1
|
Zhu Y, Deng Y, Yao Y, Yao K, Pan X, Wu X, Liu Z, Zhang J, Su W, Liao W. Characteristics and Expression Analysis of the MYB-Related Subfamily Gene in Rosa chinensis. Int J Mol Sci 2024; 25:12854. [PMID: 39684565 DOI: 10.3390/ijms252312854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
MYB-related transcription factors (TFs) subfamily is a subfamily of MYB TFs, which are mainly involved in plant secondary metabolism, growth and development, and stress response. To explore the function of MYB-related subfamily genes in Rosa chinensis, this study systematically analyzed characters of the MYB-related subfamily members in R. chinensis with bioinformatic analysis using the genomic data of R. chinensis and investigated their expression characteristics using quantitative real-time PCR (qRT-PCR). The results show that 100 MYB-related proteins were identified in R. chinensis. Proteins are mainly found in the nucleus. Chromosome localization revealed that all MYB-related genes are mapped to seven chromosomes and are distributed in clusters. Collinear analysis shows that 13 pairs of MYB-related genes had a collinear relationship, indicating R. chinensis may have evolved its MYB-related subfamily gene through fragment duplication. The analysis of motifs and conserved domains shows that Motif 3 is the most conserved motif. There are numerous ABA and MeJA response elements in MYB-related genes. ABA and MeJA treatments significantly shortened the vase life of R. chinensis, while the flower diameter on day 3 was the largest, suggesting that ABA and MeJA might induce MYB-related gene expression during cut flower senescence. The expression of MYB-related genes is tissue specific, most of which show the highest expression levels in petals. Notably, among six plant growth regulator treatments, ABA treatment significantly increased RcMYB002 expression in R. chinensis, suggesting that RcMYB002 may be a crucial gene for ABA response. This study provides a reference for further research on the function of MYB-related genes in R. chinensis.
Collapse
Affiliation(s)
- Yongjie Zhu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzheng Deng
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yandong Yao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Kangding Yao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuejuan Pan
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuetong Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhiya Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jitao Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Wanyi Su
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Gao R, Chen L, Chen F, Ma H. Genome-wide identification of SHMT family genes in alfalfa (Medicago sativa) and its functional analyses under various abiotic stresses. BMC Genomics 2024; 25:781. [PMID: 39134931 PMCID: PMC11318161 DOI: 10.1186/s12864-024-10637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Alfalfa (Medicago sativa L.) is the most widely planted legume forage and one of the most economically valuable crops in the world. Serine hydroxymethyltransferase (SHMT), a pyridoxal phosphate-dependent enzyme, plays crucial roles in plant growth, development, and stress responses. To date, there has been no comprehensive bioinformatics investigation conducted on the SHMT genes in M. sativa. RESULTS Here, we systematically analyzed the phylogenetic relationship, expansion pattern, gene structure, cis-acting elements, and expression profile of the MsSHMT family genes. The result showed that a total of 15 SHMT members were identified from the M. sativa genome database. Phylogenetic analysis demonstrated that the MsSHMTs can be divided into 4 subgroups and conserved with other plant homologues. Gene structure analysis found that the exons of MsSHMTs ranges from 3 to 15. Analysis of cis-acting elements found that each of the MsSHMT genes contained different kinds of hormones and stress-related cis-acting elements in their promoter regions. Expression and function analysis revealed that MsSHMTs expressed in all plant tissues. qRT-PCR analysis showed that MsSHMTs induced by ABA, Salt, and drought stresses. CONCLUSIONS These results provided definite evidence that MsSHMTs might involve in growth, development and adversity responses in M. sativa, which laid a foundation for future functional studies of MsSHMTs.
