1
|
Chille EE, Stephens TG, Nandi S, Jiang H, Gerdes MJ, Williamson OM, Neufeld A, Montoya‐Maya P, Bhattacharya D. Coral Restoration in the Omics Era: Development of Point-of-Care Tools for Monitoring Disease, Reproduction, and Thermal Stress. Bioessays 2025; 47:e70007. [PMID: 40285547 PMCID: PMC12101048 DOI: 10.1002/bies.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025]
Abstract
Coral reef degradation has captured global attention from governments, conservationists, and researchers, who are making concerted efforts to develop sustainable solutions to support reef resilience in the face of environmental degradation. The goal is to empower local community efforts for effective marine resource management. However, one of the major barriers to coral conservation is the lack of timely and affordable population-level health data, which can delay effective management responses. Although progress has been made in understanding the molecular basis of coral health outcomes, more translational work is needed to develop cost-effective, point-of-care (POC) diagnostic tools for real-time monitoring. This review assesses the current state of translational omics-based research for coral health monitoring, focusing on highlighting key gaps and actionable next steps to guide the implementation of effective, field-ready tools for monitoring coral disease, reproduction, and thermal stress. These advancements can be used to advance urgent conservation needs and promote reef management by local communities.
Collapse
Affiliation(s)
- Erin E. Chille
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew JerseyUSA
| | - Timothy G. Stephens
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew JerseyUSA
| | - Shrinivas Nandi
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew JerseyUSA
| | - Haoyu Jiang
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew JerseyUSA
| | | | | | | | | | | |
Collapse
|
2
|
Cecchini P, Nitta T, Sena E, Du ZY. Saving coral reefs: significance and biotechnological approaches for coral conservation. ADVANCED BIOTECHNOLOGY 2024; 2:42. [PMID: 39883363 PMCID: PMC11740877 DOI: 10.1007/s44307-024-00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 01/31/2025]
Abstract
Coral reefs are highly productive ecosystems that provide valuable services to coastal communities worldwide. However, both local and global anthropogenic stressors, threaten the coral-algal symbiosis that enables reef formation. This breakdown of the symbiotic relationship, known as bleaching, is often triggered by cumulative cell damage. UV and heat stress are commonly implicated in bleaching, but other anthropogenic factors may also play a role. To address coral loss, active restoration is already underway in many critical regions. Additionally, coral researchers are exploring assisted evolution methods for greater coral resilience to projected climate change. This review provides an overview of the symbiotic relationship, the mechanisms underlying coral bleaching in response to stressors, and the strategies being pursued to address coral loss. Despite the necessity of ongoing research in all aspects of this field, action on global climate change remains crucial for the long-term survival of coral reefs.
Collapse
Affiliation(s)
- Pansa Cecchini
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Thomas Nitta
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Edoardo Sena
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Zhi-Yan Du
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
3
|
Timmins-Schiffman E, Duselis E, Brown T, Axworthy JB, Backstrom CH, Riffle M, Dilworth J, Kenkel CD, Rodrigues LJ, Nunn BL, Padilla-Gamiño JL. Reproductive resilience: pathways to gametogenic success in Montipora capitata after bleaching. Sci Rep 2024; 14:27765. [PMID: 39532979 PMCID: PMC11557575 DOI: 10.1038/s41598-024-78768-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Thermal bleaching, or the loss of symbiotic algae that provide most energetic resources for the coral host, is an increasing threat to reefs worldwide and is projected to worsen with climate change. While bleaching is a well-recognized threat, the impact on the process of reproduction in bleaching survivors is not well resolved, despite being central to coral resilience. Montipora capitata can survive bleaching while completing a full gametogenic cycle, offering an ideal system to study gametogenic resilience and physiological tradeoffs. We experimentally bleached fragments of M. capitata colonies and followed their gametogenesis and physiological responses for 10 months (six time points). All bleached colonies produced gametes at the same time as controls, suggesting that reproductive processes were energetically prioritized. However, proteomic analysis revealed tradeoffs and delays in activating key physiological processes earlier in gametogenesis in areas such as skeletal growth and reproductive hormone synthesis. Tradeoffs during the gametogenic cycle, likely a direct response to thermal bleaching, resulted in smaller oocytes from bleached colonies, potentially indicating decreased transfer of parental resources to gametes. While gametogenesis is likely to continue in this species, it is unknown how the fecundity, synchrony of spawning, viability and success of future offspring may be impacted by future bleaching events.
