1
|
Leon-Gomez P, Romero VI. Human papillomavirus, vaginal microbiota and metagenomics: the interplay between development and progression of cervical cancer. Front Microbiol 2025; 15:1515258. [PMID: 39911706 PMCID: PMC11794528 DOI: 10.3389/fmicb.2024.1515258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/26/2024] [Indexed: 02/07/2025] Open
Abstract
Persistent infection with oncogenic human papillomavirus (HPV) types, such as HPV 16 or 18, is a major factor in cervical cancer development. However, only a small percentage of infected women develop cancer, indicating that other factors are involved. Emerging evidence links vaginal microbiota with HPV persistence and cancer progression. Alterations in microbial composition, function, and metabolic pathways may contribute to this process. Despite the potential of metagenomics to explore these interactions, studies on the vaginal microbiota's role in cervical cancer are limited. This review systematically examines the relationship between cervical microbiota, HPV, and cervical cancer by analyzing studies from PubMed, EBSCO, and Scopus. We highlight how microbial diversity influences HPV persistence and cancer progression, noting that healthy women typically have lower microbiota diversity and higher Lactobacillus abundance compared to HPV-infected women, who exhibit increased Gardenella, Prevotella, Sneathia, Megasphaera, Streptococcus, and Fusobacterium spp., associated with dysbiosis. We discuss how microbial diversity is associated with HPV persistence and cancer progression, noting that studies suggest healthy women typically have lower microbiota diversity and higher Lactobacillus abundance, while HPV-infected women exhibit increased Gardnerella, Prevotella, Sneathia, Megasphaera, Streptococcus, and Fusobacterium spp., indicative of dysbiosis. Potential markers such as Gardnerella and Prevotella have been identified as potential microbiome biomarkers associated with HPV infection and cervical cancer progression. The review also discusses microbiome-related gene expression changes in cervical cancer patients. However, further research is needed to validate these findings and explore additional microbiome alterations in cancer progression.
Collapse
Affiliation(s)
- Paul Leon-Gomez
- College of Biological and Environmental Sciences, Universidad San Francisco de Quito, Quito, Ecuador
| | - Vanessa I. Romero
- College of Biological and Environmental Sciences, Universidad San Francisco de Quito, Quito, Ecuador
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
2
|
Xavier-Santos D, Bedani R, de Almeida Vieira I, Padilha M, Lima CMG, Silva JDR, Ferreira BM, Giraldo PC, Pagnossa JP, Sivieri K, Antunes AEC, Sant'Ana AS. Exploring the Potential Use of Probiotics, Prebiotics, Synbiotics, and Postbiotics as Adjuvants for Modulating the Vaginal Microbiome: a Bibliometric Review. Probiotics Antimicrob Proteins 2025:10.1007/s12602-024-10444-8. [PMID: 39821884 DOI: 10.1007/s12602-024-10444-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Women's health is related to several factors that include physical, mental, and reproductive health. Additionally, the vaginal microbiota modulation performs a fundamental role in the regulation of physiological homeostasis and dysbiosis, which provides us a potential overview of the use of different biotic agents and their implications for female health. The objective of this work was propitiated insights and conception about the influence of probiotics, prebiotics, synbiotics, and postbiotics as adjuvants for prevention/treatment on the main infections that can affect women's health. Therefore, seventy-one studies published in the Web of Science Core Collection database from 1999 to 2024 were evaluated and performed to a bibliometric analysis employing the VOSviewer software for scientific mapping and network analysis. Our results suggest that administration of biotic agents as adjuvants are relevant for the prevention and/or treatment of the main diseases that affect female health, since they contribute to a healthy vaginal microbiota through anti-inflammatory and antimicrobial activities. Most clinical studies have demonstrated the effectiveness of intervention using probiotics to the detriment of other biotic agents in women's health, being bacterial vaginosis, polycystic ovary syndrome, and vulvovaginal candidiasis, the main diseases evaluated. However, preclinical studies have emphasized that the inhibition of pathogens responsible for the process of vaginal dysbiosis may be due to the formation of biofilm and the synthesis of compounds that could prevent the adhesion of these microorganisms. Future perspectives point to the beneficial modulation of the vaginal microbiota by biotic agents as a promising adjuvant approach to improve women's health.
