification was performed using a PCR-based assay. The prevalence was found to be 30.2% using reverse transcription PCR (RT-PCR), 26.5% using FIA, and 25% using LFIA. When comparing the FIA and LFIA, the overall diagnostic performance was found to be 80.25% vs 76.54%, 96.79% vs 97.33%, 91.55% vs 90.51%, and 91.88% vs 92.56% for sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), respectively. Both Ag-RDTs showed a strong agreement with RT-PCR (κ = 0.78-0.80). The overall accuracies of the FIA and LFIA were 92.41% and 92.13%, respectively. The FIA showed higher sensitivity (73.68%) and PPV (92.08%) than the LFIA (65.79% and 90.56%, respectively) in asymptomatic patients. At low Ct values (<25), both Ag-RDTs had 100% sensitivity, but the sensitivity reduced to 31.82% for FIA and 27.27% for LFIA at Ct values > 30. The diagnostic sensitivity of FIA compared to LFIA for detecting the Alpha variant was 78.85% vs. 69.23% and 72.22% vs. 83.33% for the Delta variant. Both Ag-RDTs had 100% sensitivity for detecting Omicron. Both Ag-RDTs performed well in patients with high viral loads and Omicron variant infections compared to those infected with Alpha and Delta variants. This study confirms the comparable performance of RT-PCR and Ag-RDTs, specifically FIA and LFIA, for SARS-CoV-2 detection. The FIA showed higher sensitivity and PPV in asymptomatic cases, while both Ag-RDTs exhibited strong agreement with RT-PCR results. Notably, Ag-RDTs, particularly FIA, proved effective in detecting the Omicron variant and cases with high viral loads, highlighting their potential clinical utility in managing the COVID-19 pandemic.IMPORTANCEThis study is of utmost importance in providing effective responses to manage the COVID-19 pandemic. It rigorously compares the diagnostic accuracy, variant specificity, and practical considerations of reverse transcription PCR (RT-PCR) and antigen detection rapid diagnostic tests (Ag-RDTs) for severe acute respiratory coronavirus 2 (SARS-CoV-2), answering critical questions. The results of this study will help healthcare professionals choose the appropriate testing methods, allocate resources effectively, and enhance public health strategies. Given the evolution of the virus, understanding the performance of these diagnostic tools is crucial to adapting to emerging variants. Additionally, the study provides insights into logistical challenges and accessibility issues, which will contribute to refining testing workflows, particularly in resource-limited settings. Ultimately, the study's impact extends to global healthcare, providing valuable information for policymakers, clinicians, and public health officials as they work together for mitigating the impact of the pandemic.
Collapse
Affiliation(s)
- Frank T. Aboagye
- Department of Medical Laboratory Technology, Faculty of Applied Sciences, Accra Technical University, Accra, Ghana
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research – Water Research Institute, Accra, Ghana
| | - Lawrence Annison
- Department of Medical Laboratory Technology, Faculty of Applied Sciences, Accra Technical University, Accra, Ghana
| | - Henry Kwadwo Hackman
- Department of Medical Laboratory Technology, Faculty of Applied Sciences, Accra Technical University, Accra, Ghana
| | - Maame E. Acquah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Yvonne Ashong
- Department of Parasitology, Noguchi Memorial Institute of Medical Research, College of Medical Sciences, University of Ghana, Accra, Ghana
| | - Isaac Owusu-Frimpong
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research – Water Research Institute, Accra, Ghana
| | - Bill C. Egyam
- Department of Molecular Biology, MDS Lancet Laboratories Ghana Limited, Accra, Ghana
| | - Sharon Annison
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Accra, Ghana
| | - George Osei-Adjei
- Department of Medical Laboratory Technology, Faculty of Applied Sciences, Accra Technical University, Accra, Ghana
| | - Samuel Antwi-Baffour
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
3
|
Wiriyachaiporn N, Kongrueng J, Sukkuea K, Tanrattanawong R, Vanichtanankul J, Saeyang T, Jantra T, Japrung D, Maneeprakorn W, Bamrungsap S, Janchompoo P, Pasomsub E. Characterizing a visual lateral flow device for rapid SARS-CoV-2 virus protein detection: pre-clinical and system assessment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2740-2750. [PMID: 38634326 DOI: 10.1039/d3ay02075d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections have affected more than 769 million individuals worldwide over the last few years. Although the pandemic is transitioning into an endemic, the COVID-19 outbreak is still a global concern. A rapid screening platform is needed for effective preventive and control measures. Herein, a visual rapid lateral flow platform for SARS-CoV-2 nucleocapsid protein detection is developed. Under optimal conditions, the system demonstrated good detection sensitivity and selectivity against tested respiratory viruses. The system provides direct visual detection with a limit of 0.7 ng of the nucleocapsid protein per mL of a sample (0.7 ng mL-1) within 15 minutes. Further, a correlation between direct visual detection and semi-quantitative analysis using a reader showed a similar detection limit (R2 = 0.9571). The repeatability and reproducibility studies highlighted the potential of the system for the rapid screening of SARS-CoV-2 infection, with variations within 5% and 10% at high and low protein concentrations, respectively. Subsequent pre-clinical validation to correlate the performance with the standard molecular approach (RT-PCR) using 170 nasopharyngeal swabs demonstrated 98% estimated sensitivity (95% CI, 89.35-99.95%) and 100% specificity (95% CI, 96.38-100%). The positive and negative predictive values were reported to be 100% and 99%, respectively, with an accuracy of 99.3%. With high viral load samples (Ct value ≤25, n = 47), the system demonstrated 100% detection sensitivity and specificity. The proposed technique provides a valuable platform for potential use in rapid screening, particularly during pandemics, where diagnostic capacity and mass screening are crucial.