Collapse
Affiliation(s)
- E Timmins-Schiffman
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
| | - E Duselis
- Consolidated Safety Services, Inc., Fairfax, VA, 22031, USA
- Genentech, South San Francisco, CA, 94080, USA
| | - T Brown
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98195, USA
- University of Texas at Tyler, Tyler, TX, 75799, USA
| | - J B Axworthy
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98195, USA
| | - C H Backstrom
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98195, USA
| | - M Riffle
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - J Dilworth
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - C D Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - L J Rodrigues
- College of Liberal Arts and Sciences, Villanova University, Villanova, PA, 19085, USA
| | - B L Nunn
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - J L Padilla-Gamiño
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
4
|
Chille EE, Stephens TG, Misri D, Strand EL, Putnam HM, Bhattacharya D. Gene expression response under thermal stress in two Hawaiian corals is dominated by ploidy and genotype. Ecol Evol 2024; 14:e70037. [PMID: 39050655 PMCID: PMC11268936 DOI: 10.1002/ece3.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Transcriptome data are frequently used to investigate coral bleaching; however, the factors controlling gene expression in natural populations of these species are poorly understood. We studied two corals, Montipora capitata and Pocillopora acuta, that inhabit the sheltered Kāne'ohe Bay, Hawai'i. M. capitata colonies in the bay are outbreeding diploids, whereas P. acuta is a mixture of clonal diploids and triploids. Populations were sampled from six reefs and subjected to either control (no stress), thermal stress, pH stress, or combined pH and thermal stress treatments. RNA-seq data were generated to test two competing hypotheses: (1) gene expression is largely independent of genotype, reflecting a shared treatment-driven response (TDE) or, (2) genotype dominates gene expression, regardless of treatment (GDE). Our results strongly support the GDE model, even under severe stress. We suggest that post-transcriptional processes (e.g., control of translation, protein turnover) modify the signal from the transcriptome, and may underlie the observed differences in coral bleaching sensitivity via the downstream proteome and metabolome.
Collapse
Affiliation(s)
- Erin E. Chille
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew JerseyUSA
| | - Timothy G. Stephens
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew JerseyUSA
| | - Deeksha Misri
- Department of GeneticsRutgers UniversityNew BrunswickNew JerseyUSA
| | - Emma L. Strand
- Department of Biological SciencesUniversity of Rhode IslandKingstonRhode IslandUSA
- Gloucester Marine Genomics InstituteGloucesterMassachusettsUSA
| | - Hollie M. Putnam
- Department of Biological SciencesUniversity of Rhode IslandKingstonRhode IslandUSA
| | | |
Collapse
|
5
|
Williams A. Multiomics data integration, limitations, and prospects to reveal the metabolic activity of the coral holobiont. FEMS Microbiol Ecol 2024; 100:fiae058. [PMID: 38653719 PMCID: PMC11067971 DOI: 10.1093/femsec/fiae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
Since their radiation in the Middle Triassic period ∼240 million years ago, stony corals have survived past climate fluctuations and five mass extinctions. Their long-term survival underscores the inherent resilience of corals, particularly when considering the nutrient-poor marine environments in which they have thrived. However, coral bleaching has emerged as a global threat to coral survival, requiring rapid advancements in coral research to understand holobiont stress responses and allow for interventions before extensive bleaching occurs. This review encompasses the potential, as well as the limits, of multiomics data applications when applied to the coral holobiont. Synopses for how different omics tools have been applied to date and their current restrictions are discussed, in addition to ways these restrictions may be overcome, such as recruiting new technology to studies, utilizing novel bioinformatics approaches, and generally integrating omics data. Lastly, this review presents considerations for the design of holobiont multiomics studies to support lab-to-field advancements of coral stress marker monitoring systems. Although much of the bleaching mechanism has eluded investigation to date, multiomic studies have already produced key findings regarding the holobiont's stress response, and have the potential to advance the field further.
