1
|
Vicente J, Rutkowski E, Lavrov DV, Martineau G, Timmers M, Toonen RJ. Integrative taxonomy of introduced Haplosclerida and four new species from Hawai'i. Zootaxa 2025; 5566:243-272. [PMID: 40173577 DOI: 10.11646/zootaxa.5566.2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Indexed: 04/04/2025]
Abstract
Haplosclerid sponges (Porifera: Demospongiae: Heteroscleromorpha), and particularly the family Chalinidae, are notoriously difficult to identify through taxonomic methods alone. Here we use an integrative approach to confirm the identification and report both polymorphic characters and different morphotypes exhibited from a recruitment stage that complicate identification of introduced haplosclerid species Haliclona (Soestella) caerulea and Gelliodes conulosa sp. nov. in Hawai'i. Using these same methods, we also describe three new species Haliclona (Gellius) pahua sp. nov., Haliclona (Reniera) kahoe sp. nov., Haliclona (Rhizoniera) loe sp. nov. from our collections in Kāne'ohe Bay. Using a combination of mitochondrial and ribosomal RNA sequences, we compile a phylogeny that is consistent with previous molecular work but is at odds with the morphological characters used to classify species belonging to Chalinidae and Niphatidae families within Haplosclerida. Although shared morphological traits were distributed across taxa throughout the tree, both mitochondrial and ribosomal RNA sequences were diagnostic, with an average of at least 3 % sequence divergence among species and their closest relative. This study highlights both the use of standardized Autonomous Reef Monitoring Structures (ARMS) to access the hidden diversity of haplosclerid sponges, and the potential for competition between these introduced and newly described and potentially endemic species.
Collapse
Affiliation(s)
- Jan Vicente
- Hawai'i Institute of Marine Biology; School of Ocean and Earth Science and Technology; University of Hawai'i at Mānoa; Kāne'ohe; HI; 96744; USA.
| | - Emily Rutkowski
- Hawai'i Institute of Marine Biology; School of Ocean and Earth Science and Technology; University of Hawai'i at Mānoa; Kāne'ohe; HI; 96744; USA.
| | - Dennis V Lavrov
- Department of Ecology; Evolution; and Organismal Biology; Iowa State University; 343A Bessey; IA; 50011-1020; USA.
| | - Gabrielle Martineau
- Hawai'i Institute of Marine Biology; School of Ocean and Earth Science and Technology; University of Hawai'i at Mānoa; Kāne'ohe; HI; 96744; USA.
| | - Molly Timmers
- Pristine Seas; National Geographic Society; Washington; DC 20036; USA.
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology; School of Ocean and Earth Science and Technology; University of Hawai'i at Mānoa; Kāne'ohe; HI; 96744; USA.
| |
Collapse
|
2
|
Kawasaki S, Kaneko T, Asano T, Maoka T, Takaichi S, Shomura Y. An ependymin-related blue carotenoprotein decorates marine blue sponge. J Biol Chem 2023; 299:105110. [PMID: 37517696 PMCID: PMC10470211 DOI: 10.1016/j.jbc.2023.105110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
Marine animals display diverse vibrant colors, but the mechanisms underlying their specific coloration remain to be clarified. Blue coloration is known to be achieved through a bathochromic shift of the orange carotenoid astaxanthin (AXT) by the crustacean protein crustacyanin, but other examples have not yet been well investigated. Here, we identified an ependymin (EPD)-related water-soluble blue carotenoprotein responsible for the specific coloration of the marine blue sponge Haliclona sp. EPD was originally identified in the fish brain as a protein involved in memory consolidation and neuronal regeneration. The purified blue protein, designated as EPD-related blue carotenoprotein-1, was identified as a secreted glycoprotein. We show that it consists of a heterodimer that binds orange AXT and mytiloxanthin and exhibits a bathochromic shift. Our crystal structure analysis of the natively purified EPD-related blue carotenoprotein-1 revealed that these two carotenoids are specifically bound to the heterodimer interface, where the polyene chains are aligned in parallel to each other like in β-crustacyanin, although the two proteins are evolutionary and structurally unrelated. Furthermore, using reconstitution assays, we found that incomplete bathochromic shifts occurred when the protein bound to only AXT or mytiloxanthin. Taken together, we identified an EPD in a basal metazoan as a blue protein that decorates the sponge body by binding specific structurally unrelated carotenoids.
