1
|
Lupo V, Roomans C, Royen E, Ongena L, Jacquemin O, Mullender C, Kerff F, Baurain D. Identification and characterization of archaeal pseudomurein biosynthesis genes through pangenomics. mSystems 2025; 10:e0140124. [PMID: 39936904 PMCID: PMC11915815 DOI: 10.1128/msystems.01401-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
The peptidoglycan (PG, or murein) is a mesh-like structure, which is made of glycan polymers connected by short peptides and surrounds the cell membrane of nearly all bacterial species. In contrast, there is no PG counterpart that would be universally found in Archaea but rather various polymers that are specific to some lineages. Methanopyrales and Methanobacteriales are two orders of Euryarchaeota that harbor pseudomurein (PM), a structural analog of the bacterial PG. Owing to the differences between PG and PM biosynthesis, some have argued that the origin of both polymers is not connected. However, recent studies have revealed that the genomes of PM-containing Archaea encode homologs of the bacterial genes involved in PG biosynthesis, even though neither their specific functions nor the relationships within the corresponding inter-domain phylogenies have been investigated so far. In this work, we devised a pangenomic bioinformatic pipeline to identify proteins for PM biosynthesis in Archaea without prior genetic knowledge. The taxonomic distribution and evolutionary relationships of the candidate proteins were studied in detail in Archaea and Bacteria through HMM sequence mining and phylogenetic inference of the Mur domain-containing family, the ATP-grasp superfamily, and the MraY-like family. Our results show that archaeal muramyl ligases are of bacterial origin but diversified through a mixture of horizontal gene transfers and gene duplications. However, in the ATP-grasp and MraY-like families, the archaeal members were not found to originate from Bacteria. Our pangenomic approach further identified five new genes potentially involved in PM synthesis and that would deserve functional characterization.IMPORTANCEMethanobrevibacter smithii is an archaea commonly found in the human gut, but its presence alongside pathogenic bacteria during infections has led some researchers to consider it as an opportunistic pathogen. Fortunately, endoisopeptidases isolated from phages, such as PeiW and PeiP, can cleave the cell walls of M. smithii and other pseudomurein-containing archaea. However, additional research is required to identify effective anti-archaeal agents to combat these opportunistic microorganisms. A better understanding of the pseudomurein cell wall and its biosynthesis is necessary to achieve this goal. Our study sheds light on the origin of cell wall structures in those microorganisms, showing that the archaeal muramyl ligases responsible for its formation have bacterial origins. This discovery challenges the conventional view of the cell-wall architecture in the last archaeal common ancestor and shows that the distinction between "common origin" and "convergent evolution" can be blurred in some cases.
Collapse
Affiliation(s)
- Valérian Lupo
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
- InBioS, Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Célyne Roomans
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Edmée Royen
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Loïc Ongena
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Olivier Jacquemin
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Coralie Mullender
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Frédéric Kerff
- InBioS, Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Gaudêncio SP, Bayram E, Lukić Bilela L, Cueto M, Díaz-Marrero AR, Haznedaroglu BZ, Jimenez C, Mandalakis M, Pereira F, Reyes F, Tasdemir D. Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Mar Drugs 2023; 21:md21050308. [PMID: 37233502 DOI: 10.3390/md21050308] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Natural Products (NP) are essential for the discovery of novel drugs and products for numerous biotechnological applications. The NP discovery process is expensive and time-consuming, having as major hurdles dereplication (early identification of known compounds) and structure elucidation, particularly the determination of the absolute configuration of metabolites with stereogenic centers. This review comprehensively focuses on recent technological and instrumental advances, highlighting the development of methods that alleviate these obstacles, paving the way for accelerating NP discovery towards biotechnological applications. Herein, we emphasize the most innovative high-throughput tools and methods for advancing bioactivity screening, NP chemical analysis, dereplication, metabolite profiling, metabolomics, genome sequencing and/or genomics approaches, databases, bioinformatics, chemoinformatics, and three-dimensional NP structure elucidation.
Collapse
Affiliation(s)
- Susana P Gaudêncio
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Engin Bayram
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
| | - Ana R Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
- Instituto Universitario de Bio-Orgánica (IUBO), Universidad de La Laguna, 38206 La Laguna, Spain
| | - Berat Z Haznedaroglu
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Carlos Jimenez
- CICA- Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, HCMR Thalassocosmos, 71500 Gournes, Crete, Greece
| | - Florbela Pereira
- LAQV, REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Fernando Reyes
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Spain
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Science, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
3
|
Cornet L, Baurain D. Contamination detection in genomic data: more is not enough. Genome Biol 2022; 23:60. [PMID: 35189924 PMCID: PMC8862208 DOI: 10.1186/s13059-022-02619-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
The decreasing cost of sequencing and concomitant augmentation of publicly available genomes have created an acute need for automated software to assess genomic contamination. During the last 6 years, 18 programs have been published, each with its own strengths and weaknesses. Deciding which tools to use becomes more and more difficult without an understanding of the underlying algorithms. We review these programs, benchmarking six of them, and present their main operating principles. This article is intended to guide researchers in the selection of appropriate tools for specific applications. Finally, we present future challenges in the developing field of contamination detection.
Collapse
Affiliation(s)
- Luc Cornet
- BCCM/IHEM, Mycology and Aerobiology, Sciensano, Bruxelles, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium.
| |
Collapse
|
4
|
Was the Last Bacterial Common Ancestor a Monoderm after All? Genes (Basel) 2022; 13:genes13020376. [PMID: 35205421 PMCID: PMC8871954 DOI: 10.3390/genes13020376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
The very nature of the last bacterial common ancestor (LBCA), in particular the characteristics of its cell wall, is a critical issue to understand the evolution of life on earth. Although knowledge of the relationships between bacterial phyla has made progress with the advent of phylogenomics, many questions remain, including on the appearance or disappearance of the outer membrane of diderm bacteria (also called Gram-negative bacteria). The phylogenetic transition between monoderm (Gram-positive bacteria) and diderm bacteria, and the associated peptidoglycan expansion or reduction, requires clarification. Herein, using a phylogenomic tree of cultivated and characterized bacteria as an evolutionary framework and a literature review of their cell-wall characteristics, we used Bayesian ancestral state reconstruction to infer the cell-wall architecture of the LBCA. With the same phylogenomic tree, we further revisited the evolution of the division and cell-wall synthesis (dcw) gene cluster using homology- and model-based methods. Finally, extensive similarity searches were carried out to determine the phylogenetic distribution of the genes involved with the biosynthesis of the outer membrane in diderm bacteria. Quite unexpectedly, our analyses suggest that all cultivated and characterized bacteria might have evolved from a common ancestor with a monoderm cell-wall architecture. If true, this would indicate that the appearance of the outer membrane was not a unique event and that selective forces have led to the repeated adoption of such an architecture. Due to the lack of phenotypic information, our methodology cannot be applied to all extant bacteria. Consequently, our conclusion might change once enough information is made available to allow the use of an even more diverse organism selection.
Collapse
|