1
|
Bedair HM, Emara M, Ali SM, Samir TM, Khalil MAF. Phenotypic and genotypic screening of multidrug resistant Klebsiella pneumoniae isolated from ready to eat street food in Tanta, Egypt. BMC Microbiol 2025; 25:65. [PMID: 39910428 DOI: 10.1186/s12866-025-03769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Ready-To-Eat-Street-Foods (RTESF) have food safety concerns, since they are prepared with less-structured food safety guidelines in small and roadside outlets. Klebsiella pneumoniae has become a dangerous foodborne-pathogen worldwide due to its virulence and resistance profile. OBJECTIVE This study aimed at evaluating the potential burden of antibiotic-resistant Klebsiella pneumoniae contaminating RTESF and assessing the microbiological quality of RTESF in Egypt. METHODS A total of 242 RTESF (green salad) samples was collected, different media were used for isolation of different bacterial species. Klebsiella pneumoniae isolates were identified biochemically and by Gram and capsular staining then isolates were assessed for antimicrobial resistance phenotypically. The ability of biofilm formation was assessed using crystal violet and molecular characterization of ESBLs and virulence genes was done using PCR. RESULTS A total of 77/242(31.8%) of the recovered isolates was identified as Klebsiella pneumoniae and the resistance percentages were as follow: cefuroxime and cephradine (100%, 77/77), amoxicillin-clavulanic acid (98.7%, 76/77), while (27.3%, 21/77) of the isolates were MDR. Biofilm assay revealed that (31/77, 41/77 and 5/77) isolates were strong, moderate, and weak biofilm-producers, respectively. Among ESBLs-encoding-genes, blaSHV was the most prevalent (71.4%) while blaTEM and blaCTX-M-2were equally-present (55.8%).The most prevalent virulence genes were mrkD (92.2%) followed by K2 (63.3%). CONCLUSION The contaminated RTESF could be a reservoir for Klebsiella pneumoniae, therefore much care must be taken during preparation and consumption to avoid dissemination of MDR Klebsiella pneumoniae leading to subsequent treatment challenges. Our finding indicating that RTESF, if not prepared under hygienic conditions, could be a source of serious Klebsiella pneumoniae infection.
Collapse
Affiliation(s)
- Hadeer M Bedair
- Department of Microbiology and Immunology, College of Pharmaceutical sciences and drug manufacturing, Misr University for Science and technology, Cairo, 12566, Egypt
| | - Mohamed Emara
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University - Ain Helwan, Helwan, 11795, Egypt.
| | - Shima Mahmoud Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University - Ain Helwan, Helwan, 11795, Egypt
| | - Tamer M Samir
- Department of Microbiology and Immunology, College of Pharmaceutical sciences and drug manufacturing, Misr University for Science and technology, Cairo, 12566, Egypt
| | - Mahmoud A F Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
2
|
Chetri S. Escherichia coli: An arduous voyage from commensal to Antibiotic-resistance. Microb Pathog 2025; 198:107173. [PMID: 39608506 DOI: 10.1016/j.micpath.2024.107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
Escherichia coli (E. coli), a normal intestinal microbiota is one of the most common pathogen known for infecting urinary tract, wound, lungs, bone marrow, blood system and brain. Irrational and overuse of commercially available antibiotics is the most imperative reason behind the emergence of the life threatening infections caused due to antibiotic resistant pathogens. The World Health Organization (WHO) identified antimicrobial resistance (AMR) as one of the 10 biggest public health threats of our time. This harmless commensal can acquire a range of mobile genetic elements harbouring genes coding for virulence factors becoming highly versatile human pathogens causing severe intestinal and extra intestinal diseases. Although, E. coli has been the most widely studied micro-organism, it never ceases to astound us with its ability to open up new research avenues and reveal cutting-edge survival mechanisms in diverse environments that impact human and surrounding environment. This review aims to summarize and highlight persistent research gaps in the field, including: (i) the transfer of resistant genes among bacterial species in diverse environments, such as those associated with humans and animals; (ii) the development of resistance mechanisms against various classes of antibiotics, including quinolones, tetracyclines, etc., in addition to β-lactams; and (iii) the relationship between resistance and virulence factors for understanding how virulence factors and resistance interact to gain a better grasp of how resistance mechanisms impact an organism's capacity to spread illness and interact with the host's defences. Moreover, this review aims to offer a thorough overview, exploring the history and factors contributing to antimicrobial resistance (AMR), the different reported pathotypes, and their links to virulence in both humans and animals. It will also examine their prevalence in various contexts, including food, environmental, and clinical settings. The objective is to deliver a more informative and current analysis, highlighting the evolution from microbiota (historical context) to sophisticated diseases caused by highly successful pathogens. Developing more potent tactics to counteract antibiotic resistance in E. coli requires filling in these gaps. By bridging these gaps, we can strengthen our capacity to manage and prevent resistance, which will eventually enhance public health and patient outcomes.