Collapse
Affiliation(s)
- Rong Gao
- College of Pratacultural Science, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Gansu Agricultural University (36.0° N, 103 8° E), Yingmencun, Anning District, Gansu province, Lanzhou, Gansu, 730070, China
| | - Lijuan Chen
- College of Pratacultural Science, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Gansu Agricultural University (36.0° N, 103 8° E), Yingmencun, Anning District, Gansu province, Lanzhou, Gansu, 730070, China
| | - Fenqi Chen
- College of Pratacultural Science, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Gansu Agricultural University (36.0° N, 103 8° E), Yingmencun, Anning District, Gansu province, Lanzhou, Gansu, 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Gansu Agricultural University (36.0° N, 103 8° E), Yingmencun, Anning District, Gansu province, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
3
|
Singh P, Kumari A, Khaladhar VC, Singh N, Pathak PK, Kumar V, Kumar RJ, Jain P, Thakur JK, Fernie AR, Bauwe H, Raghavendra AS, Gupta KJ. Serine hydroxymethyltransferase6 is involved in growth and resistance against pathogens via ethylene and lignin production in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1920-1936. [PMID: 38924321 DOI: 10.1111/tpj.16897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Photorespiratory serine hydroxymethyltransferases (SHMTs) are important enzymes of cellular one-carbon metabolism. In this study, we investigated the potential role of SHMT6 in Arabidopsis thaliana. We found that SHMT6 is localized in the nucleus and expressed in different tissues during development. Interestingly SHMT6 is inducible in response to avirulent, virulent Pseudomonas syringae and to Fusarium oxysporum infection. Overexpression of SHMT6 leads to larger flowers, siliques, seeds, roots, and consequently an enhanced overall biomass. This enhanced growth was accompanied by increased stomatal conductance and photosynthetic capacity as well as ATP, protein, and chlorophyll levels. By contrast, a shmt6 knockout mutant displayed reduced growth. When challenged with Pseudomonas syringae pv tomato (Pst) DC3000 expressing AvrRpm1, SHMT6 overexpression lines displayed a clear hypersensitive response which was characterized by enhanced electrolyte leakage and reduced bacterial growth. In response to virulent Pst DC3000, the shmt6 mutant developed severe disease symptoms and becomes very susceptible, whereas SHMT6 overexpression lines showed enhanced resistance with increased expression of defense pathway associated genes. In response to Fusarium oxysporum, overexpression lines showed a reduction in symptoms. Moreover, SHMT6 overexpression lead to enhanced production of ethylene and lignin, which are important components of the defense response. Collectively, our data revealed that SHMT6 plays an important role in development and defense against pathogens.
Collapse
Affiliation(s)
- Pooja Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - Namrata Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pradeep Kumar Pathak
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vinod Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ritika Jantu Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Priyanka Jain
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- AIMMSCR, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Jitendra Kumar Thakur
- Plant Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Hermann Bauwe
- Department of Plant Physiology, University of Rostock, Rostock, D-18051, Germany
| | - A S Raghavendra
- School of Life Sciences, Department of Plant Sciences University of Hyderabad, Hyderabad, 500046, India
| | | |
Collapse
|
4
|
Wang Y, Liu Z, Li L, Pan X, Yao K, Wei W, Liao W, Wang C. The Characteristics and Expression Analysis of the Tomato SlRBOH Gene Family under Exogenous Phytohormone Treatments and Abiotic Stresses. Int J Mol Sci 2024; 25:5780. [PMID: 38891968 PMCID: PMC11171631 DOI: 10.3390/ijms25115780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Respiratory burst oxidase homologs (RBOHs), also known as NADPH oxidases, contribute significantly to the production of ROS in plants, alongside other major sources such as photosynthesis and electron transport in chloroplasts. It has been shown that plant RBOHs play an active role in plant adversity response and electron transport. However, the phylogenetic analysis and characterization of the SlRBOH gene family in tomatoes have not been systematically studied. This study identified 11 SlRBOH genes in the tomato genome using a genome-wide search approach. The physicochemical properties, chromosomal localization, subcellular localization, secondary structure, conserved motifs, gene structure, phylogenetics, collinear relationships, cis-acting elements, evolutionary selection pressures, tissue expressions, and expression patterns under exogenous phytohormones (ABA and MeJA) and different abiotic stresses were also analyzed. We found that the SlRBOHs are distributed across seven chromosomes, collinearity reflecting their evolutionary relationships with corresponding genes in Arabidopsis thaliana and rice. Additionally, all the SlRBOH members have five conserved domains and 10 conserved motifs and have similar gene structures. In addition, the results of an evolutionary selection pressure analysis showed that SlRBOH family members evolved mainly by purifying selection, making them more structurally stable. Cis-acting element analyses showed that SlRBOHs were responsive to light, hormone, and abiotic stresses. Tissue expression analysis showed that SlRBOH family members were expressed in all tissues of tomato to varying degrees, and most of the SlRBOHs with the strongest expression were found in the roots. In addition, the expressions of tomato SlRBOH genes were changed by ABA, MeJA, dark period extension, NaCl, PEG, UV, cold, heat, and H2O2 treatments. Specifically, SlRBOH4 was highly expressed under NaCl, PEG, heat, and UV treatments, while SlRBOH2 was highly expressed under cold stress. These results provide a basis for further studies on the function of SlRBOHs in tomato.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Yinmen Village, Anning District, Lanzhou 730070, China; (Y.W.); (Z.L.); (L.L.); (X.P.); (K.Y.); (W.W.); (W.L.)
