1
|
Wilson L, Constantine R, Radford CA. Rethinking the design of marine protected areas in coastal habitats. MARINE POLLUTION BULLETIN 2025; 213:117642. [PMID: 39947027 DOI: 10.1016/j.marpolbul.2025.117642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 02/02/2025] [Accepted: 02/02/2025] [Indexed: 03/03/2025]
Abstract
The number and size of marine protected areas (MPAs), implemented globally to protect coastal habitats from human pressures, is growing annually. Commercial and recreational fishing are a commonly recognised stressor in coastal habitats, but the impact of sound pollution is largely overlooked in MPA design. Coastal habitats are taxonomically diverse, and this diversity is commonly represented in the soundscape, with many coastal species relying on effective communication for vital life functions, including breeding, prey selection, and predator avoidance. Sound pollution can mask communication and cause behavioural and physiological effects. More research is required to understand the role of sound in marine ecosystems, including which species actively produce sound. In the interim, the effects of sound pollution on those species which have been studied, and the relative ease with which sound pollution can be mitigated, strongly supports addressing this stressor in the design and management of existing and future MPAs.
Collapse
Affiliation(s)
- Louise Wilson
- Leigh Marine Laboratory, Institute of Marine Science, Waipapa Taumata Rau University of Auckland, 160 Goat Island Road, Leigh 0985, New Zealand.
| | - Rochelle Constantine
- Leigh Marine Laboratory, Institute of Marine Science, Waipapa Taumata Rau University of Auckland, 160 Goat Island Road, Leigh 0985, New Zealand; School of Biological Sciences, Waipapa Taumata Rau University of Auckland, Private Bag 92019, Tāmaki Makaurau Auckland 1142, New Zealand.
| | - Craig A Radford
- Leigh Marine Laboratory, Institute of Marine Science, Waipapa Taumata Rau University of Auckland, 160 Goat Island Road, Leigh 0985, New Zealand.
| |
Collapse
|
2
|
La Manna G, Guala I, Pansini A, Stipcich P, Arrostuto N, Ceccherelli G. Soundscape analysis can be an effective tool in assessing seagrass restoration early success. Sci Rep 2024; 14:20910. [PMID: 39245725 PMCID: PMC11381555 DOI: 10.1038/s41598-024-71975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024] Open
Abstract
Restoration of vulnerable marine habitats is becoming increasingly popular to cope with widespread habitat loss and the resulting decline in biodiversity and ecosystem services. Lately, restoration strategies have been employed to enhance the recovery of degraded meadows of the Mediterranean endemic seagrass Posidonia oceanica. Typically, habitat restoration success is evaluated by the persistence of foundation species after transplantation (e.g., plant survival and growth) on the short and long-term, although successful plant responses do not necessarily reflect the recovery of ecosystem biodiversity and functions. Recently, soundscape (the spatial, temporal and frequency attribute of ambient sound and types of sound sources characterizing it) has been related to different habitat conditions and community structures. Thus, a successful restoration action should lead to acoustic restoration and soundscape ecology could represent an important component of restoration monitoring, leading to assess successful habitat and community restoration. Here, we evaluated acoustic community and metrics in a P. oceanica restored meadow and tested whether the plant transplant effectiveness after one year was accompanied by a restored soundscape. With this goal, acoustic recordings from degraded, transplanted and reference meadows were collected in Sardinia (Italy) using passive acoustic monitoring devices. Soundscape at each meadow type was examined using both spectral analysis and classification of fish calls based on a catalogue of fish sounds from the Mediterranean Sea. Seven different fish sounds were recorded: most of them were present in the reference and transplanted meadows and were associated to Sciaena umbra and Scorpaena spp. Sound Pressure Level (SPL, in dB re: 1 μPa-rms) and Acoustic Complexity Index (ACI) were influenced by the meadow type. Particularly higher values were associated to the transplanted meadow. SPL and ACI calculated in the 200-2000 Hz frequency band were also related to high abundance of fish sounds (chorus). These results showed that meadow restoration may lead to the recovery of soundscape and the associated community, suggesting that short term acoustic monitoring can provide complementary information to evaluate seagrass restoration success.
Collapse
Affiliation(s)
- Gabriella La Manna
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Sassari, Italy.