Collapse
Affiliation(s)
- Shiela Chetri
- Department of Microbiology, Thassim Beevi Abdul Kader College for Women, Kilakarai, Tamilnadu, India.
| |
Collapse
|
3
|
Nkhebenyane SJ, Khasapane NG, Lekota KE, Thekisoe O, Ramatla T. Insight into the Prevalence of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Vegetables: A Systematic Review and Meta-Analysis. Foods 2024; 13:3961. [PMID: 39683033 DOI: 10.3390/foods13233961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
The occurrence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in vegetables is an escalating global problem. This study aimed to document the global prevalence of ESBL-producing Enterobacteriaceae in vegetables using a comprehensive meta-analysis. A web-based search of electronic databases such as ScienceDirect, Google Scholar, and PubMed was conducted using studies published between 2014 and 2024. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed for the systematic review and meta-analysis. The Comprehensive Meta-Analysis (CMA) Ver 4.0 software was used to analyse the data. The pooled prevalence estimate (PPE) with a 95% confidence interval (CI) was calculated using the random effects model. After reviewing 1802 articles, 63 studies were carefully analyzed and were part of the comprehensive meta-analysis. The overall PPE of ESBL-producing Enterobacteriaceae (ESBL-E) was 11.9% (95% CI: 0.091-0.155), with high heterogeneity (I2 = 96.8%, p < 0.001) from 2762 isolates. The blaSHV ESBL-encoding gene was the most prevalent, showing a PPE of 42.8% (95% CI: 0.269-0.603), while the PPE of blaampC-beta-lactamase-producing Enterobacteriaceae was 4.3% (95% CI: 0.025-0.71). Spain had a high ESBL-E PPE of 28.4% (0.284; 95% CI: 0.057-0.723, I2 = 98.2%), while China had the lowest PPE at 6.4% (0.064; 95% CI: 0.013-0.259, I2 = 95.6%). Continentally, the PPE of ESBL-E was significantly higher in reports from South America at 19.4% (95% CI: 0.043-0.560). This meta-analysis showed that ESBL-E in vegetables increased by 9.0%, 9.8%, and 15.9% in 2018-2019, 2020-2021, and 2022-2024, respectively. The findings emphasize the potential risks of consuming raw or inadequately cleaned produce and the importance of vegetables as ESBL-E reservoirs. Our work calls for immediate attention to food safety procedures and more thorough surveillance as antibiotic resistance rises to reduce antimicrobial resistance risks in food systems.
Collapse
Affiliation(s)
- Sebolelo Jane Nkhebenyane
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa
| | - Ntelekwane George Khasapane
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa
| | - Kgaugelo Edward Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Tsepo Ramatla
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
4
|
Mitsuwan W, Saengsawang P, Thaikoed S, Tanthanathipchai N, Saedan P, Chaisiri K, Boonmar S, Morita Y. Rattus spp. as Reservoirs of Multidrug Resistance- and Biofilm-Forming Escherichia coli in Urban Community from Southern Thailand. Foodborne Pathog Dis 2024. [PMID: 39630533 DOI: 10.1089/fpd.2024.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Rats are rodents commonly found in Thailand that carry various zoonotic pathogens. Bacterial zoonosis can occur in a shared environment between humans and rats, especially in human communities and agricultural areas. Escherichia coli, particularly pathogenic and multidrug-resistant strains, is a significant public health concern that is transmitted by rats. This study aimed to investigate the antibiotic resistance (ABR) and biofilm formation of E. coli in caught rodents from Nakhon Si Thammarat province, Thailand. Captured rats were dissected to collect intestinal content for E. coli isolation. Two hundred and two confirmed E. coli were subjected for pathotype identification, antibiotic susceptibility testing, biofilm-forming ability (BFA), and the presence of related genes. Two E. coli isolates from intestinal content samples were atypical enteropathogenic (aEPEC). Predominantly, 52.97% of E. coli had azithromycin resistance, which was harbored by 35.64% of captured rats. Multidrug resistance (MDR) was found in 12.38% of E. coli isolates with 17 different MDR patterns. Remarkably, 96% of MDR isolates were resistant to azithromycin. Most E. coli harbored ereA (52%), followed by the blaTEM and aacC2 genes (6.44% each). Approximately 87% of isolated E. coli revealed moderate-to-high BFA. Predominantly, moderate-to-strong biofilm-forming E. coli harbored pgaA and pgaC genes. aEPEC, azithromycin resistance, MDR, and moderate-to-strong formation were the aspects of concern. Furthermore, the study of antibiotic-resistant E. coli in rats should be performed, particularly in terms of the transmission pathway, and the application of rats as bioindicators for ABR surveillance in Thailand should be established.