Collapse
Affiliation(s)
- Natpapas Wiriyachaiporn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Jetnapang Kongrueng
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Kannika Sukkuea
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Rattana Tanrattanawong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Jarunee Vanichtanankul
- National Center of Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Thanaya Saeyang
- National Center of Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Tararat Jantra
- National Center of Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Deanpen Japrung
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Weerakanya Maneeprakorn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Pareena Janchompoo
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ekawat Pasomsub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Manten K, Katzenschlager S, Brümmer LE, Schmitz S, Gaeddert M, Erdmann C, Grilli M, Pollock NR, Macé A, Erkosar B, Carmona S, Ongarello S, Johnson CC, Sacks JA, Faehling V, Bornemann L, Weigand MA, Denkinger CM, Yerlikaya S. Clinical accuracy of instrument-based SARS-CoV-2 antigen diagnostic tests: a systematic review and meta-analysis. Virol J 2024; 21:99. [PMID: 38685117 PMCID: PMC11059670 DOI: 10.1186/s12985-024-02371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND During the COVID-19 pandemic, antigen diagnostic tests were frequently used for screening, triage, and diagnosis. Novel instrument-based antigen tests (iAg tests) hold the promise of outperforming their instrument-free, visually-read counterparts. Here, we provide a systematic review and meta-analysis of the SARS-CoV-2 iAg tests' clinical accuracy. METHODS We systematically searched MEDLINE (via PubMed), Web of Science, medRxiv, and bioRxiv for articles published before November 7th, 2022, evaluating the accuracy of iAg tests for SARS-CoV-2 detection. We performed a random effects meta-analysis to estimate sensitivity and specificity and used the QUADAS-2 tool to assess study quality and risk of bias. Sub-group analysis was conducted based on Ct value range, IFU-conformity, age, symptom presence and duration, and the variant of concern. RESULTS We screened the titles and abstracts of 20,431 articles and included 114 publications that fulfilled the inclusion criteria. Additionally, we incorporated three articles sourced from the FIND website, totaling 117 studies encompassing 95,181 individuals, which evaluated the clinical accuracy of 24 commercial COVID-19 iAg tests. The studies varied in risk of bias but showed high applicability. Of 24 iAg tests from 99 studies assessed in the meta-analysis, the pooled sensitivity and specificity compared to molecular testing of a paired NP swab sample were 76.7% (95% CI 73.5 to 79.7) and 98.4% (95% CI 98.0 to 98.7), respectively. Higher sensitivity was noted in individuals with high viral load (99.6% [95% CI 96.8 to 100] at Ct-level ≤ 20) and within the first week of symptom onset (84.6% [95% CI 78.2 to 89.3]), but did not differ between tests conducted as per manufacturer's instructions and those conducted differently, or between point-of-care and lab-based testing. CONCLUSION Overall, iAg tests have a high pooled specificity but a moderate pooled sensitivity, according to our analysis. The pooled sensitivity increases with lower Ct-values (a proxy for viral load), or within the first week of symptom onset, enabling reliable identification of most COVID-19 cases and highlighting the importance of context in test selection. The study underscores the need for careful evaluation considering performance variations and operational features of iAg tests.
Collapse
Affiliation(s)
- Katharina Manten
- Department of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Katzenschlager
- Department of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Lukas E Brümmer
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephani Schmitz
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Mary Gaeddert
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Maurizio Grilli
- Library, University Medical Center Mannheim, Mannheim, Germany
| | - Nira R Pollock
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
| | | | | | | | | | - Cheryl C Johnson
- Global HIV, Hepatitis and STIs Programmes, World Health Organization, Geneva, Switzerland
| | - Jilian A Sacks
- Department of Epidemic and Pandemic Preparedness and Prevention, World Health Organization, Geneva, Switzerland
| | - Verena Faehling
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Linus Bornemann
- Institute of Virology, Faculty of Medicine, University Medical Centre, University of Freiburg, Freiburg, Germany
| | - Markus A Weigand
- Department of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Claudia M Denkinger
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg University Hospital, Heidelberg, Germany
| | - Seda Yerlikaya
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Infection Research (DZIF), partner site Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
5
|
Sakala M, Johnson C, Chirombo J, Sacks JA, Baggaley R, Divala T. COVID-19 self-testing: Countries accelerating policies ahead of WHO guidelines during pandemics, a global consultation. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002369. [PMID: 38498477 PMCID: PMC10947679 DOI: 10.1371/journal.pgph.0002369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/30/2024] [Indexed: 03/20/2024]
Abstract
The widespread use of antigen-detection rapid diagnostic tests (Ag-RDTs) has revolutionized SARS-CoV-2 (COVID-19) testing, particularly through the option of self-testing. The full extent of Ag-RDT utilization for self-testing, however, remains largely unexplored. To inform the development of WHO guidance on COVID-19 self-testing, we conducted a global consultation to gather the views and experiences of policy makers, researchers, and implementers worldwide. The consultation was conducted by disseminating a WHO questionnaire through professional networks via email and social media, encouraging onward sharing. We used a cross-sectional design with both closed and open-ended questions related to policy and program information concerning the regulation, availability, target population, indications, implementation, benefits, and challenges of COVID-19 self-testing (C19ST). We defined self-testing as tests performed and interpreted by an untrained individual, often at home. Descriptive summaries, cross-tabulations, and proportions were used to calculate outcomes at the global level and by WHO region and World Bank income classifications. All information was collated and reported according to WHO guideline development standards and practice for global consultations. Between 01 and 11 February 2022, 844 individuals from 139 countries responded to the survey, with 45% reporting affiliation with governments and 47% operating at the national level. 504 respondents from 101 countries reported policies supporting C19ST for a range of use cases, including symptomatic and asymptomatic populations. More respondents from low-and-middle-income countries (LMICs) than high-income countries (HICs) reported a lack of an C19ST policy (61 vs 11 countries) and low population-level reach of C19ST. Respondents with C19ST experience perceived that the tests were mostly acceptable to target populations, provided significant benefits, and highlighted several key challenges to be addressed for increased success. Reported costs varied widely, ranging from specific programmes enabling free access to certain users and others with high costs via the private sector. Based on this consultation, systems for the regulatory review, policy development and implementation of C19ST appeared to be much more common in HIC when compared to LIC in early 2022, though most respondents indicated self-testing was available to some extent (101 out of 139 countries) in their country. Addressing such global inequities is critical for ensuring access to innovative and impactful interventions in the context of a public health emergency of international concern. The challenges and opportunities highlighted by key stakeholders could be valuable to consider as future testing strategies are being set for outbreak-prone diseases.