Collapse
Affiliation(s)
- Amanda Williams
- Microbial Biology Graduate Program, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
| |
Collapse
|
6
|
Yang X, Wang J, Chang CY, Zhou F, Liu J, Xu H, Ibrahim M, Gomez M, Guo GL, Liu H, Zong WX, Wondisford FE, Su X, White E, Feng Z, Hu W. Leukemia inhibitory factor suppresses hepatic de novo lipogenesis and induces cachexia in mice. Nat Commun 2024; 15:627. [PMID: 38245529 PMCID: PMC10799847 DOI: 10.1038/s41467-024-44924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Cancer cachexia is a systemic metabolic syndrome characterized by involuntary weight loss, and muscle and adipose tissue wasting. Mechanisms underlying cachexia remain poorly understood. Leukemia inhibitory factor (LIF), a multi-functional cytokine, has been suggested as a cachexia-inducing factor. In a transgenic mouse model with conditional LIF expression, systemic elevation of LIF induces cachexia. LIF overexpression decreases de novo lipogenesis and disrupts lipid homeostasis in the liver. Liver-specific LIF receptor knockout attenuates LIF-induced cachexia, suggesting that LIF-induced functional changes in the liver contribute to cachexia. Mechanistically, LIF overexpression activates STAT3 to downregulate PPARα, a master regulator of lipid metabolism, leading to the downregulation of a group of PPARα target genes involved in lipogenesis and decreased lipogenesis in the liver. Activating PPARα by fenofibrate, a PPARα agonist, restores lipid homeostasis in the liver and inhibits LIF-induced cachexia. These results provide valuable insights into cachexia, which may help develop strategies to treat cancer cachexia.
Collapse
Affiliation(s)
- Xue Yang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Chun-Yuan Chang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Fan Zhou
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Huiting Xu
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Maria Ibrahim
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Maria Gomez
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ, USA
- Department of Veterans Affairs New Jersey Health Care System, East Orange, NJ, USA
| | - Hao Liu
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
- Biostatistics Shared Resource, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Wei-Xing Zong
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Metabolomics Core Facility, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
7
|
Han T, Liao X, Guo Z, Chen JY, He C, Lu Z. Comparative transcriptome analysis reveals deep molecular landscapes in stony coral Montipora clade. Front Genet 2023; 14:1297483. [PMID: 38028626 PMCID: PMC10662330 DOI: 10.3389/fgene.2023.1297483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Coral reefs, among the most invaluable ecosystems in the world, face escalating threats from climate change and anthropogenic activities. To decipher the genetic underpinnings of coral adaptation and resilience, we undertook comprehensive transcriptome profiling of two emblematic coral species, Montipora foliosa and Montipora capricornis, leveraging PacBio Iso-Seq technology. These species were strategically selected for their ecological significance and their taxonomic proximity within the Anthozoa class. Methods: Our study encompassed the generation of pristine transcriptomes, followed by thorough functional annotation via diverse databases. Subsequently, we quantified transcript abundance and scrutinized gene expression patterns, revealing notable distinctions between the two species. Results: Intriguingly, shared orthologous genes were identified across a spectrum of coral species, highlighting a substantial genetic conservation within scleractinian corals. Importantly, a subset of genes, integral to biomineralization processes, emerged as exclusive to scleractinian corals, shedding light on their intricate evolutionary history. Furthermore, we discerned pronounced upregulation of genes linked to immunity, stress response, and oxidative-reduction processes in M. foliosa relative to M. capricornis. These findings hint at the presence of more robust mechanisms in M. foliosa for maintaining internal equilibrium and effectively navigating external challenges, underpinning its potential ecological advantage. Beyond elucidating genetic adaptation in corals, our research underscores the urgency of preserving genetic diversity within coral populations. Discussion: These insights hold promise for informed conservation strategies aimed at safeguarding these imperiled ecosystems, bearing ecological and economic significance. In synthesis, our study seamlessly integrates genomic inquiry with ecological relevance, bridging the gap between molecular insights and the imperative to conserve coral reefs in the face of mounting threats.