Collapse
Affiliation(s)
- Douglas Xavier-Santos
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
- Fraunhofer Institute for Process Engineering and Packaging (IVV), Freising, Germany
| | - Raquel Bedani
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | | - Marina Padilha
- Department of Social and Applied Nutrition, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Clara Mariana Gonçalves Lima
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Juliana Dara Rabêlo Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Beatriz Manfrinato Ferreira
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Paulo César Giraldo
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Jorge Pamplona Pagnossa
- Department of Biological Sciences, Pontifical Catholic University, Poços de Caldas, MG, Brazil
| | - Katia Sivieri
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, Brazil
| | | | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
3
|
Fakharian F, Sadeghi A, Pouresmaeili F, Soleimani N, Yadegar A. Anti-inflammatory effects of extracellular vesicles and cell-free supernatant derived from Lactobacillus crispatus strain RIGLD-1 on Helicobacter pylori-induced inflammatory response in gastric epithelial cells in vitro. Folia Microbiol (Praha) 2024; 69:927-939. [PMID: 38308067 DOI: 10.1007/s12223-024-01138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
Helicobacter pylori infection is the major risk factor associated with the development of gastric cancer. Currently, administration of standard antibiotic therapy combined with probiotics and postbiotics has gained significant attention in the management of H. pylori infection. In this work, the immunomodulatory effects of Lactobacillus crispatus-derived extracellular vesicles (EVs) and cell-free supernatant (CFS) were investigated on H. pylori-induced inflammatory response in human gastric adenocarcinoma (AGS) cells. L. crispatus-derived EVs were isolated by ultracentrifugation and physically characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Furthermore, the protein content of L. crispatus-derived EVs was also evaluated by SDS-PAGE. Cell viability of AGS cells exposed to varying concentrations of EVs and CFS was assessed by MTT assay. The mRNA expression of IL-1β, IL-6, IL-8, TNF-α, IL-10, and TGF-ß genes was determined by RT-qPCR. ELISA was used for the measurement of IL-8 production in AGS cells. In addition, EVs (50 μg/mL) and CFS modulated the H. pylori-induced inflammation by downregulating the mRNA expression of IL-1β, IL-6, IL-8, and TNF-α, and upregulating the expression of IL-10, and TGF-ß genes in AGS cells. Furthermore, H. pylori-induced IL-8 production was dramatically decreased after treatment with L. crispatus-derived EVs and CFS. In conclusion, our observation suggests for the first time that EVs released by L. crispatus strain RIGLD-1 and its CFS could be recommended as potential therapeutic agents against H. pylori-triggered inflammation.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pouresmaeili
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Kandasamy S, Yoo J, Yun J, Lee KH, Kang HB, Kim JE, Oh MH, Ham JS. Probiogenomic In-Silico Analysis and Safety Assessment of Lactiplantibacillus plantarum DJF10 Strain Isolated from Korean Raw Milk. Int J Mol Sci 2022; 23:ijms232214494. [PMID: 36430971 PMCID: PMC9699202 DOI: 10.3390/ijms232214494] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The whole genome sequence of Lactiplantibacillus plantarum DJF10, isolated from Korean raw milk, is reported, along with its genomic analysis of probiotics and safety features. The genome consists of 29 contigs with a total length of 3,385,113 bp and a GC content of 44.3%. The average nucleotide identity and whole genome phylogenetic analysis showed the strain belongs to Lactiplantibacillus plantarum with 99% identity. Genome annotation using Prokka predicted a total of 3235 genes, including 3168 protein-coding sequences (CDS), 59 tRNAs, 7 rRNAs and 1 tmRNA. The functional annotation results by EggNOG and KEGG showed a high number of genes associated with genetic information and processing, transport and metabolism, suggesting the strain's ability to adapt to several environments. Various genes conferring probiotic characteristics, including genes related to stress adaptation to the gastrointestinal tract, biosynthesis of vitamins, cell adhesion and production of bacteriocins, were identified. The CAZyme analysis detected 98 genes distributed under five CAZymes classes. In addition, several genes encoding carbohydrate transport and metabolism were identified. The genome also revealed the presence of insertion sequences, genomic islands, phage regions, CRISPR-cas regions, and the absence of virulence and toxin genes. However, the presence of hemolysin and antibiotic-resistance-related genes detected in the KEGG search needs further experimental validation to confirm the safety of the strain. The presence of two bacteriocin clusters, sactipeptide and plantaricin J, as detected by the BAGEL 4 webserver, confer the higher antimicrobial potential of DJF10. Altogether, the analyses in this study performed highlight this strain's functional characteristics. However, further in vitro and in vivo studies are required on the safety assurance and potential application of L. plantarum DJF10 as a probiotic agent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jun-Sang Ham
- Correspondence: ; Tel.: +82-63-238-7366; Fax: +82-63-238-7397
| |
Collapse
|
5
|
