1
|
Ressurreição S, Salgueiro L, Figueirinha A. Diplotaxis muralis as an Emerging Food Crop: Chemical Composition, Nutritional Profile and Antioxidant Activities. PLANTS (BASEL, SWITZERLAND) 2025; 14:844. [PMID: 40265798 DOI: 10.3390/plants14060844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025]
Abstract
Diplotaxis muralis (L.) DC (Brassicaceae) is an edible plant commonly used in Mediterranean diets. This study investigates its nutritional composition, secondary metabolites, and antioxidant activity. The results show that this plant is rich in fibre and essential minerals. Analysis of amino acids shows a diverse profile, with glutamic acid and aspartic acid being the most abundant. Regarding fatty acids, α-linolenic acid was identified as predominant. Importantly, levels of toxic metals such as cadmium, lead, and mercury were found to be within established safety limits, confirming the plant's suitability for consumption. A leaf decoction using 80% methanol exhibited the highest concentrations of total phenolic compounds (68.36 mg eq. gallic acid g-1), total flavonoids (3.50 mg eq. quercetin g-1), and antioxidant activity (IC₅₀ of 78.87 µg mL-1 for ABTS, 392.95 µg mL-1 for DPPH, and a FRAP value of 731.20 µmol Fe(II) g-1). HPLC-PDA-ESI-MSⁿ characterization identified flavonols as the main polyphenols. Additionally, several glucosinolates were identified. These compounds, along with their hydrolysis products, not only contribute to the health benefits of D. muralis, but also impart its distinctive pungent and spicy notes, playing a crucial role in shaping its unique sensory profile. These findings highlight the contribution of phenolic compounds and glucosinolates to the health benefits of D. muralis, reinforcing its potential as a promising plant for the development of new functional foods.
Collapse
Affiliation(s)
- Sandrine Ressurreição
- University of Coimbra, Faculty of Pharmacy 3000-548 Coimbra, Portugal
- Polytechnic of Coimbra, Coimbra Agriculture School, 3045-601 Coimbra, Portugal
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Lígia Salgueiro
- University of Coimbra, Faculty of Pharmacy 3000-548 Coimbra, Portugal
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Artur Figueirinha
- University of Coimbra, Faculty of Pharmacy 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
2
|
Ressurreição S, Salgueiro L, Figueirinha A. Diplotaxis Genus: A Promising Source of Compounds with Nutritional and Biological Properties. Molecules 2024; 29:2612. [PMID: 38893488 PMCID: PMC11173894 DOI: 10.3390/molecules29112612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Research on bioactive compounds is essential to improve human health; promote adequate nutrition; drive innovation in the food, agricultural and biotechnology industries; and contribute to the preservation of the environment. The genus Diplotaxis (Brassicaceae) currently comprises around forty species, some of which are edible, particularly Diplotaxis tenuifolia (wild rocket), Diplotaxis erucoides (wall rocket), Diplotaxis muralis (annual wall rocket), Diplotaxis viminea (perennial wall rocket), and Diplotaxis simplex. The leaves of these species are rich in fiber and essential minerals, such as calcium, iron, potassium, and magnesium. Thirteen species have been characterized for their phenolic compounds, predominantly kaempferol, quercetin, and isorhamnetin glycosides. Furthermore, glucosinolate compounds were identified in nineteen species of the genus Diplotaxis. Many of the phytochemicals identified in Diplotaxis spp. demonstrated interesting biological activities, such as antioxidant, anti-inflammatory, antibacterial, hypoglycemic and hypolipidemic effects, as well as cytotoxicity and antiproliferative properties. This article provides a review of the phytochemistry of the Diplotaxis genus, highlighting its importance in food, its biological properties, potential pharmacological applications, and the dearth of research on many of these plants.
Collapse
Affiliation(s)
- Sandrine Ressurreição
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (S.R.); (L.S.)
- Polytechnic of Coimbra, Coimbra Agriculture School, 3045-601 Coimbra, Portugal
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Lígia Salgueiro
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (S.R.); (L.S.)
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Artur Figueirinha
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (S.R.); (L.S.)
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
3
|
Yuorieva N, Sinetova M, Messineva E, Kulichenko I, Fomenkov A, Vysotskaya O, Osipova E, Baikalova A, Prudnikova O, Titova M, Nosov AV, Popova E. Plants, Cells, Algae, and Cyanobacteria In Vitro and Cryobank Collections at the Institute of Plant Physiology, Russian Academy of Sciences-A Platform for Research and Production Center. BIOLOGY 2023; 12:838. [PMID: 37372123 DOI: 10.3390/biology12060838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Ex situ collections of algae, cyanobacteria, and plant materials (cell cultures, hairy and adventitious root cultures, shoots, etc.) maintained in vitro or in liquid nitrogen (-196 °C, LN) are valuable sources of strains with unique ecological and biotechnological traits. Such collections play a vital role in bioresource conservation, science, and industry development but are rarely covered in publications. Here, we provide an overview of five genetic collections maintained at the Institute of Plant Physiology of the Russian Academy of Sciences (IPPRAS) since the 1950-1970s using in vitro and cryopreservation approaches. These collections represent different levels of plant organization, from individual cells (cell culture collection) to organs (hairy and adventitious root cultures, shoot apices) to in vitro plants. The total collection holdings comprise more than 430 strains of algae and cyanobacteria, over 200 potato clones, 117 cell cultures, and 50 strains of hairy and adventitious root cultures of medicinal and model plant species. The IPPRAS plant cryobank preserves in LN over 1000 specimens of in vitro cultures and seeds of wild and cultivated plants belonging to 457 species and 74 families. Several algae and plant cell culture strains have been adapted for cultivation in bioreactors from laboratory (5-20-L) to pilot (75-L) to semi-industrial (150-630-L) scale for the production of biomass with high nutritive or pharmacological value. Some of the strains with proven biological activities are currently used to produce cosmetics and food supplements. Here, we provide an overview of the current collections' composition and major activities, their use in research, biotechnology, and commercial application. We also highlight the most interesting studies performed with collection strains and discuss strategies for the collections' future development and exploitation in view of current trends in biotechnology and genetic resources conservation.