Collapse
Affiliation(s)
- Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, Thailand
- Center of Excellence in Innovation of Essential Oil and Bioactive Compounds, Walailak University, Nakhon Si Thammarat, Thailand
| | - Phirabhat Saengsawang
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sunsaneeya Thaikoed
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
| | | | - Pattarathai Saedan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
| | - Kittipong Chaisiri
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sumalee Boonmar
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, Thailand
| | - Yukio Morita
- Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| |
Collapse
|
5
|
Khan R, Wali S, Khan S, Munir S, Pari B, Yousuf AM, Almutawif YA. Isolation and characterization of pathogenic Klebsiella pneumoniae strains from lettuce: a potential source of antibiotic resistance and development of a mathematical model for ANOVA results. Front Microbiol 2024; 15:1473055. [PMID: 39380681 PMCID: PMC11459608 DOI: 10.3389/fmicb.2024.1473055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction This study aimed to evaluate the prevalence of Klebsiella pneumoniae contamination in raw lettuce from Risalpur, Pakistan, and to analyze the antibiotic susceptibility profiles of the isolated strains. The presence of foodborne pathogens such as K. pneumoniae poses significant public health risks, particularly in regions with suboptimal hygiene practices and improper food handling. Methods Lettuce samples were collected from various sources in Risalpur and screened for K. pneumoniae. Antimicrobial susceptibility testing was performed to evaluate the effectiveness of various antibiotics against the isolated strains. Statistical analyses, including ANOVA and linear regression, were conducted to assess differences in inhibition zones and to predict antibiotic effectiveness based on concentration. Results The results revealed a significant prevalence of K. pneumoniae in the lettuce samples, highlighting the risks associated with poor hygiene, transportation, storage, and contaminated irrigation water. The isolated strains exhibited high susceptibility to gentamicin but demonstrated notable resistance to doxycycline, vancomycin, and ticarcillin. Multidrug-resistant (MDR) strains were identified. ANOVA showed significant differences in inhibition zones, and the linear regression model predicted a Zone of Inhibition based on antibiotic concentration (β0 = 10.6667, β1 = 0.4556). Discussion The identification of MDR strains of K. pneumoniae underscores the urgent need for enhanced antibiotic stewardship and food safety protocols to manage foodborne pathogens. Improved hygiene practices throughout the food production and supply chain are critical to mitigate health risks and address the challenge of growing antibiotic resistance.
Collapse
Affiliation(s)
- Ruby Khan
- Department of System Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Saima Wali
- Department of Microbiology, Women University Mardan, Mardan, Pakistan
| | - Sumbal Khan
- Khyber Girls Medical College, Peshawar, Pakistan
| | - Shaista Munir
- Department of Microbiology, Women University Mardan, Mardan, Pakistan
| | - Bakht Pari
- Government College of Nursing, Lady Reading Hospital, Peshawar, KP, Pakistan
| | - Amjad M. Yousuf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Yahya A. Almutawif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
6
|
Liu C, Sun S, Sun Y, Li X, Gu W, Luo Y, Wang N, Wang Q. Antibiotic resistance of Escherichia coli isolated from food and clinical environment in China from 2001 to 2020. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173498. [PMID: 38815827 DOI: 10.1016/j.scitotenv.2024.173498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Antibiotics are widely used in China's aquaculture, agricultural, and clinical settings and can lead to antibiotic resistance in various pathogens. Although the pooled prevalence estimate (PPE) and antibiotic resistance of Escherichia coli (E. coli) in food and clinical settings has been extensively studied, a comprehensive analysis of the published literature is lacking. We conducted a comprehensive search for research indicators for 2001-2020 in eight major Chinese and English literature databases. Antibiotic PPE and resistance trends of 5933 and 29,451 E. coli isolates were screened and analysed in 35 food studies (total 1821) and 62 clinical studies (total 5159). E. coli strains derived from food had the highest antibiotic resistance rate to tetracycline (TET, 71.3 %), followed by trimethoprim-sulfamethoxazole (SXT, 62.5 %) and cefazolin (CFZ, 36.2 %). E. coli strains isolated from clinical environments were highly resistant to piperacillin (PIP, 71.7 %), TET (68.3 %) and CFZ (60.9 %), consistent with foodborne E. coli drug resistance patterns. E. coli strains isolated from food and clinical samples collected in laboratories carry multiple antibiotic resistance genes (ARGs), such as blaTEM, gryA, gryB, sul1, and tetA, making E. coli a reservoir of ARGs. This study highlights the presence of drug-resistant E. coli pathogens and ARGs in food and clinical environments.
Collapse
Affiliation(s)
- Changzhen Liu
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Yan Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Xuli Li
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Weimin Gu
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Na Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China.
| |
Collapse
|
7
|
Shastry RP, Bajire SK, Banerjee S, Shastry KP, Hameed A. Association Between Biofilm Formation and Extended-Spectrum Beta-Lactamase Production in Klebsiella pneumoniae Isolated from Fresh Fruits and Vegetables. Curr Microbiol 2024; 81:206. [PMID: 38831051 DOI: 10.1007/s00284-024-03723-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
The presence of extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae in fresh fruits and vegetables is a growing public health concern. The primary objective of this study was to investigate the relationship between biofilm formation and extended-spectrum β-lactamase (ESBL) production in K. pneumoniae strains obtained from fresh fruits and vegetables. Out of 120 samples analysed, 94 samples (78%) were found to be positive for K. pneumoniae. Among the K. pneumoniae strains isolated, 74.5% were from vegetables, whereas the remaining (25.5%) were from fresh fruits. K. pneumoniae isolates were resistant to at least three different classes of antibiotics, with ceftazidime (90%) and cefotaxime (70%) showing the highest resistance rates. While the high occurrence of ESBL-producing and biofilm-forming K. pneumoniae strains were detected in vegetables (73.5% and 73.7%, respectively), considerable amounts of the same were also found in fresh fruits (26.5% and 26.3%, respectively). The results further showed a statistically significant (P < 0.001) association between biofilm formation and ESBL production in K. pneumoniae strains isolated from fresh fruits and vegetables. Furthermore, the majority (81%) of the ESBL-producing strains harbored the blaCTX-M gene, while a smaller proportion of strains carried the blaTEM gene (30%), blaSHV gene (11%) or blaOXA (8%). This study highlights the potential public health threat posed by K. pneumoniae in fresh fruits and vegetables and emphasizes the need for strict surveillance and control measures.