Collapse
Affiliation(s)
- Tingyu Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xin Liao
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Beihai, China
| | - Zhuojun Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - J.-Y. Chen
- Nanjing Institute of Geology and Paleontology, Nanjing, China
| | - Chunpeng He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
8
|
Studivan MS, Eckert RJ, Shilling E, Soderberg N, Enochs IC, Voss JD. Stony coral tissue loss disease intervention with amoxicillin leads to a reversal of disease-modulated gene expression pathways. Mol Ecol 2023; 32:5394-5413. [PMID: 37646698 DOI: 10.1111/mec.17110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Stony coral tissue loss disease (SCTLD) remains an unprecedented disease outbreak due to its high mortality rate and rapid spread throughout Florida's Coral Reef and wider Caribbean. A collaborative effort is underway to evaluate strategies that mitigate the spread of SCTLD across coral colonies and reefs, including restoration of disease-resistant genotypes, genetic rescue, and disease intervention with therapeutics. We conducted an in-situ experiment in Southeast Florida to assess molecular responses among SCTLD-affected Montastraea cavernosa pre- and post-application of the most widely used intervention method, CoreRx Base 2B with amoxicillin. Through Tag-Seq gene expression profiling of apparently healthy, diseased, and treated corals, we identified modulation of metabolomic and immune gene pathways following antibiotic treatment. In a complementary ex-situ disease challenge experiment, we exposed nursery-cultured M. cavernosa and Orbicella faveolata fragments to SCTLD-affected donor corals to compare transcriptomic profiles among clonal individuals from unexposed controls, those exposed and displaying disease signs, and corals exposed and not displaying disease signs. Suppression of metabolic functional groups and activation of stress gene pathways as a result of SCTLD exposure were apparent in both species. Amoxicillin treatment led to a 'reversal' of the majority of gene pathways implicated in disease response, suggesting potential recovery of corals following antibiotic application. In addition to increasing our understanding of molecular responses to SCTLD, we provide resource managers with transcriptomic evidence that disease intervention with antibiotics appears to be successful and may help to modulate coral immune responses to SCTLD. These results contribute to feasibility assessments of intervention efforts following disease outbreaks and improved predictions of coral reef health across the wider Caribbean.
Collapse
Affiliation(s)
- Michael S Studivan
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
- University of Miami, Cooperative Institute for Marine and Atmospheric Studies, Miami, Florida, USA
- Ocean Chemistry and Ecosystems Division, NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
| | - Ryan J Eckert
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Erin Shilling
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Nash Soderberg
- University of Miami, Cooperative Institute for Marine and Atmospheric Studies, Miami, Florida, USA
- Ocean Chemistry and Ecosystems Division, NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
| | - Ian C Enochs
- Ocean Chemistry and Ecosystems Division, NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
| | - Joshua D Voss
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| |
Collapse
|
9
|
Williams A, Stephens TG, Shumaker A, Bhattacharya D. Peeling back the layers of coral holobiont multi-omics data. iScience 2023; 26:107623. [PMID: 37694134 PMCID: PMC10482995 DOI: 10.1016/j.isci.2023.107623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
The integration of multiple 'omics' datasets is a promising avenue for answering many important and challenging questions in biology, particularly those relating to complex ecological systems. Although multi-omics was developed using data from model organisms with significant prior knowledge and resources, its application to non-model organisms, such as coral holobionts, is less clear-cut. We explore, in the emerging rice coral model Montipora capitata, the intersection of holobiont transcriptomic, proteomic, metabolomic, and microbiome amplicon data and investigate how well they correlate under high temperature treatment. Using a typical thermal stress regime, we show that transcriptomic and proteomic data broadly capture the stress response of the coral, whereas the metabolome and microbiome datasets show patterns that likely reflect stochastic and homeostatic processes associated with each sample. These results provide a framework for interpreting multi-omics data generated from non-model systems, particularly those with complex biotic interactions among microbial partners.