Collapse
Affiliation(s)
- Natalya Yuorieva
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Maria Sinetova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Ekaterina Messineva
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Irina Kulichenko
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Artem Fomenkov
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Olga Vysotskaya
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Ekaterina Osipova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Angela Baikalova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Olga Prudnikova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Maria Titova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Alexander V Nosov
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Elena Popova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| |
Collapse
|
4
|
The content and profile of biologically active compounds present in individual parts of nasturtium (Tropaeolum majus L.): comprehensive study. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Singh R, Chaudhary M, Chauhan ES. Stellaria media Linn.: A comprehensive review highlights the nutritional, phytochemistry, and pharmacological activities. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Stellaria media Linn., a member of the family Caryophyllaceae, is generally known by the name of Chickweed. This plant is extensively cultivated globally and is inherent to Africa, Asia, China, Europe, and North America. It is a well-known medicinal plant with immense therapeutic uses. Nutritional studies have revealed the presence of protein, especially 16 amino acids, vitamins, and minerals such as calcium, iron, phosphorus, and zinc. Phytochemicals, mainly flavonoids, isoflavonoids, saponins, tannins, alkaloids, phenolic acids, triterpenoids, phenolic compounds, and anthraquinone are present in chickweed. It has multiple therapeutic potentials like anti-obesity, anti-diabetic, anti-fungal, anti-bacterial, anti-inflammatory, anti-leishmanial, anti-anxiety, and toxicity profiles. The crude extracts and their metabolites did not show any toxicity in the experimental animal. This review summarizes the nutritional, phytochemical, pharmacological, and toxicity studies on this plant concerning its future use in pharmacological drugs.
Collapse
Affiliation(s)
- Ridhima Singh
- Research Scholar, Department of Food Science and Nutrition, Banasthali Vidyapith, Tonk, Rajasthan-304022, India
| | - Mansi Chaudhary
- Research Scholar, Department of Food Science and Nutrition, Banasthali Vidyapith, Tonk, Rajasthan-304022, India
| | - Ekta Singh Chauhan
- Associate Professor, Department of Food Science and Nutrition, Banasthali Vidyapith, Tonk, Rajasthan-304022, India
| |
Collapse
|
6
|
Fukalova Fukalova T, García-Martínez MD, Raigón MD. Nutritional Composition, Bioactive Compounds, and Volatiles Profile Characterization of Two Edible Undervalued Plants: Portulaca oleracea L. and Porophyllum ruderale (Jacq.) Cass. PLANTS (BASEL, SWITZERLAND) 2022; 11:377. [PMID: 35161358 PMCID: PMC8839399 DOI: 10.3390/plants11030377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 05/17/2023]
Abstract
Wild edible plants are an important source of healthy food and have played an important role in traditional Mediterranean diets. In this paper, quality characteristics were typified in Portulaca oleracea L. and Porophyllum ruderale (Jacq.) Cass, undervalued plants inherent to the spring-summer season in the Valencian coastal region. Nutritional composition and bioactive compounds were analyzed and compared between plants in wild and organic cultivation conditions. Proximate analysis was carried out according to Association of Official Analytical Chemists methods. Total antioxidants were measured as 2.2-diphenyl-1-picrylhydrazyl hydrate and total polyphenols content via the Folin-Ciocalteu procedure. The HS-SPME technique was used to characterize the volatiles profile, and the polyphenol profile was evaluated by HPLC. The most important microelement was iron. Total antioxidants ranged from 4392.16 to 7315.00 μmol Trolox·equivalents 100 g-1 fw, and total phenolic content ranged from 99.09 to 391.18 mg gallic acid equivalents·100 g-1 fw. Results show that the content of antioxidants and phenols was higher in wild species than in cultivated ones. The volatiles profile revealed that P. ruderale was rich in monoterpenoids (48.65-55.82%), and fatty alcohols were characteristic in P. oleracea species (16.21-54.18%). The results suggest that both plants could be healthy foods and could have new sustainable agro-ecological potential for the local commercial sector.
Collapse
Affiliation(s)
- Tamara Fukalova Fukalova
- Laboratorio de Fitoquímica y Productos Biológicos, Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador;
| | - María Dolores García-Martínez
- Instituto de Conservación y Mejora de la Agrobiodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - María Dolores Raigón
- Instituto de Conservación y Mejora de la Agrobiodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain;
| |
Collapse
|