- National Biodiversity Future Centre, Palermo, Italy.
| | - Ivan Guala
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Sassari, Italy
- International Marine Center, Oristano, Italy
| | - Arianna Pansini
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Sassari, Italy
| | - Patrizia Stipcich
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Sassari, Italy
- National Biodiversity Future Centre, Palermo, Italy
- Dipartimento di Biologia, Università di Napoli Federico II, Napoli, Italy
| | | | - Giulia Ceccherelli
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Sassari, Italy
| |
Collapse
|
3
|
Muñoz-Duque S, Fonseca PJ, Quintella B, Monteiro JG, Fernandez M, Silva R, Vieira M, Amorim MCP. Acoustic fish community in the Madeira Archipelago (North Atlantic Ocean): Characterization of sound diversity and daily patterns. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106600. [PMID: 38875901 DOI: 10.1016/j.marenvres.2024.106600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Marine ecosystems are increasingly subjected to anthropogenic pressures, which demands urgent monitoring plans. Understanding soundscapes can offer unique insights into the ocean status providing important information and revealing different sounds and their sources. Fishes can be prominent soundscape contributors, making passive acoustic monitoring (PAM) a potential tool to detect the presence of vocal fish species and to monitor changes in biodiversity. The major goal of this research was to provide a first reference of the marine soundscapes of the Madeira Archipelago focusing on fish sounds, as a basis for a long-term PAM program. Based on the literature, 102 potentially vocal and 35 vocal fish species were identified. Additionally 43 putative fish sound types were detected in audio recordings from two marine protected areas (MPAs) in the Archipelago: the Garajau MPA and the Desertas MPA. The Garajau MPA exhibited higher fish vocal activity, a greater variety of putative fish sound types and higher fish sound diversity. Lower abundance of sounds was found at night at both MPAs. Acoustic activity revealed a clear distinction between diurnal and nocturnal fish groups and demonstrated daily patterns of fish sound activity, suggesting temporal and spectral partitioning of the acoustic space. Pomacentridae species were proposed as candidates for some of the dominant sound types detected during the day, while scorpionfishes (Scorpaena spp.) were proposed as sources for some of the dominant nocturnal fish sounds. This study provides an important baseline about this community acoustic behaviour and is a valuable steppingstone for future non-invasive and cost-effective monitoring programs in Madeira.
Collapse
Affiliation(s)
- Sebastian Muñoz-Duque
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; IMBRSEA, Ghent University, 9000, Ghent, Belgium.
| | - Paulo J Fonseca
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, 1749-016, Lisboa, Portugal
| | - Bernardo Quintella
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - João Gama Monteiro
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), 9020-105, Funchal, Portugal; Faculty of Life Sciences, University of Madeira, 9020-105, Funchal, Portugal
| | - Marc Fernandez
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), 9020-105, Funchal, Portugal; Faculty of Life Sciences, University of Madeira, 9020-105, Funchal, Portugal
| | - Rodrigo Silva
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), 9020-105, Funchal, Portugal; Faculty of Life Sciences, University of Madeira, 9020-105, Funchal, Portugal
| | - Manuel Vieira
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - M Clara P Amorim
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| |
Collapse
|
4
|
Picciulin M, Bolgan M, Burchardt LS. Rhythmic properties of Sciaena umbra calls across space and time in the Mediterranean Sea. PLoS One 2024; 19:e0295589. [PMID: 38381755 PMCID: PMC10881014 DOI: 10.1371/journal.pone.0295589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/22/2023] [Indexed: 02/23/2024] Open
Abstract
In animals, the rhythmical properties of calls are known to be shaped by physical constraints and the necessity of conveying information. As a consequence, investigating rhythmical properties in relation to different environmental conditions can help to shed light on the relationship between environment and species behavior from an evolutionary perspective. Sciaena umbra (fam. Sciaenidae) male fish emit reproductive calls characterized by a simple isochronous, i.e., metronome-like rhythm (the so-called R-pattern). Here, S. umbra R-pattern rhythm properties were assessed and compared between four different sites located along the Mediterranean basin (Mallorca, Venice, Trieste, Crete); furthermore, for one location, two datasets collected 10 years apart were available. Recording sites differed in habitat types, vessel density and acoustic richness; despite this, S. umbra R-calls were isochronous across all locations. A degree of variability was found only when considering the beat frequency, which was temporally stable, but spatially variable, with the beat frequency being faster in one of the sites (Venice). Statistically, the beat frequency was found to be dependent on the season (i.e. month of recording) and potentially influenced by the presence of soniferous competitors and human-generated underwater noise. Overall, the general consistency in the measured rhythmical properties (isochrony and beat frequency) suggests their nature as a fitness-related trait in the context of the S. umbra reproductive behavior and calls for further evaluation as a communicative cue.