Collapse
Affiliation(s)
- Amanda Williams
- Microbial Biology Graduate Program, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Timothy G. Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Alexander Shumaker
- Microbial Biology Graduate Program, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
10
|
Dellaert Z, Putnam HM. Reconciling the variability in the biological response of marine invertebrates to climate change. J Exp Biol 2023; 226:jeb245834. [PMID: 37655544 DOI: 10.1242/jeb.245834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
As climate change increases the rate of environmental change and the frequency and intensity of disturbance events, selective forces intensify. However, given the complicated interplay between plasticity and selection for ecological - and thus evolutionary - outcomes, understanding the proximate signals, molecular mechanisms and the role of environmental history becomes increasingly critical for eco-evolutionary forecasting. To enhance the accuracy of our forecasting, we must characterize environmental signals at a level of resolution that is relevant to the organism, such as the microhabitat it inhabits and its intracellular conditions, while also quantifying the biological responses to these signals in the appropriate cells and tissues. In this Commentary, we provide historical context to some of the long-standing challenges in global change biology that constrain our capacity for eco-evolutionary forecasting using reef-building corals as a focal model. We then describe examples of mismatches between the scales of external signals relative to the sensors and signal transduction cascades that initiate and maintain cellular responses. Studying cellular responses at this scale is crucial because these responses are the basis of acclimation to changing environmental conditions and the potential for environmental 'memory' of prior or historical conditions through molecular mechanisms. To challenge the field, we outline some unresolved questions and suggest approaches to align experimental work with an organism's perception of the environment; these aspects are discussed with respect to human interventions.
Collapse
Affiliation(s)
- Zoe Dellaert
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, RI 02881, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Rd, Kingston, RI 02881, USA
| |
Collapse
|
11
|
Mohamed AR, Ochsenkühn MA, Kazlak AM, Moustafa A, Amin SA. The coral microbiome: towards an understanding of the molecular mechanisms of coral-microbiota interactions. FEMS Microbiol Rev 2023; 47:fuad005. [PMID: 36882224 PMCID: PMC10045912 DOI: 10.1093/femsre/fuad005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Corals live in a complex, multipartite symbiosis with diverse microbes across kingdoms, some of which are implicated in vital functions, such as those related to resilience against climate change. However, knowledge gaps and technical challenges limit our understanding of the nature and functional significance of complex symbiotic relationships within corals. Here, we provide an overview of the complexity of the coral microbiome focusing on taxonomic diversity and functions of well-studied and cryptic microbes. Mining the coral literature indicate that while corals collectively harbour a third of all marine bacterial phyla, known bacterial symbionts and antagonists of corals represent a minute fraction of this diversity and that these taxa cluster into select genera, suggesting selective evolutionary mechanisms enabled these bacteria to gain a niche within the holobiont. Recent advances in coral microbiome research aimed at leveraging microbiome manipulation to increase coral's fitness to help mitigate heat stress-related mortality are discussed. Then, insights into the potential mechanisms through which microbiota can communicate with and modify host responses are examined by describing known recognition patterns, potential microbially derived coral epigenome effector proteins and coral gene regulation. Finally, the power of omics tools used to study corals are highlighted with emphasis on an integrated host-microbiota multiomics framework to understand the underlying mechanisms during symbiosis and climate change-driven dysbiosis.