Collapse
Affiliation(s)
- Melody Sakala
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - James Chirombo
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | | | - Titus Divala
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| |
Collapse
|
6
|
Liu Y, Li Y, Hang Y, Wang L, Wang J, Bao N, Kim Y, Jang HW. Rapid assays of SARS-CoV-2 virus and noble biosensors by nanomaterials. NANO CONVERGENCE 2024; 11:2. [PMID: 38190075 PMCID: PMC10774473 DOI: 10.1186/s40580-023-00408-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
The COVID-19 outbreak caused by SARS-CoV-2 in late 2019 has spread rapidly across the world to form a global epidemic of respiratory infectious diseases. Increased investigations on diagnostic tools are currently implemented to assist rapid identification of the virus because mass and rapid diagnosis might be the best way to prevent the outbreak of the virus. This critical review discusses the detection principles, fabrication techniques, and applications on the rapid detection of SARS-CoV-2 with three categories: rapid nuclear acid augmentation test, rapid immunoassay test and biosensors. Special efforts were put on enhancement of nanomaterials on biosensors for rapid, sensitive, and low-cost diagnostics of SARS-CoV-2 virus. Future developments are suggested regarding potential candidates in hospitals, clinics and laboratories for control and prevention of large-scale epidemic.
Collapse
Affiliation(s)
- Yang Liu
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yilong Li
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yuteng Hang
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Lei Wang
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Jinghan Wang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Youngeun Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Yang YP, Jiesisibieke ZL, Tung TH. Association Between Rapid Antigen Detection Tests and Real-Time Reverse Transcription-Polymerase Chain Reaction Assay for SARS-CoV-2: A Systematic Review and Meta-Analyses. Int J Public Health 2023; 68:1605452. [PMID: 37588042 PMCID: PMC10425602 DOI: 10.3389/ijph.2023.1605452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 07/11/2023] [Indexed: 08/18/2023] Open
Abstract
Objectives: We aimed to assess the association between rapid antigen detection tests and real-time reverse transcription-polymerase chain reaction assay for severe acute respiratory syndrome coronavirus 2. Methods: We searched PubMed, Cochrane Library, EMBASE, and the Web of Science from their inception to 31 May 2023. A random-effects meta-analysis was used to estimate false positives in the RADTs group, relative to those in the RT-PCR group, and subgroup analyses were conducted based on the different Ct value cut-offs (<40 or ≥40). We performed this study in accordance with the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Results: Fifty-one studies were included and considered to be of moderate quality. We found a satisfactory overall false positive rate (0.01, 95% CI: 0.00-0.01) for the RADTs compared to RT-PCR. In the stratified analysis, we also found that the false positive rates of the RADTs did not increase when Ct values of RT-PCR (Ct < 40, 0.01, 95% CI: 0.00-0.01; Ct ≥ 40, 0.01, 95% CI: 0.00-0.01). Conclusion: In conclusion, the best available evidence supports an association between RADTs and RT-PCR. When Ct-values were analyzed using cut-off <40 or ≥40, this resulted in an estimated false positive rate of only 1%.
Collapse
Affiliation(s)
- Yu-Pei Yang
- Department of Hematology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Zhu Liduzi Jiesisibieke
- School of Public Health, The University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Hong Kong SAR, China
| | - Tao-Hsin Tung
- Evidence-Based Medicine Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
8
|
Yu K, Song J, Kim D, Park Y, Jeong SH. Clinical Evaluation of Two Rapid Antigen Tests for Severe Acute Respiratory Syndrome Coronavirus 2 Detection. Ann Lab Med 2023; 43:120-123. [PMID: 36045070 PMCID: PMC9467831 DOI: 10.3343/alm.2023.43.1.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/03/2022] [Accepted: 08/11/2022] [Indexed: 12/31/2022] Open
Affiliation(s)
- Kyunghee Yu
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea,Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Junhyup Song
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea,Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dokyun Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yongjung Park
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea,Corresponding author: Yongjung Park, M.D., Ph.D. Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Korea Tel: +82-2-2019-3533, Fax: +82-2-2057-8926, E-mail:
| | - Seok Hoon Jeong
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Bhattacharjee R, Dubey AK, Ganguly A, Bhattacharya B, Mishra YK, Mostafavi E, Kaushik A. State-of-art high-performance Nano-systems for mutated coronavirus infection management: From Lab to Clinic. OPENNANO 2022. [PMCID: PMC9463543 DOI: 10.1016/j.onano.2022.100078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants made emerging novel coronavirus diseases (COVID-19) pandemic/endemic/or both more severe and difficult to manage due to increased worry about the efficacy and efficiency of present preventative, therapeutic, and sensing measures. To deal with these unexpected circumstances, the development of novel nano-systems with tuneable optical, electrical, magnetic, and morphological properties can lead to novel research needed for (1) COVID-19 infection (anti-microbial systems against SARS-CoV-2), (2) early detection of mutated SARS-CoV-2, and (3) targeted delivery of therapeutics using nano-systems, i.e., nanomedicine. However, there is a knowledge gap in understanding all these nano-biotechnology potentials for managing mutated SARS-CoV-2 on a single platform. To bring up the aspects of nanotechnology to tackle SARS-CoV-2 variants related COVID-19 pandemic, this article emphasizes improvements in the high-performance of nano-systems to combat SARS-CoV-2 strains/variants with a goal of managing COVID-19 infection via trapping, eradication, detection/sensing, and treatment of virus. The potential of state-of-the-art nano-assisted approaches has been demonstrated as an efficient drug delivery systems, viral disinfectants, vaccine productive cargos, anti-viral activity, and biosensors suitable for point-of-care (POC) diagnostics. Furthermore, the process linked with the efficacy of nanosystems to neutralize and eliminate SARS-CoV-2 is extensively highligthed in this report. The challenges and opportunities associated with managing COVID-19 using nanotechnology as part of regulations are also well-covered. The outcomes of this review will help researchers to design, investigate, and develop an appropriate nano system to manage COVID-19 infection, with a focus on the detection and eradication of SARS-CoV-2 and its variants. This article is unique in that it discusses every aspect of high-performance nanotechnology for ideal COVID pandemic management.