Collapse
Affiliation(s)
- Rajesh Padumane Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangaluru, 575018, India.
| | - Sukesh Kumar Bajire
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangaluru, 575018, India
| | - Shukla Banerjee
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangaluru, 575018, India
| | - Kavyashree Padumane Shastry
- Department of Microbiology, Yenepoya Institute of Arts, Science, Commerce and Management, Yenepoya (Deemed to Be University), Kulur, Mangaluru, 575013, India
| | - Asif Hameed
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangaluru, 575018, India
| |
Collapse
|
8
|
Saechue B, Atwill ER, Jeamsripong S. Occurrence and molecular characteristics of antimicrobial resistance, virulence factors, and extended-spectrum β-lactamase (ESBL) producing Salmonella enterica and Escherichia coli isolated from the retail produce commodities in Bangkok, Thailand. Heliyon 2024; 10:e26811. [PMID: 38444485 PMCID: PMC10912461 DOI: 10.1016/j.heliyon.2024.e26811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
The incidence of antimicrobial resistance (AMR) in the environment is often overlooked and leads to serious health threats under the One Health paradigm. Infection with extended-spectrum β-lactamase (ESBL) producing bacteria in humans and animals has been widely examined, with the mode of transmission routes such as food, water, and contact with a contaminated environment. The purpose of this study was to determine the occurrence and molecular characteristics of resistant Salmonella enterica (S. enterica) (n = 59) and Escherichia coli (E. coli) (n = 392) isolated from produce commodities collected from fresh markets and supermarkets in Bangkok, Thailand. In this study, the S. enterica isolates exhibited the highest prevalence of resistance to tetracycline (11.9%) and streptomycin (8.5%), while the E. coli isolates were predominantly resistant to tetracycline (22.5%), ampicillin (21.4%), and sulfamethoxazole (11.5%). Among isolates of S. enterica (6.8%) and E. coli (15.3%) were determined as multidrug resistant (MDR). The prevalence of ESBL-producing isolates was 5.1% and 1.0% in S. enterica and E. coli, respectively. A minority of S. enterica isolates, where a single isolate exclusively carried blaCTX-M-55 (n = 1), and another isolate harbored both blaCTX-M-55 and blaTEM-1 (n = 1); similarly, a minority of E. coli isolates contained blaCTX-M-55 (n = 2) and blaCTX-M-15 (n = 1). QnrS (11.9%) and blaTEM (20.2%) were the most common resistant genes found in S. enterica and E. coli, respectively. Nine isolates resistant to ciprofloxacin contained point mutations in gyrA and parC. In addition, the odds of resistance to tetracycline among isolates of S. enterica were positively associated with the co-occurrence of ampicillin resistance and the presence of tetB (P = 0.001), while the E. coli isolates were positively associated with ampicillin resistance, streptomycin resistance, and the presence of tetA (P < 0.0001) in this study. In summary, these findings demonstrate that fresh vegetables and fruits, such as cucumbers and tomatoes, can serve as an important source of foodborne AMR S. enterica and E. coli in the greater Bangkok area, especially given the popularity of these fresh commodities in Thai cuisine.
Collapse
Affiliation(s)
- Benjawan Saechue
- Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand
| | - Edward R. Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Saharuetai Jeamsripong
- Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Microbial Food Safety and Antimicrobial resistance, Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Meijs AP, Rozwandowicz M, Hengeveld PD, Dierikx CM, de Greeff SC, van Duijkeren E, van Dissel JT. Human carriage of ESBL/pAmpC-producing Escherichia coli and Klebsiella pneumoniae in relation to the consumption of raw or undercooked vegetables, fruits, and fresh herbs. Microbiol Spectr 2024; 12:e0284923. [PMID: 38206033 PMCID: PMC10845978 DOI: 10.1128/spectrum.02849-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
We investigated to what extent the consumption of raw or undercooked vegetables, fruits, and fresh herbs influences carriage rates of ESBL/pAmpC-producing Escherichia coli and Klebsiella pneumoniae (ESBL-E/K) in the general population. We assessed long-term carriage and changes in ESBL-E/K prevalence over time, by comparing the results to findings in the same population 5 years earlier. Between July and December 2021, participants sent in two fecal samples and questionnaires, 3 months apart. Food frequency questionnaires were sent on a monthly basis. Fecal samples were cultured and screened for ESBL-E/K, and phenotypically positive isolates were sequenced. Multivariable logistic regression models were established to assess the association between the consumption of fresh produce and ESBL-E/K carriage. The ESBL-E/K prevalence was 7.6% [41/537; 95% confidence interval (CI): 5.7-10.2] in the first sampling round and 7.0% (34/489; 95% CI: 5.0-9.6) in the second. Multivariable models did not result in statistical significance for any of the selected fruit and vegetable types. Trends for increased carriage rates were observed for the consumption of raspberry and blueberry in the summer period. ESBL-E/K prevalence was comparable with the prevalence in the same cohort 5 years earlier (7.5%; 95% CI: 5.6-10.1%). In six persons (1.2%) a genetically highly homologous ESBL-E/K was found. In conclusion, the contribution of the consumption of raw fruits, vegetables, and herbs to ESBL-E/K carriage in humans in the Netherlands is probably low. Despite COVID-19 containment measures (e.g., travel restrictions, social distancing, and hygiene) the ESBL-E/K prevalence was similar to 5 years earlier. Furthermore, indications for long-term carriage were found.IMPORTANCEESBL-producing bacteria are resistant against important classes of antibiotics, including penicillins and cephalosporines, which complicates treatment of infections. Food is one of the main routes of transmission for carriage of these bacteria in the general population. Although fruits, vegetables, and herbs are generally less frequently contaminated with ESBL-producing bacteria compared to meat, exposure might be higher since these products are often eaten raw or undercooked. This research showed that the contribution of the consumption of raw or undercooked fresh produce to ESBL-E/K carriage in the general Dutch population was low. No specific types of fruit or vegetables could be identified that gave a higher risk of carriage. In addition, we demonstrated the presence of genetically highly homologous ESBL-E/K in six persons after a period of 5 years, indicative for long-term carriage.