Collapse
Affiliation(s)
- Shinji Kawasaki
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan.
| | - Takayuki Kaneko
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Tomomi Asano
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Takashi Maoka
- Research Institute for Production Development, Kyoto, Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Yasuhito Shomura
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, Japan.
| |
Collapse
|
3
|
Vicente J, Ríos JA, Zea S, Toonen RJ. Molecular and morphological congruence of three new cryptic Neopetrosia spp. in the Caribbean. PeerJ 2019; 7:e6371. [PMID: 30746308 PMCID: PMC6368163 DOI: 10.7717/peerj.6371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/28/2018] [Indexed: 11/20/2022] Open
Abstract
Neopetrosia proxima (Porifera: Demospongiae: Haplosclerida) is described as a morphologically variable sponge common on shallow reefs of the Caribbean. However, the range of morphological and reproductive variation within putative N. proxima led us to hypothesize that such variability may be indicative of cryptic species rather than plasticity. Using DNA sequences and morphological characters we confirmed the presence of three previously undescribed species of Neopetrosia. Morphological differences of each new congener were best resolved by partial gene sequences of the mitochondrial cytochrome oxidase subunit 1 over nuclear ones (18S rRNA and 28S rRNA). Several new characters for Neopetrosia were revealed by each new species. For example, N. dendrocrevacea sp. nov. and N. cristata sp. nov. showed the presence of grooves on the surface of the sponge body that converge at the oscula, and a more disorganized skeleton than previously defined for the genus. N. sigmafera sp. nov. adds the (1) presence of sigma microscleres, (2) significantly wider/longer oxeas (>200 μm), and (3) the presence of parenchymella larvae. Sampling of conspecifics throughout several locations in the Caribbean revealed larger spicules in habitats closer to the continental shelf than those in remote island locations. Our study highlights the importance of integrating molecular and morphological systematics for the discrimination of new Neopetrosia spp. despite belonging to one of several polyphyletic groups (families, genera) within the current definition of the order Haplosclerida.
Collapse
Affiliation(s)
- Jan Vicente
- University of Hawai‘i at Mānoa, Hawai‘i Institute of Marine Biology, Kāne‘ohe, HI, USA
| | - Jaime Andrés Ríos
- Universidad Nacional de Colombia—Sede Bogotá—Departamento de Biología, Ciudad Universitaria, Bogotá, Colombia
| | - Sven Zea
- Universidad Nacional de Colombia—Sede Caribe—Instituto de Estudios en Ciencias del Mar–CECIMAR, c/o INVEMAR, Rodadero Sur, Playa Salguero, Santa Marta, Colombia
| | - Robert J. Toonen
- University of Hawai‘i at Mānoa, Hawai‘i Institute of Marine Biology, Kāne‘ohe, HI, USA
| |
Collapse
|
4
|
Bell JJ, Bennett HM, Rovellini A, Webster NS. Sponges to Be Winners under Near-Future Climate Scenarios. Bioscience 2018. [DOI: 10.1093/biosci/biy142] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- James J Bell
- School of Biological Sciences at Victoria University of Wellington, in Wellington, New Zealand
| | - Holly M Bennett
- Australian Institute of Marine Science, in Townsville, Queensland
- Cawthron Institute in Nelson
| | - Alberto Rovellini
- School of Biological Sciences at Victoria University of Wellington, in Wellington, New Zealand
| | - Nicole S Webster
- Australian Institute of Marine Science, in Townsville, Queensland
- Australian Centre for Ecogenomics, at The University of Queensland, in Brisbane
| |
Collapse
|
5
|
Shaffer MR, Davy SK, Bell JJ. Hidden diversity in the genus Tethya: comparing molecular and morphological techniques for species identification. Heredity (Edinb) 2018; 122:354-369. [PMID: 30131516 DOI: 10.1038/s41437-018-0134-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/25/2018] [Accepted: 07/29/2018] [Indexed: 11/09/2022] Open
Abstract
Correctly determining species' identity is critical for estimating biodiversity and effectively managing marine populations, but is difficult for species that have few morphological traits or are highly plastic. Sponges are considered a taxonomically difficult group because they lack multiple consistent diagnostic features, which coupled with their common phenotypic plasticity, makes the presence of species complexes likely, but difficult to detect. Here, we investigated the evolutionary relationship of Tethya spp. in central New Zealand using both molecular and morphological techniques to highlight the potential for cryptic speciation in sponges. Phylogenetic reconstructions based on two mitochondrial markers (rnl, COI-ext) and one nuclear marker (18S) revealed three genetic clades, with one clade representing Tethya bergquistae and two clades belonging to what was a priori thought to be a single species, Tethya burtoni. Eleven microsatellite markers were also used to further resolve the T. burtoni group, revealing a division consistent with the 18S and rnl data. Morphological analysis based on spicule characteristics allowed T. bergquistae to be distinguished from T. burtoni, but revealed no apparent differences between the T. burtoni clades. Here, we highlight hidden genetic diversity within T. burtoni, likely representing a group consisting of incipient species that have undergone speciation but have yet to express clear morphological differences. Our study supports the notion that cryptic speciation in sponges may go undetected and diversity underestimated when using only morphology-based taxonomy, which has broad scale implications for conservation and management of marine systems.