Collapse
|
10
|
Dinnes J, Sharma P, Berhane S, van Wyk SS, Nyaaba N, Domen J, Taylor M, Cunningham J, Davenport C, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Van den Bruel A, Deeks JJ. Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev 2022; 7:CD013705. [PMID: 35866452 PMCID: PMC9305720 DOI: 10.1002/14651858.cd013705.pub3] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Accurate rapid diagnostic tests for SARS-CoV-2 infection would be a useful tool to help manage the COVID-19 pandemic. Testing strategies that use rapid antigen tests to detect current infection have the potential to increase access to testing, speed detection of infection, and inform clinical and public health management decisions to reduce transmission. This is the second update of this review, which was first published in 2020. OBJECTIVES To assess the diagnostic accuracy of rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups. Sources of heterogeneity investigated included setting and indication for testing, assay format, sample site, viral load, age, timing of test, and study design. SEARCH METHODS We searched the COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) on 08 March 2021. We included independent evaluations from national reference laboratories, FIND and the Diagnostics Global Health website. We did not apply language restrictions. SELECTION CRITERIA We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen tests. We included evaluations of single applications of a test (one test result reported per person) and evaluations of serial testing (repeated antigen testing over time). Reference standards for presence or absence of infection were any laboratory-based molecular test (primarily reverse transcription polymerase chain reaction (RT-PCR)) or pre-pandemic respiratory sample. DATA COLLECTION AND ANALYSIS We used standard screening procedures with three people. Two people independently carried out quality assessment (using the QUADAS-2 tool) and extracted study results. Other study characteristics were extracted by one review author and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test, and pooled data using the bivariate model. We investigated heterogeneity by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status. MAIN RESULTS We included 155 study cohorts (described in 166 study reports, with 24 as preprints). The main results relate to 152 evaluations of single test applications including 100,462 unique samples (16,822 with confirmed SARS-CoV-2). Studies were mainly conducted in Europe (101/152, 66%), and evaluated 49 different commercial antigen assays. Only 23 studies compared two or more brands of test. Risk of bias was high because of participant selection (40, 26%); interpretation of the index test (6, 4%); weaknesses in the reference standard for absence of infection (119, 78%); and participant flow and timing 41 (27%). Characteristics of participants (45, 30%) and index test delivery (47, 31%) differed from the way in which and in whom the test was intended to be used. Nearly all studies (91%) used a single RT-PCR result to define presence or absence of infection. The 152 studies of single test applications reported 228 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies, with consistently high specificities. Average sensitivity was higher in symptomatic (73.0%, 95% CI 69.3% to 76.4%; 109 evaluations; 50,574 samples, 11,662 cases) compared to asymptomatic participants (54.7%, 95% CI 47.7% to 61.6%; 50 evaluations; 40,956 samples, 2641 cases). Average sensitivity was higher in the first week after symptom onset (80.9%, 95% CI 76.9% to 84.4%; 30 evaluations, 2408 cases) than in the second week of symptoms (53.8%, 95% CI 48.0% to 59.6%; 40 evaluations, 1119 cases). For those who were asymptomatic at the time of testing, sensitivity was higher when an epidemiological exposure to SARS-CoV-2 was suspected (64.3%, 95% CI 54.6% to 73.0%; 16 evaluations; 7677 samples, 703 cases) compared to where COVID-19 testing was reported to be widely available to anyone on presentation for testing (49.6%, 95% CI 42.1% to 57.1%; 26 evaluations; 31,904 samples, 1758 cases). Average specificity was similarly high for symptomatic (99.1%) or asymptomatic (99.7%) participants. We observed a steady decline in summary sensitivities as measures of sample viral load decreased. Sensitivity varied between brands. When tests were used according to manufacturer instructions, average sensitivities by brand ranged from 34.3% to 91.3% in symptomatic participants (20 assays with eligible data) and from 28.6% to 77.8% for asymptomatic participants (12 assays). For symptomatic participants, summary sensitivities for seven assays were 80% or more (meeting acceptable criteria set by the World Health Organization (WHO)). The WHO acceptable performance criterion of 97% specificity was met by 17 of 20 assays when tests were used according to manufacturer instructions, 12 of which demonstrated specificities above 99%. For asymptomatic participants the sensitivities of only two assays approached but did not meet WHO acceptable performance standards in one study each; specificities for asymptomatic participants were in a similar range to those observed for symptomatic people. At 5% prevalence using summary data in symptomatic people during the first week after symptom onset, the positive predictive value (PPV) of 89% means that 1 in 10 positive results will be a false positive, and around 1 in 5 cases will be missed. At 0.5% prevalence using summary data for asymptomatic people, where testing was widely available and where epidemiological exposure to COVID-19 was suspected, resulting PPVs would be 38% to 52%, meaning that between 2 in 5 and 1 in 2 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed. AUTHORS' CONCLUSIONS Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. Assays that meet appropriate performance standards, such as those set by WHO, could replace laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. However, they are more suitable for use as triage to RT-PCR testing. The variable sensitivity of antigen tests means that people who test negative may still be infected. Many commercially available rapid antigen tests have not been evaluated in independent validation studies. Evidence for testing in asymptomatic cohorts has increased, however sensitivity is lower and there is a paucity of evidence for testing in different settings. Questions remain about the use of antigen test-based repeat testing strategies. Further research is needed to evaluate the effectiveness of screening programmes at reducing transmission of infection, whether mass screening or targeted approaches including schools, healthcare setting and traveller screening.