Collapse
Affiliation(s)
- Amin R Mohamed
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Michael A Ochsenkühn
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Ahmed M Kazlak
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Moustafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
- Department of Biology, American University in Cairo, New Cairo 11835, Egypt
| | - Shady A Amin
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
12
|
Sun F, Yang H, Zhang X, Shi Q. Metabolic and metatranscriptional characteristics of corals bleaching induced by the most severe marine heatwaves in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160019. [PMID: 36356778 DOI: 10.1016/j.scitotenv.2022.160019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Coral bleaching significantly affects the function and health of coral reef ecosystems; however, the mechanisms underlying metabolism and transcription in corals remain unclear. In this study, untargeted metabolomics and metatranscriptomic analyses were performed to analyze the differences between unbleached and bleached Pocillopora corals during the most severe marine heatwaves. Difference analysis showed that bleached corals had significant metabolomic characteristics compared with those in unbleached corals. These differences were significant (p < 0.05) according to partial least squares discriminant analysis (PLS-DA). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the metabolites were significantly enriched in numerous pathways in bleached or unbleached corals, such as steroid hormone biosynthesis, biosynthesis of unsaturated fatty acids, and pyrimidine metabolism. Bleaching greatly affects coral reproduction as well as the tolerance of coral symbionts to heat stress. In metatranscriptomic analysis, we observed large gene expression differences between unbleached and bleached corals. Three Gene Ontology directed acyclic graphs (DAGs) were constructed to show the significantly differentially expressed genes (DEGs). Many biological and molecular processes were significantly enriched between bleached corals to unbleached corals, such as metabolic processes, lipid metabolic processes, oxidation-reduction processes, single-organism metabolic processes, and protein metabolic processes. Metabolome and metatranscriptome analyses showed that bleaching caused substantial physiological damage to corals. This study provides insight into the metabolic and transcriptional changes that occur in corals during bleaching.
Collapse
Affiliation(s)
- Fulin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Hongqiang Yang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China.
| | - Xiyang Zhang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Qi Shi
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| |
Collapse
|
13
|
Bhattacharya D, Etten JV, Benites LF, Stephens TG. Endosymbiotic ratchet accelerates divergence after organelle origin: The Paulinella model for plastid evolution: The Paulinella model for plastid evolution. Bioessays 2023; 45:e2200165. [PMID: 36328783 DOI: 10.1002/bies.202200165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
We hypothesize that as one of the most consequential events in evolution, primary endosymbiosis accelerates lineage divergence, a process we refer to as the endosymbiotic ratchet. Our proposal is supported by recent work on the photosynthetic amoeba, Paulinella, that underwent primary plastid endosymbiosis about 124 Mya. This amoeba model allows us to explore the early impacts of photosynthetic organelle (plastid) origin on the host lineage. The current data point to a central role for effective population size (Ne ) in accelerating divergence post-endosymbiosis due to limits to dispersal and reproductive isolation that reduce Ne , leading to local adaptation. We posit that isolated populations exploit different strategies and behaviors and assort themselves in non-overlapping niches to minimize competition during the early, rapid evolutionary phase of organelle integration. The endosymbiotic ratchet provides a general framework for interpreting post-endosymbiosis lineage evolution that is driven by disruptive selection and demographic and population shifts. Also see the video abstract here: https://youtu.be/gYXrFM6Zz6Q.