Collapse
Affiliation(s)
- A. P. Meijs
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - M. Rozwandowicz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - P. D. Hengeveld
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - C. M. Dierikx
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - S. C. de Greeff
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - E. van Duijkeren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - J. T. van Dissel
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Department of Infectious Diseases and Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
10
|
Mitsuwan W, Intongead S, Saengsawang P, Romyasamit C, Narinthorn R, Nissapatorn V, Pereira MDL, Paul AK, Wongtawan T, Boripun R. Occurrence of multidrug resistance associated with extended-spectrum β‑lactamase and the biofilm forming ability of Escherichia coli in environmental swine husbandry. Comp Immunol Microbiol Infect Dis 2023; 103:102093. [PMID: 37976973 DOI: 10.1016/j.cimid.2023.102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Extended-spectrum beta-lactamase (ESBL) production and biofilm formation are mechanisms employed by Escherichia coli to resist beta-lactam antibiotics. Thus, we aimed to examine antibiotic resistance associated with ESBL production and biofilm formation in E. coli isolates from swine farms in Southern Thailand. In total, 159 E. coli isolates were obtained, with 44 isolates identified as ESBL producers, originating from feces (18.87 %) and wastewater (8.80 %) samples. All ESBL-producing strains exhibited resistance to ampicillin (100 %), followed by the cephalosporin group (97.73 %) and tetracycline (84.09 %). Multidrug resistance was observed in 17 isolates (38.63 %). Among the isolates from feces samples, the blaGES gene was the most prevalent, detected in 90 % of the samples, followed by blaCTX-M9 (86.67 %) and blaCTX-M1 (66.67 %), respectively. In the bacteria isolated from wastewater, both blaGES and blaCTX-M9 genes were the predominant resistance genes, detected in 100 % of the isolates, followed by blaCTX-M1 (64.29 %) and blaTEM (50 %), respectively. Strong biofilm formation was observed in 11 isolates (36.67 %) from feces and 4 isolates (25.57 %) from wastewater samples. Notably, nearly 100 % of ESBL-producing strains isolated from feces tested positive for both pgaA and pgaC genes, which play a role in intracellular adhesion and biofilm production. These findings contribute to the understanding and potential control of ESBL-producing E. coli, and the dissemination of antibiotic resistance and biofilm-related genes in swine farms.
Collapse
Affiliation(s)
- Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand; Center of Excellence in Innovation of Essential Oil and Bio-active compound, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Sutsiree Intongead
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Phirabhat Saengsawang
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Chonticha Romyasamit
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Ruethai Narinthorn
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team), World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Alok K Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart TAS 7001, Australia
| | - Tuempong Wongtawan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Ratchadaporn Boripun
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
11
|
Poeys-Carvalho RMP, Gonzalez AGM. Resistance to β-lactams in Enterobacteriaceae isolated from vegetables: a review. Crit Rev Food Sci Nutr 2023; 65:936-946. [PMID: 37999924 DOI: 10.1080/10408398.2023.2284858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Vegetables are crucial for a healthy human diet due to their abundance of essential macronutrients and micronutrients. However, there have been increased reports of antimicrobial-resistant Enterobacteriaceae isolated from vegetables. Enterobacteriaceae is a large group of Gram-negative bacteria that can act as commensals, intestinal pathogens, or opportunistic extraintestinal pathogens. Extraintestinal infections caused by Enterobacteriaceae are a clinical concern due to antimicrobial resistance (AMR). β-lactams have high efficacy against Gram-negative bacteria and low toxicity for eukaryotic cells. These antimicrobials are widely used in the treatment of Enterobacteriaceae extraintestinal infections. This review aimed to conduct a literature survey of the last five years (2018-2023) on the occurrence of β-lactam-resistant Enterobacteriaceae in vegetables. Research was carried out in PubMed, Web of Science, Scopus, ScienceDirect, and LILACS (Latin American and Caribbean Health Sciences Literature) databases. After a careful evaluation, thirty-seven articles were selected. β-lactam-resistant Enterobacteriaceae, including extended-spectrum β-lactamases (ESBLs)-producing, AmpC β-lactamases, and carbapenemases, have been isolated from a wide variety of vegetables. Vegetables are vectors of β-lactam-resistant Enterobacteriaceae, contributing to the dissemination of resistance mechanisms previously observed only in the hospital environment.