Collapse
Affiliation(s)
- Jacqueline Dinnes
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Pawana Sharma
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sarah Berhane
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Susanna S van Wyk
- Centre for Evidence-based Health Care, Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nicholas Nyaaba
- Infectious Disease Unit, 37 Military Hospital, Cantonments, Ghana
| | - Julie Domen
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Melissa Taylor
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Clare Davenport
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | | | | | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mariska Mg Leeflang
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - René Spijker
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, Netherlands
| | - Jan Y Verbakel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Sian Taylor-Phillips
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Ann Van den Bruel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jonathan J Deeks
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Tapari A, Braliou GG, Papaefthimiou M, Mavriki H, Kontou PI, Nikolopoulos GK, Bagos PG. Performance of Antigen Detection Tests for SARS-CoV-2: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12:1388. [PMID: 35741198 PMCID: PMC9221910 DOI: 10.3390/diagnostics12061388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) initiated global health care challenges such as the necessity for new diagnostic tests. Diagnosis by real-time PCR remains the gold-standard method, yet economical and technical issues prohibit its use in points of care (POC) or for repetitive tests in populations. A lot of effort has been exerted in developing, using, and validating antigen-based tests (ATs). Since individual studies focus on few methodological aspects of ATs, a comparison of different tests is needed. Herein, we perform a systematic review and meta-analysis of data from articles in PubMed, medRxiv and bioRxiv. The bivariate method for meta-analysis of diagnostic tests pooling sensitivities and specificities was used. Most of the AT types for SARS-CoV-2 were lateral flow immunoassays (LFIA), fluorescence immunoassays (FIA), and chemiluminescence enzyme immunoassays (CLEIA). We identified 235 articles containing data from 220,049 individuals. All ATs using nasopharyngeal samples show better performance than those with throat saliva (72% compared to 40%). Moreover, the rapid methods LFIA and FIA show about 10% lower sensitivity compared to the laboratory-based CLEIA method (72% compared to 82%). In addition, rapid ATs show higher sensitivity in symptomatic patients compared to asymptomatic patients, suggesting that viral load is a crucial parameter for ATs performed in POCs. Finally, all methods perform with very high specificity, reaching around 99%. LFIA tests, though with moderate sensitivity, appear as the most attractive method for use in POCs and for performing seroprevalence studies.
Collapse
Affiliation(s)
- Anastasia Tapari
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Georgia G. Braliou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Maria Papaefthimiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Helen Mavriki
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Panagiota I. Kontou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | | | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| |
Collapse
|
12
|
Keskin AU, Ciragil P, Topkaya AE. Clinical Accuracy of Instrument-Read SARS-CoV-2 Antigen Rapid Diagnostic Tests (Ag-IRRDTs). Int J Microbiol 2022; 2022:9489067. [PMID: 35586835 PMCID: PMC9110244 DOI: 10.1155/2022/9489067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/20/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
This systematic review (PROSPERO registration number: CRD42021282476) aims to collect and analyse current evidence on real-world performance based on clinical accuracy of instrument-read rapid antigen diagnostic tests (Ag-IRRDTs) for SARS-CoV-2 identification. We used PRISMA Checklist and searched databases (PubMed, Web of Science Core Collection and FIND) for publications evaluating the accuracy of SARS-CoV-2 Ag-IRRDTs as of 30 September 2021, and included 40 independent clinical studies resulting in 48 Ag-IRRDT datasets with 137,770 samples. Across all datasets, pooled Ag-IRRDT sensitivity was 67.1% (95% CI: 65.9%-68.3%) and specificity was 99.4% with a tight CI. Pooled sensitivity and specificity of SARS-CoV-2 Ag-IRRDTs did not demonstrate a significant superiority over SARS-CoV-2 rapid antigen tests which do not require a reader instrument, even in the case where surveillance and screening datasets were excluded from the analysis. Nevertheless, they provide connectivity advantages and remove operator interface (in results-reading) issues. The lower sensitivity of certain brands of Ag-IRRDTs can be overcome in high prevalence areas with high frequency of testing. New SARS-CoV-2 variants are major concern for current and future diagnostic performance of these tests.