Collapse
Affiliation(s)
- Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Julia Van Etten
- Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - L Felipe Benites
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
14
|
Fu JR, Zhou J, Zhang YP, Liu L. Effects of Caulerpa taxifolia on Physiological Processes and Gene Expression of Acropora hyacinthus during Thermal Stress. BIOLOGY 2022; 11:biology11121792. [PMID: 36552301 PMCID: PMC9775474 DOI: 10.3390/biology11121792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
An increasing ecological phase shift from coral-dominated reefs to macroalgae-dominated reefs as a result of anthropogenic impacts, such as eutrophication, sedimentation, and overfishing, has been observed in many reef systems around the world. Ocean warming is a universal threat to both corals and macroalgae, which may alter the outcome of competition between them. Therefore, in order to explore the effects of indirect and direct exposure to macroalgae on the physiological, biochemical, and genetic expression of corals at elevated temperature, the coral Acropora hyacinthus and highly invasive green algae Caulerpa taxifolia were chosen. Physiologically, the results exhibited that, between the control and direct contact treatments, the density and chlorophyll a content of zooxanthella decreased by 53.1% and 71.2%, respectively, when the coral indirectly contacted with the algae at an ambient temperature (27 °C). Moreover, the enzyme activities of superoxide dismutase (SOD) and catalase (CAT) in coral tissue were enhanced by interacting with algae. After an increase of 3 °C, the density and chlorophyll a content of the zooxanthella reduced by 84.4% and 93.8%, respectively, whereas the enzyme activities of SOD and CAT increased 2.3- and 3.1-fold. However, only the zooxanthellae density and pigment content decreased when Caulerpa taxifolia was co-cultured with Acropora hyacinthus at 30 °C. Molecularly, different from the control group, the differentially expressed genes (DEGs) such as Rab family, ATG family, and Casp7 genes were significantly enriched in the endocytosis, autophagy, and apoptosis pathways, regardless of whether Acropora hyacinthus was directly or indirectly exposed to Caulerpa taxifolia at 27 °C. Under thermal stress without algae interaction, the DEGs were significantly enriched in the microbial immune signal transduction pathways, such as the Toll-like receptor signaling pathway and TNF signaling pathway, while multiple cellular immunity (IFI47, TRAF family) and oxidative stress (CAT, SODC, HSP70) genes were upregulated. Inversely, compared with corals without interaction with algae at 30 °C, the DEGs of the corals that interacted with Caulerpa taxifolia at 30 °C were remarkably enriched in apoptosis and the NOD-like receptor signaling pathway, including the transcription factors such as the Casp family and TRAF family. In conclusion, the density and chlorophyll a content of zooxanthella maintained a fading tendency induced by the macroalgae at ambient temperatures. The oxidative stress and immune response levels of the coral was elevated at 30 °C, but the macroalgae alleviated the negative effects triggered by thermal stress.
Collapse
Affiliation(s)
- Jian-Rong Fu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jie Zhou
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Ping Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Li Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Laboratory of Southern Ocean Science and Engineering, Zhanjiang 524025, China
- Correspondence:
| |
Collapse
|
15
|
Stephens TG, Lee J, Jeong Y, Yoon HS, Putnam HM, Majerová E, Bhattacharya D. High-quality genome assembles from key Hawaiian coral species. Gigascience 2022; 11:giac098. [PMID: 36352542 PMCID: PMC9646523 DOI: 10.1093/gigascience/giac098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/11/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Coral reefs house about 25% of marine biodiversity and are critical for the livelihood of many communities by providing food, tourism revenue, and protection from wave surge. These magnificent ecosystems are under existential threat from anthropogenic climate change. Whereas extensive ecological and physiological studies have addressed coral response to environmental stress, high-quality reference genome data are lacking for many of these species. The latter issue hinders efforts to understand the genetic basis of stress resistance and to design informed coral conservation strategies. RESULTS We report genome assemblies from 4 key Hawaiian coral species, Montipora capitata, Pocillopora acuta, Pocillopora meandrina, and Porites compressa. These species, or members of these genera, are distributed worldwide and therefore of broad scientific and ecological importance. For M. capitata, an initial assembly was generated from short-read Illumina and long-read PacBio data, which was then scaffolded into 14 putative chromosomes using Omni-C sequencing. For P. acuta, P. meandrina, and P. compressa, high-quality assemblies were generated using short-read Illumina and long-read PacBio data. The P. acuta assembly is from a triploid individual, making it the first reference genome of a nondiploid coral animal. CONCLUSIONS These assemblies are significant improvements over available data and provide invaluable resources for supporting multiomics studies into coral biology, not just in Hawai'i but also in other regions, where related species exist. The P. acuta assembly provides a platform for studying polyploidy in corals and its role in genome evolution and stress adaptation in these organisms.