Collapse
Affiliation(s)
- Megan R Shaffer
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand.
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| |
Collapse
|
6
|
Renard E, Leys SP, Wörheide G, Borchiellini C. Understanding Animal Evolution: The Added Value of Sponge Transcriptomics and Genomics: The disconnect between gene content and body plan evolution. Bioessays 2018; 40:e1700237. [PMID: 30070368 DOI: 10.1002/bies.201700237] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/22/2018] [Indexed: 02/06/2023]
Abstract
Sponges are important but often-neglected organisms. The absence of classical animal traits (nerves, digestive tract, and muscles) makes sponges challenging for non-specialists to work with and has delayed getting high quality genomic data compared to other invertebrates. Yet analyses of sponge genomes and transcriptomes currently available have radically changed our understanding of animal evolution. Sponges are of prime evolutionary importance as one of the best candidates to form the sister group of all other animals, and genomic data are essential to understand the mechanisms that control animal evolution and diversity. Here we review the most significant outcomes of current genomic and transcriptomic analyses of sponges, and discuss limitations and future directions of sponge transcriptomic and genomic studies.
Collapse
Affiliation(s)
- Emmanuelle Renard
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France.,Aix Marseille Univ., CNRS, UMR 7288, IBDM, Marseille, France
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany.,GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Bavarian State Collection for Paleontology and Geology, Munich, Germany
| | - Carole Borchiellini
- Aix Marseille Univ., Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France
| |
Collapse
|
7
|
Darling JA, Carlton JT. A Framework for Understanding Marine Cosmopolitanism in the Anthropocene. FRONTIERS IN MARINE SCIENCE 2018; 5:293. [PMID: 31019910 PMCID: PMC6475922 DOI: 10.3389/fmars.2018.00293] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent years have witnessed growing appreciation for the ways in which human-mediated species introductions have reshaped marine biogeography. Despite this we have yet to grapple fully with the scale and impact of anthropogenic dispersal in both creating and determining contemporary distributions of marine taxa. In particular, the past several decades of research on marine biological invasions have revealed that broad geographic distributions of coastal marine organisms-historically referred to simply as "cosmopolitanism"-may belie complex interplay of both natural and anthropogenic processes. Here we describe a framework for understanding contemporary cosmopolitanism, informed by a synthesis of the marine bioinvasion literature. Our framework defines several novel categories in an attempt to provide a unified terminology for discussing cosmopolitan distributions in the world's oceans. We reserve the term eucosmopolitan to refer to those species for which data exist to support a true, natural, and prehistorically global (or extremely broad) distribution. While in the past this has been the default assumption for species observed to exhibit contemporary cosmopolitan distributions, we argue that given recent advances in marine invasion science this assignment should require positive evidence. In contrast, neocosmopolitan describes those species that have demonstrably achieved extensive geographic ranges only through historical anthropogenic dispersal, often facilitated over centuries of human maritime traffic. We discuss the history and human geography underpinning these neocosmopolitan distributions, and illustrate the extent to which these factors may have altered natural biogeographic patterns. We define the category pseudocosmopolitan to encompass taxa for which a broad distribution is determined (typically after molecular investigation) to reflect multiple, sometimes regionally endemic, lineages with uncertain taxonomic status; such species may remain cosmopolitan only so long as taxonomic uncertainty persists, after which they may splinter into multiple geographically restricted species. We discuss the methods employed to identify such species and to resolve both their taxonomic status and their biogeographic histories. We argue that recognizing these different types of cosmopolitanism, and the important role that invasion science has played in understanding them, is critically important for the future study of both historical and modern marine biogeography, ecology, and biodiversity.