Collapse
Affiliation(s)
- Ali Umit Keskin
- Department of Biomedical Engineering, Yeditepe University, Istanbul, Turkey
| | - Pinar Ciragil
- Department of Microbiology, Yeditepe University Kozyatagi Hospital, Istanbul, Turkey
| | - Aynur Eren Topkaya
- Department of Microbiology, Yeditepe University Kosuyolu Hospital, Istanbul, Turkey
| |
Collapse
|
13
|
Brümmer LE, Katzenschlager S, McGrath S, Schmitz S, Gaeddert M, Erdmann C, Bota M, Grilli M, Larmann J, Weigand MA, Pollock NR, Macé A, Erkosar B, Carmona S, Sacks JA, Ongarello S, Denkinger CM. Accuracy of rapid point-of-care antigen-based diagnostics for SARS-CoV-2: An updated systematic review and meta-analysis with meta-regression analyzing influencing factors. PLoS Med 2022; 19:e1004011. [PMID: 35617375 PMCID: PMC9187092 DOI: 10.1371/journal.pmed.1004011] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/10/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Comprehensive information about the accuracy of antigen rapid diagnostic tests (Ag-RDTs) for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is essential to guide public health decision makers in choosing the best tests and testing policies. In August 2021, we published a systematic review and meta-analysis about the accuracy of Ag-RDTs. We now update this work and analyze the factors influencing test sensitivity in further detail. METHODS AND FINDINGS We registered the review on PROSPERO (registration number: CRD42020225140). We systematically searched preprint and peer-reviewed databases for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 until August 31, 2021. Descriptive analyses of all studies were performed, and when more than 4 studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity with reverse transcription polymerase chain reaction (RT-PCR) testing as a reference. To evaluate factors influencing test sensitivity, we performed 3 different analyses using multivariable mixed-effects meta-regression models. We included 194 studies with 221,878 Ag-RDTs performed. Overall, the pooled estimates of Ag-RDT sensitivity and specificity were 72.0% (95% confidence interval [CI] 69.8 to 74.2) and 98.9% (95% CI 98.6 to 99.1). When manufacturer instructions were followed, sensitivity increased to 76.3% (95% CI 73.7 to 78.7). Sensitivity was markedly better on samples with lower RT-PCR cycle threshold (Ct) values (97.9% [95% CI 96.9 to 98.9] and 90.6% [95% CI 88.3 to 93.0] for Ct-values <20 and <25, compared to 54.4% [95% CI 47.3 to 61.5] and 18.7% [95% CI 13.9 to 23.4] for Ct-values ≥25 and ≥30) and was estimated to increase by 2.9 percentage points (95% CI 1.7 to 4.0) for every unit decrease in mean Ct-value when adjusting for testing procedure and patients' symptom status. Concordantly, we found the mean Ct-value to be lower for true positive (22.2 [95% CI 21.5 to 22.8]) compared to false negative (30.4 [95% CI 29.7 to 31.1]) results. Testing in the first week from symptom onset resulted in substantially higher sensitivity (81.9% [95% CI 77.7 to 85.5]) compared to testing after 1 week (51.8%, 95% CI 41.5 to 61.9). Similarly, sensitivity was higher in symptomatic (76.2% [95% CI 73.3 to 78.9]) compared to asymptomatic (56.8% [95% CI 50.9 to 62.4]) persons. However, both effects were mainly driven by the Ct-value of the sample. With regards to sample type, highest sensitivity was found for nasopharyngeal (NP) and combined NP/oropharyngeal samples (70.8% [95% CI 68.3 to 73.2]), as well as in anterior nasal/mid-turbinate samples (77.3% [95% CI 73.0 to 81.0]). Our analysis was limited by the included studies' heterogeneity in viral load assessment and sample origination. CONCLUSIONS Ag-RDTs detect most of the individuals infected with SARS-CoV-2, and almost all (>90%) when high viral loads are present. With viral load, as estimated by Ct-value, being the most influential factor on their sensitivity, they are especially useful to detect persons with high viral load who are most likely to transmit the virus. To further quantify the effects of other factors influencing test sensitivity, standardization of clinical accuracy studies and access to patient level Ct-values and duration of symptoms are needed.
Collapse
Affiliation(s)
- Lukas E. Brümmer
- Division of Infectious Disease and Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Sean McGrath
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Stephani Schmitz
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mary Gaeddert
- Division of Infectious Disease and Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Marc Bota
- Agaplesion Bethesda Hospital, Hamburg, Germany
| | - Maurizio Grilli
- Library, University Medical Center Mannheim, Mannheim, Germany
| | - Jan Larmann
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nira R. Pollock
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | | | | | | | | | | | - Claudia M. Denkinger
- Division of Infectious Disease and Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
14
|
Abstract
Microbiological diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a challenge. Although real-time reverse transcription PCR (RT-PCR) represents the gold standard method, strategies that allow rapid and simple diagnosis are necessary for the early identification of cases. In this study, we evaluated the diagnostic performance of six different commercial rapid antigen tests (Coronavirus antigen [Ag] rapid test cassette [Healgen Scientific, Houston, TX, USA], COVID-19 Ag FIA [Vircell, SD Biosensor Inc., Gyeonggi-do, Republic of Korea], Clinitest rapid COVID-19 antigen test [Siemens, Healthineers, Erlangen, Germany], SARS-CoV-2 rapid antigen test [SD Biosensor; Roche Diagnostics, Basel, Switzerland], Panbio COVID-19 Ag rapid test device [Abbott, Chicago, IL, USA], and SARS-CoV-2 test [MonLab, Barcelona, Spain]) in 130 nasopharyngeal swab samples tested previously by RT-PCR. The overall sensitivity of the rapid tests ranged from 65% to 79%, and the specificity was 100% for all of them. The sensitivity was higher for those samples with RT-PCR cycle threshold (CT) values below 25 and those from patients presenting within the first week of symptoms. The Siemens test showed the highest sensitivity for patients with high viral loads while the Vircell test performed better than the rest for CT values of ≥25. IMPORTANCE The rapid detection of people infected with SARS-CoV-2 is essential for a correct and effective control of the disease it causes. This process must be sensitive, fast, and simple, and it must be possible to carry out in any type of health center. Rapid antigen tests are the answer to this need. Knowing its ability to detect the virus in different stages of the disease is essential for a correct diagnosis, which is why this study has been carried out to evaluate the sensitivity and specificity of 6 different antigens tests in nasopharyngeal smear samples.