Collapse
Affiliation(s)
- Marta Picciulin
- CNR-National Research Council, ISMAR—Institute of Marine Sciences, Venice, Italy
| | - Marta Bolgan
- Ocean Science Consulting Limited, Dunbar, United Kingdom
| | - Lara S. Burchardt
- Max-Planck-Institut for Psycholinguistics, Nijmegen, Netherlands
- Leibniz-Zentrum Allgemeine Sprachwissenschaft, Berlin, Germany
| |
Collapse
|
5
|
Amorim MCP. The role of acoustic signals in fish reproductiona). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2959-2973. [PMID: 37947394 DOI: 10.1121/10.0022353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
This paper outlines my research path over three decades while providing a review on the role of fish sounds in mate choice and reproduction. It also intends to provide advice to young scientists and point toward future avenues in this field of research. An overview of studies on different fish model species shows that male mating acoustic signals can inform females and male competitors about their size (dominant frequency, amplitude, and sound pulse rate modulation), body condition (calling activity and sound pulse rate), and readiness to mate (calling rate, number of pulses in a sound). At least in species with parental care, such as toadfishes, gobies, and pomacentrids, calling activity seems to be the main driver of reproductive success. Playback experiments ran on a restricted number of species consistently revealed that females prefer vocal to silent males and select for higher calling rates. This personal synthesis concludes with the suggestion to increase knowledge on fish mating signals, especially considering the emerging use of fish sounds to monitor aquatic environments due to increasing threats, like noise pollution.
Collapse
Affiliation(s)
- M Clara P Amorim
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal and MARE-Marine and Environmental Sciences Centre, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
Mahale VP, Chanda K, Chakraborty B, Salkar T, Sreekanth GB. Biodiversity assessment using passive acoustic recordings from off-reef location-Unsupervised learning to classify fish vocalization. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:1534. [PMID: 37002105 DOI: 10.1121/10.0017248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/29/2023] [Indexed: 05/18/2023]
Abstract
We present the quantitative characterization of Grande Island's off-reef acoustic environment within the Zuari estuary during the pre-monsoon period. Passive acoustic recordings reveal prominent fish choruses. Detailed characteristics of the call employing oscillograms and individual fish call parameters of the segmented data include vocal groups such as Sciaenidae, Terapon theraps, and planktivorous as well as invertebrate sounds, e.g., snapping shrimp. We calculated biodiversity parameters (i) Acoustic Evenness Index (AEI), (ii) Acoustic Complexity Index (ACI), and mean sound pressure level (SPLrms) for three frequency bands such as full band (50-22 050 Hz), the low-frequency fish band (100-2000 Hz), and the high-frequency shrimp band (2000-20 000 Hz). Here, ACI and AEI metrics characterize the location's soundscape data effectively indicating increased biodiversity of fish species for both the low-frequency and high-frequency bands. Whereas variations for SPLrms are prominent for three frequency bands. Moreover, we employ unsupervised classification through a hybrid technique comprising principal component analysis (PCA) and K-means clustering for data features of four fish sound types. Employed PCA for dimensionality reduction and related K-means clustering successfully provides 96.20%, 76.81%, 100.00%, and 86.36% classification during the dominant fish chorus. Overall, classification performance (89.84%) is helpful in the real-time monitoring of the fish stocks in the ecosystem.
Collapse
Affiliation(s)
- Vasudev P Mahale
- Council of Scientific & Industrial Research, National Institute of Oceanography, Dona Paula, Goa 403 004, India
| | - Kranthikumar Chanda
- Council of Scientific & Industrial Research, National Institute of Oceanography, Dona Paula, Goa 403 004, India
| | - Bishwajit Chakraborty
- Council of Scientific & Industrial Research, National Institute of Oceanography, Dona Paula, Goa 403 004, India
| | - Tejas Salkar
- Council of Scientific & Industrial Research, National Institute of Oceanography, Dona Paula, Goa 403 004, India
| | - G B Sreekanth
- Indian Council of Agricultural Research, Central Coastal Agricultural Research Institute, Old-Goa, Goa 403 402, India
| |
Collapse
|