Collapse
Affiliation(s)
| | - Alice G M Gonzalez
- Departament of Bromatology, Federal Fluminense University, Niterói, Brazil
| |
Collapse
|
12
|
Ramatla T, Mafokwane T, Lekota K, Monyama M, Khasapane G, Serage N, Nkhebenyane J, Bezuidenhout C, Thekisoe O. "One Health" perspective on prevalence of co-existing extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae: a comprehensive systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 2023; 22:88. [PMID: 37740207 PMCID: PMC10517531 DOI: 10.1186/s12941-023-00638-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND The Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) bacterial isolates that produce extended-spectrum β-lactamases (ESBLs) contribute to global life-threatening infections. This study conducted a systematic review and meta-analysis on the global prevalence of ESBLs in co-existing E. coli and K. pneumoniae isolated from humans, animals and the environment. METHODS The systematic review protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO) [ID no: CRD42023394360]. This study was carried out following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. One hundred and twenty-six eligible studies published on co-existing antibiotic resistance in E. coli and K. pneumoniae between 1990 and 2022 were included. RESULTS The pooled prevalence of ESBL-producing E. coli and K. pneumoniae was 33.0% and 32.7% for humans, 33.5% and 19.4% for animals, 56.9% and 24.2% for environment, 26.8% and 6.7% for animals/environment, respectively. Furthermore, the three types of resistance genes that encode ESBLs, namely blaSHVblaCTX-M,blaOXA, and blaTEM, were all detected in humans, animals and the environment. CONCLUSIONS The concept of "One-Health" surveillance is critical to tracking the source of antimicrobial resistance and preventing its spread. The emerging state and national surveillance systems should include bacteria containing ESBLs. A well-planned, -implemented, and -researched alternative treatment for antimicrobial drug resistance needs to be formulated.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa.
| | - Tshepo Mafokwane
- Department of Life and Consumer Sciences, University of South Africa, Florida, 1710, South Africa
| | - Kgaugelo Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Maropeng Monyama
- Department of Life and Consumer Sciences, University of South Africa, Florida, 1710, South Africa
| | - George Khasapane
- Department of Life Sciences, Central University of Technology, Bloemfontein, 9300, South Africa
| | - Naledi Serage
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Jane Nkhebenyane
- Department of Life Sciences, Central University of Technology, Bloemfontein, 9300, South Africa
| | - Carlos Bezuidenhout
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
13
|
Castello A, Lo Cascio G, Ferraro C, Pantano L, Costa A, Butera G, Oliveri G, Rizzuto ML, Alduina R, Cardamone C. Food risk associated with vegetable consumption, exposure to antimicrobial-resistant strains and pesticide residues. Ital J Food Saf 2023; 12:11134. [PMID: 37405150 PMCID: PMC10316261 DOI: 10.4081/ijfs.2023.11134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/13/2023] [Indexed: 07/06/2023] Open
Abstract
This preliminary study aimed to detect biological and chemical contaminants in vegetables sold in Sicily for human consumption, assess the spread of antimicrobial-resistant (AMR) strains in these foods, and characterize their antimicrobial-resistance genes. A total of 29 fresh and ready-to-eat samples were analyzed. Microbiological analyses were performed for the detection of Salmonella spp. and the enumeration of Enterococci, Enterobacteriaceae, and Escherichia coli. Antimicrobial resistance was assessed by the Kirby-Bauer method, according to the Clinical and Laboratory Standards Institute guidelines. Pesticides were detected by high-performance liquid chromatography and gas chromatography coupled with mass spectrometry. No samples were contaminated by Salmonella spp., E. coli was detected in 1 sample of fresh lettuce at a low bacterial count (2 log cfu/g). 17.24% of vegetables were contaminated by Enterococci and 65.5% by Enterobacteriaceae (bacterial counts between 1.56 log cfu/g and 5.93 log cfu/g and between 1.6 log cfu/g and 5.48 log cfu/g respectively). From 86.2% of vegetables, 53 AMR strains were isolated, and 10/53 isolates were multidrug resistant. Molecular analysis showed that the blaTEM gene was detected in 12/38 β-lactam-resistant/intermediate-resistant isolates. Genes conferring tetracycline resistance (tetA, tetB, tetC, tetD, tetW) were detected in 7/10 isolates. The qnrS gene was detected in 1/5 quinolone-resistant isolates, the sulI gene was detected in 1/4 sulfonamide- resistant/intermediate-resistant isolates and the sulIII gene was never detected. Pesticides were detected in 27.3% of samples, all of which were leafy vegetables. Despite the satisfactory hygienic status of samples, the high percentage of AMR bacteria detected stresses the need for an effective monitoring of these foods as well as adequate strategies to counteract the spread of AMR bacteria along the agricultural chain. Also, the chemical contamination of vegetables should not be underestimated, especially considering that leafy vegetables are commonly consumed raw and that no official guidelines about maximum residue limits of pesticides in ready-to-eat vegetables are available.