Collapse
|
15
|
Khalid MF, Selvam K, Jeffry AJN, Salmi MF, Najib MA, Norhayati MN, Aziah I. Performance of Rapid Antigen Tests for COVID-19 Diagnosis: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12:diagnostics12010110. [PMID: 35054277 PMCID: PMC8774565 DOI: 10.3390/diagnostics12010110] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
The identification of viral RNA using reverse transcription quantitative polymerase chain reaction (RT-qPCR) is the gold standard for identifying an infection caused by SARS-CoV-2. The limitations of RT-qPCR such as requirement of expensive instruments, trained staff and laboratory facilities led to development of rapid antigen tests (RATs). The performance of RATs has been widely evaluated and found to be varied in different settings. The present systematic review aims to evaluate the pooled sensitivity and specificity of the commercially available RATs. This review was registered on PROSPERO (registration number: CRD42021278105). Literature search was performed through PubMed, Embase and Cochrane COVID-19 Study Register to search studies published up to 26 August 2021. The overall pooled sensitivity and specificity of RATs and subgroup analyses were calculated. Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was used to assess the risk of bias in each study. The overall pooled sensitivity and specificity of RATs were 70% (95% CI: 69–71) and 98% (95% CI: 98–98), respectively. In subgroup analyses, nasal swabs showed the highest sensitivity of 83% (95% CI: 80–86) followed by nasopharyngeal swabs 71% (95% CI: 70–72), throat swabs 69% (95% CI: 63–75) and saliva 68% (95% CI: 59–77). Samples from symptomatic patients showed a higher sensitivity of 82% (95% CI: 82–82) as compared to asymptomatic patients at 68% (95% CI: 65–71), while a cycle threshold (Ct) value ≤25 showed a higher sensitivity of 96% (95% CI: 95–97) as compared to higher Ct value. Although the sensitivity of RATs needs to be enhanced, it may still be a viable option in places where laboratory facilities are lacking for diagnostic purposes in the early phase of disease.
Collapse
Affiliation(s)
- Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.F.K.); (K.S.); (M.A.N.)
| | - Kasturi Selvam
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.F.K.); (K.S.); (M.A.N.)
| | - Alfeq Jazree Nashru Jeffry
- Faculty of Resource Science and Technology (FRST), Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia; (A.J.N.J.); (M.F.S.)
| | - Mohamad Fazrul Salmi
- Faculty of Resource Science and Technology (FRST), Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia; (A.J.N.J.); (M.F.S.)
| | - Mohamad Ahmad Najib
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.F.K.); (K.S.); (M.A.N.)
| | - Mohd Noor Norhayati
- Department of Family Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.F.K.); (K.S.); (M.A.N.)
- Correspondence:
| |
Collapse
|
16
|
Leiner J, Pellissier V, Nitsche A, König S, Hohenstein S, Nachtigall I, Hindricks G, Kutschker C, Rolinski B, Gebauer J, Prantz A, Schubert J, Patzschke J, Bollmann A, Wolz M. SARS-CoV-2 rapid antigen testing in the healthcare sector: A clinical prediction model for identifying false negative results. Int J Infect Dis 2021; 112:117-123. [PMID: 34517045 PMCID: PMC8431843 DOI: 10.1016/j.ijid.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES SARS-CoV-2 rapid antigen tests (RAT) provide fast identification of infectious patients when RT-PCR results are not immediately available. We aimed to develop a prediction model for identification of false negative (FN) RAT results. METHODS In this multicenter trial, patients with documented paired results of RAT and RT-PCR between October 1st 2020 and January 31st 2021 were retrospectively analyzed regarding clinical findings. Variables included demographics, laboratory values and specific symptoms. Three different models were evaluated using Bayesian logistic regression. RESULTS The initial dataset contained 4,076 patients. Overall sensitivity and specificity of RAT was 62.3% and 97.6%. 2,997 cases with negative RAT results (FN: 120; true negative: 2,877; reference: RT-PCR) underwent further evaluation after removal of cases with missing data. The best-performing model for predicting FN RAT results containing 10 variables yielded an area under the curve of 0.971. Sensitivity, specificity, PPV and NPV for 0.09 as cut-off value (probability for FN RAT) were 0.85, 0.99, 0.7 and 0.99. CONCLUSION FN RAT results can be accurately identified through ten routinely available variables. Implementation of a prediction model in addition to RAT testing in clinical care can provide decision guidance for initiating appropriate hygiene measures and therefore helps avoiding nosocomial infections.