De Jesus LCL, Aburjaile FF, Sousa TDJ, Felice AG, Soares SDC, Alcantara LCJ, Azevedo VADC. Genomic Characterization of Lactobacillus delbrueckii Strains with Probiotics Properties. FRONTIERS IN BIOINFORMATICS 2022; 2:912795. [PMID: 36304288 PMCID: PMC9580953 DOI: 10.3389/fbinf.2022.912795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 01/22/2023] Open
Abstract
Probiotics are health-beneficial microorganisms with mainly immunomodulatory and anti-inflammatory properties. Lactobacillus delbrueckii species is a common bacteria used in the dairy industry, and their benefits to hosting health have been reported. This study analyzed the core genome of nine strains of L. delbrueckii species with documented probiotic properties, focusing on genes related to their host health benefits. For this, a combined methodology including several software and databases (BPGA, SPAAN, BAGEL4, BioCyc, KEEG, and InterSPPI) was used to predict the most important characteristics related to L. delbrueckii strains probiose. Comparative genomics analyses revealed that L. delbrueckii probiotic strains shared essential genes related to acid and bile stress response and antimicrobial activity. Other standard features shared by these strains are surface layer proteins and extracellular proteins-encoding genes, with high adhesion profiles that interacted with human proteins of the inflammatory signaling pathways (TLR2/4-MAPK, TLR2/4-NF-κB, and NOD-like receptors). Among these, the PrtB serine protease appears to be a strong candidate responsible for the anti-inflammatory properties reported for these strains. Furthermore, genes with high proteolytic and metabolic activity able to produce beneficial metabolites, such as acetate, bioactive peptides, and B-complex vitamins were also identified. These findings suggest that these proteins can be essential in biological mechanisms related to probiotics’ beneficial effects of these strains in the host.
Collapse
Affiliation(s)
- Luís Cláudio Lima De Jesus
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flávia Figueira Aburjaile
- Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thiago De Jesus Sousa
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andrei Giacchetto Felice
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Siomar De Castro Soares
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Luiz Carlos Junior Alcantara
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Flavivirus Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Luiz Carlos Junior Alcantara, ; Vasco Ariston De Carvalho Azevedo,
| | - Vasco Ariston De Carvalho Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Luiz Carlos Junior Alcantara, ; Vasco Ariston De Carvalho Azevedo,
| |
Collapse
|
6
|
Sanozky-Dawes R, Barrangou R. Lactobacillus, glycans and drivers of health in the vaginal microbiome. MICROBIOME RESEARCH REPORTS 2022; 1:18. [PMID: 38046360 PMCID: PMC10688826 DOI: 10.20517/mrr.2022.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 12/05/2023]
Abstract
A microbiome consists of microbes and their genomes, encompassing bacteria, viruses, fungi, protozoa, archaea, and eukaryotes. These elements interact dynamically in the specific environment in which they reside and evolve. In the past decade, studies of various microbiomes have been prevalent in the scientific literature, accounting for the shift from culture-dependent to culture-independent identification of microbes using new high-throughput sequencing technologies that decipher their composition and sometimes provide insights into their functions. Despite tremendous advances in understanding the gut microbiome, relatively little attention has been devoted to the vaginal environment, notably regarding the ubiquity and diversity of glycans which denote the significant role they play in the maintenance of homeostasis. Hopefully, emerging technologies will aid in the determination of what is a healthy vaginal microbiome, and provide insights into the roles of Lactobacillus, glycans and microbiome-related drivers of health and disease.
Collapse
Affiliation(s)
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
7
|
Safety Evaluation of Lactobacillus delbrueckii subsp. lactis CIDCA 133: a Health-Promoting Bacteria. Probiotics Antimicrob Proteins 2021; 14:816-829. [PMID: 34403080 DOI: 10.1007/s12602-021-09826-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
Lactobacillus delbrueckii subsp. lactis CIDCA is a new potential probiotic strain whose molecular basis attributed to the host's benefit has been reported. This study investigated the safety aspects of Lactobacillus delbrueckii subsp. lactis CIDCA 133 based on whole-genome sequence and phenotypic analysis to avoid future questions about the harmful effects of this strain consumption. Genomic analysis showed that L. delbrueckii subsp. lactis CIDCA 133 harbors virulence, harmful metabolites, and antimicrobial resistance-associated genes. However, none of these genetic elements is flanked or located within prophage regions and plasmid sequence. At a phenotypic level, it was observed L. delbrueckii subsp. lactis CIDCA 133 antimicrobial resistance to aminoglycosides streptomycin and gentamicin antibiotics, but no hemolytic and mucin degradation activity was exhibited by strain. Furthermore, no adverse effects were observed regarding mice clinical and histopathological analysis after the strain consumption (5 × 107 CFU/mL). Overall, these findings reveal the safety of Lactobacillus delbrueckii subsp. lactis CIDCA 133 for consumption and future probiotic applications.
Collapse
|