Collapse
Affiliation(s)
- John A. Darling
- United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, United States
| | - James T. Carlton
- Maritime Studies Program, Williams College-Mystic Seaport, Mystic, CT, United States
- Department of Biology, Williams College, Williamstown, MA, United States
| |
Collapse
|
8
|
Uriz MJ, Garate L, Agell G. Molecular phylogenies confirm the presence of two cryptic Hemimycale species in the Mediterranean and reveal the polyphyly of the genera Crella and Hemimycale (Demospongiae: Poecilosclerida). PeerJ 2017; 5:e2958. [PMID: 28286707 PMCID: PMC5344016 DOI: 10.7717/peerj.2958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/04/2017] [Indexed: 01/22/2023] Open
Abstract
Background Sponges are particularly prone to hiding cryptic species as their paradigmatic plasticity often favors species phenotypic convergence as a result of adaptation to similar habitat conditions. Hemimycale is a sponge genus (Family Hymedesmiidae, Order Poecilosclerida) with four formally described species, from which only Hemimycale columella has been recorded in the Atlanto-Mediterranean basin, on shallow to 80 m deep bottoms. Contrasting biological features between shallow and deep individuals of Hemimycale columella suggested larger genetic differences than those expected between sponge populations. To assess whether shallow and deep populations indeed belong to different species, we performed a phylogenetic study of Hemimycale columella across the Mediterranean. We also included other Hemimycale and Crella species from the Red Sea, with the additional aim of clarifying the relationships of the genus Hemimycale. Methods Hemimycale columella was sampled across the Mediterranean, and Adriatic Seas. Hemimycale arabica and Crella cyathophora were collected from the Red Sea and Pacific. From two to three specimens per species and locality were extracted, amplified for Cytochrome C Oxidase I (COI) (M1–M6 partition), 18S rRNA, and 28S (D3–D5 partition) and sequenced. Sequences were aligned using Clustal W v.1.81. Phylogenetic trees were constructed under neighbor joining (NJ), Bayesian inference (BI), and maximum likelihood (ML) criteria as implemented in Geneious software 9.01. Moreover, spicules of the target species were observed through a Scanning Electron microscope. Results The several phylogenetic reconstructions retrieved both Crella and Hemimycale polyphyletic. Strong differences in COI sequences indicated that C. cyathophora from the Red Sea might belong in a different genus, closer to Hemimycale arabica than to the Atlanto-Mediterranean Crella spp. Molecular and external morphological differences between Hemimycale arabica and the Atlanto-Mediterranean Hemimycale also suggest that Hemimycale arabica fit in a separate genus. On the other hand, the Atlanto-Mediterranean Crellidae appeared in 18S and 28S phylogenies as a sister group of the Atlanto-Mediterranean Hemimycale. Moreover, what was known up to now as Hemimycale columella, is formed by two cryptic species with contrasting bathymetric distributions. Some small but consistent morphological differences allow species distinction. Conclusions A new family (Hemimycalidae) including the genus Hemimycale and the two purported new genera receiving C. cyathophora and Hemimycale arabica might be proposed according to our phylogenetic results. However, the inclusion of additional Operational Taxonomic Unit (OTUs) appears convenient before taking definite taxonomical decisions. A new cryptic species (Hemimycale mediterranea sp. nov.) is described. Morphologically undifferentiated species with contrasting biological traits, as those here reported, confirm that unidentified cryptic species may confound ecological studies.
Collapse
Affiliation(s)
- Maria J Uriz
- Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB-CSIC) , Blanes, Girona , Spain
| | - Leire Garate
- Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB-CSIC) , Blanes, Girona , Spain
| | - Gemma Agell
- Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB-CSIC) , Blanes, Girona , Spain
| |
Collapse
|
9
|
Viard F, David P, Darling JA. Marine invasions enter the genomic era: three lessons from the past, and the way forward. Curr Zool 2016; 62:629-642. [PMID: 29491950 PMCID: PMC5804250 DOI: 10.1093/cz/zow053] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/15/2016] [Indexed: 01/22/2023] Open
Abstract
The expanding scale and increasing rate of marine biological invasions have been documented since the early 20th century. Besides their global ecological and economic impacts, non-indigenous species (NIS) also have attracted much attention as opportunities to explore important eco-evolutionary processes such as rapid adaptation, long-distance dispersal and range expansion, and secondary contacts between divergent evolutionary lineages. In this context, genetic tools have been extensively used in the past 20 years. Three important issues appear to have emerged from such studies. First, the study of NIS has revealed unexpected cryptic diversity in what had previously been assumed homogeneous entities. Second, there has been surprisingly little evidence of strong founder events accompanying marine introductions, a pattern possibly driven by large propagule loads. Third, the evolutionary processes leading to successful invasion have been difficult to ascertain due to faint genetic signals. Here we explore the potential of novel tools associated with high-throughput sequencing (HTS) to address these still pressing issues. Dramatic increase in the number of loci accessible via HTS has the potential to radically increase the power of analyses aimed at species delineation, exploring the population genomic consequences of range expansions, and examining evolutionary processes such as admixture, introgression, and adaptation. Nevertheless, the value of this new wealth of genomic data will ultimately depend on the ability to couple it with expanded "traditional" efforts, including exhaustive sampling of marine populations over large geographic scales, integrated taxonomic analyses, and population level exploration of quantitative trait differentiation through common-garden and other laboratory experiments.
Collapse
Affiliation(s)
- Frédérique Viard
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7144, Lab. Adaptation Et Diversité En Milieu Marin, Team Div&Co, Station Biologique De Roscoff, Roscoff 29682, France
| | - Patrice David
- CEFE UMR 5175, CNRS-Université De Montpellier-UM III-EPHE, 1919 Route De Mende, Montpellier Cedex 34293, France
| | - John A. Darling
- National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|