Collapse
Affiliation(s)
- Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu, Buk-gu 41566, Korea
| | - YuJin Jeong
- Department of Oceanography, Kyungpook National University, Daegu, Buk-gu 41566, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Eva Majerová
- Hawaiʻi Institute of Marine Biology, Kāneʻohe, HI 96744, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
16
|
Meng Z, Williams A, Liau P, Stephens TG, Drury C, Chiles EN, Su X, Javanmard M, Bhattacharya D. Development of a portable toolkit to diagnose coral thermal stress. Sci Rep 2022; 12:14398. [PMID: 36002502 PMCID: PMC9402530 DOI: 10.1038/s41598-022-18653-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Coral bleaching, precipitated by the expulsion of the algal symbionts that provide colonies with fixed carbon is a global threat to reef survival. To protect corals from anthropogenic stress, portable tools are needed to detect and diagnose stress syndromes and assess population health prior to extensive bleaching. Here, medical grade Urinalysis strips, used to detect an array of disease markers in humans, were tested on the lab stressed Hawaiian coral species, Montipora capitata (stress resistant) and Pocillopora acuta (stress sensitive), as well as samples from nature that also included Porites compressa. Of the 10 diagnostic reagent tests on these strips, two appear most applicable to corals: ketone and leukocytes. The test strip results from M. capitata were explored using existing transcriptomic data from the same samples and provided evidence of the stress syndromes detected by the strips. We designed a 3D printed smartphone holder and image processing software for field analysis of test strips (TestStripDX) and devised a simple strategy to generate color scores for corals (reflecting extent of bleaching) using a smartphone camera (CoralDX). Our approaches provide field deployable methods, that can be improved in the future (e.g., coral-specific stress test strips) to assess reef health using inexpensive tools and freely available software.
Collapse
Affiliation(s)
- Zhuolun Meng
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Amanda Williams
- Microbial Biology Graduate Program, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Pinky Liau
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Crawford Drury
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kaneohe, HI, 96744, USA
| | - Eric N Chiles
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA
- Department of Medicine, Division of Endocrinology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, USA
| | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
17
|
Drury C, Dilworth J, Majerová E, Caruso C, Greer JB. Expression plasticity regulates intraspecific variation in the acclimatization potential of a reef-building coral. Nat Commun 2022; 13:4790. [PMID: 35970904 PMCID: PMC9378650 DOI: 10.1038/s41467-022-32452-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Phenotypic plasticity is an important ecological and evolutionary response for organisms experiencing environmental change, but the ubiquity of this capacity within coral species and across symbiont communities is unknown. We exposed ten genotypes of the reef-building coral Montipora capitata with divergent symbiont communities to four thermal pre-exposure profiles and quantified gene expression before stress testing 4 months later. Here we show two pre-exposure profiles significantly enhance thermal tolerance despite broadly different expression patterns and substantial variation in acclimatization potential based on coral genotype. There was no relationship between a genotype's basal thermal sensitivity and ability to acquire heat tolerance, including in corals harboring naturally tolerant symbionts, which illustrates the potential for additive improvements in coral response to climate change. These results represent durable improvements from short-term stress hardening of reef-building corals and substantial cryptic complexity in the capacity for plasticity.
Collapse
Affiliation(s)
| | - Jenna Dilworth
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
- University of Southern California, Los Angeles, CA, USA
| | - Eva Majerová
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
| | - Carlo Caruso
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
| | - Justin B Greer
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| |
Collapse
|
18
|
Cowen LJ, Putnam HM. Bioinformatics of Corals: Investigating Heterogeneous Omics Data from Coral Holobionts for Insight into Reef Health and Resilience. Annu Rev Biomed Data Sci 2022; 5:205-231. [PMID: 35537462 DOI: 10.1146/annurev-biodatasci-122120-030732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coral reefs are home to over two million species and provide habitat for roughly 25% of all marine animals, but they are being severely threatened by pollution and climate change. A large amount of genomic, transcriptomic, and other omics data is becoming increasingly available from different species of reef-building corals, the unicellular dinoflagellates, and the coral microbiome (bacteria, archaea, viruses, fungi, etc.). Such new data present an opportunity for bioinformatics researchers and computational biologists to contribute to a timely, compelling, and urgent investigation of critical factors that influence reef health and resilience. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lenore J Cowen
- Department of Computer Science, Tufts University, Medford, Massachusetts, USA;
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA;
| |
Collapse
|