Collapse
Affiliation(s)
- Annamaria Castello
- Food Microbiology Section, Experimental Zooprophylactic Institute of Sicily A. Mirri, Palermo
| | - Giovanni Lo Cascio
- Food Chemistry Section, Experimental Zooprophylactic Institute of Sicily A. Mirri, Palermo
| | - Clelia Ferraro
- Biological, Chemical and Pharmaceutical Sciences and Technologies Department, University of Palermo, Italy
| | - Licia Pantano
- Food Chemistry Section, Experimental Zooprophylactic Institute of Sicily A. Mirri, Palermo
| | - Antonella Costa
- Food Microbiology Section, Experimental Zooprophylactic Institute of Sicily A. Mirri, Palermo
| | - Gaspare Butera
- Food Microbiology Section, Experimental Zooprophylactic Institute of Sicily A. Mirri, Palermo
| | - Giuseppa Oliveri
- Food Microbiology Section, Experimental Zooprophylactic Institute of Sicily A. Mirri, Palermo
| | - Maria Laura Rizzuto
- Food Microbiology Section, Experimental Zooprophylactic Institute of Sicily A. Mirri, Palermo
| | - Rosa Alduina
- Biological, Chemical and Pharmaceutical Sciences and Technologies Department, University of Palermo, Italy
| | - Cinzia Cardamone
- Food Microbiology Section, Experimental Zooprophylactic Institute of Sicily A. Mirri, Palermo
| |
Collapse
|
14
|
Gunjan, Vidic J, Manzano M, Raj VS, Pandey RP, Chang CM. Comparative meta-analysis of antimicrobial resistance from different food sources along with one health approach in Italy and Thailand. One Health 2023; 16:100477. [PMID: 36593979 PMCID: PMC9803827 DOI: 10.1016/j.onehlt.2022.100477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) is increasing worldwide due to overuse, misuse and incomplete treatment of antibiotics. Many countries are facing the excessive issue due to the spreading of AMR not only in humans and animals, but also in water and agri-food sector. Our main aim was to perform a competitive meta-analysis of surveillance-resistant microbes and their antimicrobial superintendence in Italy and Thailand. Data have been collected from reports published for the period 2012-2021. A total of 9507 and 11,753 food samples contained 3905 (41.07%) and 3526 (30%) AMR bacteria in Italy and Thailand, respectively. In Italy, the highest microbial prevalence was β-lactam and tetracycline, while in Thailand mostly isolates showed resistance to cephalosporin and aminoglycoside. Our findings contribute to highlighting the increment of AMR related to different microbes with tendency to become multidrug resistant.
Collapse
Affiliation(s)
- Gunjan
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131 029, Haryana, India
| | - Jasmina Vidic
- Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Marisa Manzano
- Department of Agriculture Food Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - V. Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131 029, Haryana, India
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131 029, Haryana, India
| | - Chung-Ming Chang
- Master & Ph.D. program in Biotechnology Industry, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist, Taoyuan City 33302, Taiwan, ROC
| |
Collapse
|
15
|
Multidrug-resistant extended spectrum β-lactamase (ESBL)-producing Escherichia coli from farm produce and agricultural environments in Edo State, Nigeria. PLoS One 2023; 18:e0282835. [PMID: 36897838 PMCID: PMC10004523 DOI: 10.1371/journal.pone.0282835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Antimicrobial resistance (AMR) is a major public health concern, especially the extended-spectrum β-lactamase-producing (ESBL) Escherichia coli bacteria are emerging as a global human health hazard. This study characterized extended-spectrum β-lactamase Escherichia coli (ESBL-E. coli) isolates from farm sources and open markets in Edo State, Nigeria. A total of 254 samples were obtained in Edo State and included representatives from agricultural farms (soil, manure, irrigation water) and vegetables from open markets, which included ready-to-eat (RTE) salads and vegetables which could potentially be consumed uncooked. Samples were culturally tested for the ESBL phenotype using ESBL selective media, and isolates were further identified and characterized via polymerase chain reaction (PCR) for β-lactamase and other antibiotic resistance determinants. ESBL E. coli strains isolated from agricultural farms included 68% (17/25) from the soil, 84% (21/25) from manure and 28% (7/25) from irrigation water and 24.4% (19/78) from vegetables. ESBL E. coli were also isolated from RTE salads at 20% (12/60) and vegetables obtained from vendors and open markets at 36.6% (15/41). A total of 64 E. coli isolates were identified using PCR. Upon further characterization, 85.9% (55/64) of the isolates were resistant to ≥ 3 and ≤ 7 antimicrobial classes, which allows for characterizing these as being multidrug-resistant. The MDR isolates from this study harboured ≥1 and ≤5 AMR determinants. The MDR isolates also harboured ≥1 and ≤3 beta-lactamase genes. Findings from this study showed that fresh vegetables and salads could be contaminated with ESBL-E. coli, particularly fresh produce from farms that use untreated water for irrigation. Appropriate measures, including improving irrigation water quality and agricultural practices, need to be implemented, and global regulatory guiding principles are crucial to ensure public health and consumer safety.
Collapse
|
16
|
Brunn AA, Roustit M, Kadri-Alabi Z, Guardabassi L, Waage J. A Meta-Analysis to Estimate Prevalence of Resistance to Tetracyclines and Third Generation Cephalosporins in Enterobacteriaceae Isolated from Food Crops. Antibiotics (Basel) 2022; 11:1424. [PMID: 36290083 PMCID: PMC9598472 DOI: 10.3390/antibiotics11101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Application of human and animal waste to fields and water sources and on-farm antimicrobial usage are documented contributors to the occurrence of antimicrobial resistance (AMR) in agricultural domains. This meta-analysis aimed to determine the prevalence of resistance to tetracycline (TET) and third generation cephalosporins (3GC) in Enterobacteriaceae isolated from food crops. TET was selected in view of its wide use in agriculture, whereas 3GC were selected because of the public health concerns of reported resistance to these critically important antibiotics in the environment. Forty-two studies from all six world regions published between 2010 and 2022 met the eligibility criteria. A random effects model estimated that 4.63% (95% CI: 2.57%, 7.18%; p-value: <0.0001) and 3.75% (95%CI: 2.13%, 5.74%; p-value: <0.0001) of surveyed food crops harboured Enterobacteriaceae resistant to TET and 3GC, respectively. No significant differences were observed between pre- and post-harvest stages of the value chain. 3GC resistance prevalence estimates in food crops were highest for the African region (6.59%; 95% CI: 2.41%, 12.40%; p-value: <0.0001) and lowest for Europe (1.84%; 95% CI: 0.00%, 6.02%; p-value: <0.0001). Considering the rare use of 3GC in agriculture, these results support its inclusion for AMR surveillance in food crops. Integrating food crops into One Health AMR surveillance using harmonized sampling methods could confirm trends highlighted here.