Collapse
Affiliation(s)
- Johannes Leiner
- Leipzig Heart Institute, Leipzig, Germany; Heart Center Leipzig at University of Leipzig, Department of Electrophysiology, Leipzig, Germany.
| | - Vincent Pellissier
- Leipzig Heart Institute, Leipzig, Germany; Heart Center Leipzig at University of Leipzig, Department of Electrophysiology, Leipzig, Germany
| | - Anne Nitsche
- Leipzig Heart Institute, Leipzig, Germany; Heart Center Leipzig at University of Leipzig, Department of Electrophysiology, Leipzig, Germany
| | - Sebastian König
- Leipzig Heart Institute, Leipzig, Germany; Heart Center Leipzig at University of Leipzig, Department of Electrophysiology, Leipzig, Germany
| | - Sven Hohenstein
- Leipzig Heart Institute, Leipzig, Germany; Heart Center Leipzig at University of Leipzig, Department of Electrophysiology, Leipzig, Germany
| | | | - Gerhard Hindricks
- Leipzig Heart Institute, Leipzig, Germany; Heart Center Leipzig at University of Leipzig, Department of Electrophysiology, Leipzig, Germany
| | | | | | | | - Anja Prantz
- Elblandkliniken, Department of laboratory medicine
| | | | | | - Andreas Bollmann
- Leipzig Heart Institute, Leipzig, Germany; Heart Center Leipzig at University of Leipzig, Department of Electrophysiology, Leipzig, Germany
| | - Martin Wolz
- Elblandklinikum Meissen, Department of Neurology and Geriatrics
| |
Collapse
|
17
|
Mikkili I, Karlapudi AP, Venkateswarulu TC, Kodali VP, Macamdas DSS, Sreerama K. Potential of artificial intelligence to accelerate diagnosis and drug discovery for COVID-19. PeerJ 2021; 9:e12073. [PMID: 34707924 PMCID: PMC8500072 DOI: 10.7717/peerj.12073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic has caused havoc worldwide. The tests currently used to diagnose COVID-19 are based on real time reverse transcription polymerase chain reaction (RT-PCR), computed tomography medical imaging techniques and immunoassays. It takes 2 days to obtain results from the RT-PCR test and also shortage of test kits creating a requirement for alternate and rapid methods to accurately diagnose COVID-19. Application of artificial intelligence technologies such as the Internet of Things, machine learning tools and big data analysis to COVID-19 diagnosis could yield rapid and accurate results. The neural networks and machine learning tools can also be used to develop potential drug molecules. Pharmaceutical companies face challenges linked to the costs of drug molecules, research and development efforts, reduced efficiency of drugs, safety concerns and the conduct of clinical trials. In this review, relevant features of artificial intelligence and their potential applications in COVID-19 diagnosis and drug development are highlighted.
Collapse
Affiliation(s)
- Indira Mikkili
- Biotechnology, Vignan’s Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, India
| | - Abraham Peele Karlapudi
- Biotechnology, Vignan’s Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, India
| | - T. C. Venkateswarulu
- Biotechnology, Vignan’s Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, India
| | | | | | - Krupanidhi Sreerama
- Biotechnology, Vignan’s Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, India
| |
Collapse
|
18
|
Iqbal B, Khan M, Shah N, Dawood MM, Jehanzeb V, Shafi M. Comparison of SARS-CoV-2 antigen electrochemiluminescence immunoassay to RT-PCR assay for laboratory diagnosis of COVID-19 in Peshawar. Diagnosis (Berl) 2021; 9:364-368. [PMID: 34455727 DOI: 10.1515/dx-2021-0078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Antigen based rapid diagnostic tests possesses a potential to be utilized along with Gold standard methods to detect Covid-19 infection to cope with the demand of testing. The aim of this study was to determine diagnostic accuracy of electrochemiluminescence based automated antigen detection immunoassay comparing with molecular based test RT-PCR (Covid-19). METHODS It was a cross-sectional study conducted in RMI Peshawar, from 1st April 2021 till 30th April 2021. The study comprised 170 individuals who were suspected of having Covid-19. Nasopharyngeal samples taken from suspected individuals were analyzed by RT-PCR and automated antigen test (Elecsys SARS-CoV-2 Antigen) simultaneously. The correlation of SARS-CoV-2 antigen with PCR positive and negative cases was analyzed for specificity, sensitivity respectively. RESULTS The ECLIA based Elecsys antigen test (Roche) revealed overall sensitivity 72%, specificity 95% and accuracy of 94.9%. Sensitivity of antigen test progressively declined from 94.3% in Ct <25 to 70.8% in Ct 26-29 and then to 47.2% in Ct 30-35. CONCLUSIONS Based on the findings of our study we conclude that automated antigen testing (Elecsys SARS-CoV-2 Antigen) cannot replace molecular based testing like RT PCR. Elecsys SARS-CoV-2 Ag test should be used complementary to RT-PCR in testing algorithms. Frequent testing strategy should be adopted while using automated antigen testing to overcome its limitation in individuals with low viral loads.
Collapse
Affiliation(s)
- Bilal Iqbal
- Rehman Medical Institute Peshawar, Peshawar, Pakistan
| | - Maria Khan
- Rehman Medical Institute Peshawar, Peshawar, Pakistan
| | - Noman Shah
- Rehman Medical Institute Peshawar, Peshawar, Pakistan
| | | | | | - Mohsin Shafi
- Khyber Medical College Peshawar, Peshawar, Pakistan
| |
Collapse
|
19
|
SARS-CoV-2 rapid antigen detection tests. THE LANCET. INFECTIOUS DISEASES 2021; 21:1067-1068. [PMID: 33961799 PMCID: PMC8096320 DOI: 10.1016/s1473-3099(21)00249-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 01/21/2023]
|
20
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of COVID-19. Testing for SARS-CoV-2 infection is a critical element of the public health response to COVID-19. Point-of-care (POC) tests can drive patient management decisions for infectious diseases, including COVID-19. POC tests are available for the diagnosis of SARS-CoV-2 infections and include those that detect SARS-CoV-2 antigens as well as amplified RNA sequences. We provide a review of SARS-CoV-2 POC tests including their performance, settings for which they might be used, their impact and future directions. Further optimization and validation, new technologies as well as studies to determine clinical and epidemiological impact of SARS-CoV-2 POC tests are needed.
Collapse
|