Collapse
Affiliation(s)
- Ariel A. Brunn
- Department of Public Health, Environment and Society, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Manon Roustit
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Zaharat Kadri-Alabi
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Luca Guardabassi
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Jeff Waage
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
17
|
Kitti T, Kongfak S, Leungtongkam U, Thummeepak R, Tasanapak K, Thanwisai A, Sitthisak S. Comparative genome analysis of Escherichia coli bacteriophages isolated from sewage and chicken meat. Virus Res 2022; 315:198784. [DOI: 10.1016/j.virusres.2022.198784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/26/2022]
|
18
|
Sornsenee P, Chimplee S, Arbubaker A, Kongchai S, Madimong H, Romyasamit C. Occurrence, Antimicrobial Resistance Profile, and Characterization of Extended-spectrum β-Lactamase-Producing Escherichia coli Isolates from Minced Meat at Local Markets in Thailand. Foodborne Pathog Dis 2021; 19:232-240. [PMID: 34941425 DOI: 10.1089/fpd.2021.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli exhibits strong multidrug resistance (MDR) to ampicillin and third-generation cephalosporins. This study examined the occurrence, antimicrobial susceptibility, and molecular genetic features of ESBL-producing E. coli isolates from three commonly consumed minced meat varieties, namely pork, chicken, and beef. In total, 150 samples were collected from 10 local markets in Thailand. ESBL-producing E. coli was identified in 78 samples (52%), and minced chicken meat was most contaminated (79.17%). The isolates exhibited potential susceptibility to amikacin (96.16%) and carbapenems (91-95%). However, ESBL-producing E. coli displayed strong resistance to ampicillin and cefpodoxime (100%) and high MDR to 3-5 antibiotic classes (94.87%). Most presumptive ESBL producers harbored ESBL resistance genes (97.44%), most commonly blaTEM (78.21%). Indeed, our results demonstrated that raw minced meat has a high occurrence of ESBL-producing E. coli harboring ESBL resistance genes, highlighting the importance of implementation of sanitary handling practices to reduce microbial contamination in commercial meat as well as the need for consumer education on safe handling and cooking of meat products.
Collapse
Affiliation(s)
- Phoomjai Sornsenee
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Siriphorn Chimplee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Arseesa Arbubaker
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Thailand
| | - Sutharinee Kongchai
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Thailand
| | - Hilmee Madimong
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Thailand
| | - Chonticha Romyasamit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Thailand.,Research Center of Excellence in Innovation of Essential Oil, Walailak University, Tha Sala, Thailand
| |
Collapse
|
19
|
Carbapenemase Producing Klebsiella pneumoniae (KPC): What Is the Best MALDI-TOF MS Detection Method. Antibiotics (Basel) 2021; 10:antibiotics10121549. [PMID: 34943761 PMCID: PMC8698427 DOI: 10.3390/antibiotics10121549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria is a group of highly dangerous antibiotic resistant Gram-negative Enterobacteriaceae. They cause infections associated with significant morbidity and mortality. Therefore, the rapid detection of KPC-producing bacteria plays a key role in clinical microbiology. Matrix assisted laser desorption/ionization time-of- flight (MALDI-TOF) is a rapidly evolving technology that finds application in various clinical, scientific, and industrial disciplines. In the present study, we demonstrated three different procedures of carbapenemase-producing K. pneumoniae (KPC) detection. The most basic model of MALDI-TOF instrument MS Microflex LT was used, operating in the linear ion-positive mode, commonly used in modern clinical laboratories. The first procedure was based on indirect monitoring of carbapenemase production with direct detection of hydrolyzed carbapenem antibiotic degradation products in the mass spectrum. The second procedure was based on direct detection of blaKPC accompanying peak with an 11,109 Da in the mass spectrum of carbapenemase-producing K. pneumoniae (KPC), which represents the cleaved protein (pKpQIL_p019) expressed by pKpQIL plasmid. In addition, several unique peaks were detected in the carbapenemase-producing K. pneumoniae (KPC) mass spectrum. The third procedure was the identification of carbapenemase-producing K. pneumoniae (KPC) based on the protein fingerprint using local database created from the whole mass spectra. By comparing detection procedures, we determined that the third procedure was very fast and relatively easy. However, it requires previous verification of carbapenemase-producing K. pneumoniae (KPC) using other methods as genetic blaKPC identification, detection of carbapenem degradation products, and accompanying peak with 11,109 Da, which represents cleaved pKpQIL_p019 protein expressed by pKpQIL plasmid. Detection of carbapenemase-producing K. pneumoniae using MALDI-TOF provides fast and accurate results that may help to reduce morbidity and mortality in hospital setting when applied in diagnostic situations.
Collapse
|