| |
Collapse
|
5
|
Zhang Z, Hou X, Gao R, Li Y, Ding Z, Huang Y, Yao K, Yao Y, Liang C, Liao W. CsSHMT3 gene enhances the growth and development in cucumber seedlings under salt stress. PLANT MOLECULAR BIOLOGY 2024; 114:52. [PMID: 38696020 DOI: 10.1007/s11103-024-01451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/29/2024] [Indexed: 05/09/2024]
Abstract
Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.
Collapse
Affiliation(s)
- Zhuohui Zhang
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, PR China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, PR China
| | - Rong Gao
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, PR China
| | - Yihua Li
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, PR China
| | - Zhiqi Ding
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, PR China
| | - Yi Huang
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, PR China
| | - Kangding Yao
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, PR China
| | - Yandong Yao
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, PR China
| | - Cheng Liang
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, PR China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, PR China.
| |
Collapse
|
6
|
Xiong J, Liu Y, Wu P, Bian Z, Li B, Zhang Y, Zhu B. Identification and virus-induced gene silencing (VIGS) analysis of methyltransferase affecting tomato (Solanum lycopersicum) fruit ripening. PLANTA 2024; 259:109. [PMID: 38558186 DOI: 10.1007/s00425-024-04384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
MAIN CONCLUSION Six methyltransferase genes affecting tomato fruit ripening were identified through genome-wide screening, VIGS assay, and expression pattern analysis. The data provide the basis for understanding new mechanisms of methyltransferases. Fruit ripening is a critical stage for the formation of edible quality and seed maturation, which is finely modulated by kinds of factors, including genetic regulators, hormones, external signals, etc. Methyltransferases (MTases), important genetic regulators, play vital roles in plant development through epigenetic regulation, post-translational modification, or other mechanisms. However, the regulatory functions of numerous MTases except DNA methylation in fruit ripening remain limited so far. Here, six MTases, which act on different types of substrates, were identified to affect tomato fruit ripening. First, 35 MTase genes with relatively high expression at breaker (Br) stage of tomato fruit were screened from the tomato MTase gene database encompassing 421 genes totally. Thereafter, six MTase genes were identified as potential regulators of fruit ripening via virus-induced gene silencing (VIGS), including four genes with a positive regulatory role and two genes with a negative regulatory role, respectively. The expression of these six MTase genes exhibited diverse patterns during the fruit ripening process, and responded to various external ripening-related factors, including ethylene, 1-methylcyclopropene (1-MCP), temperature, and light exposure. These results help to further elaborate the biological mechanisms of MTase genes in tomato fruit ripening and enrich the understanding of the regulatory mechanisms of fruit ripening involving MTases, despite of DNA MTases.
Collapse
Affiliation(s)
- Jiaxin Xiong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Ye Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Peiwen Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Zheng Bian
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Bowen Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Yifan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
7
|
Li L, Liu Z, Pan X, Yao K, Wang Y, Yang T, Huang G, Liao W, Wang C. Genome-Wide Identification and Characterization of Tomato Fatty Acid β-Oxidase Family Genes KAT and MFP. Int J Mol Sci 2024; 25:2273. [PMID: 38396949 PMCID: PMC10889323 DOI: 10.3390/ijms25042273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Fatty acids and their derivatives play a variety of roles in living organisms. Fatty acids not only store energy but also comprise membrane lipids and act as signaling molecules. There are three main proteins involved in the fatty acid β-oxidation pathway in plant peroxisomes, including acyl-CoA oxidase (ACX), multifunctional protein (MFP), and 3-ketolipoyl-CoA thiolase (KAT). However, genome-scale analysis of KAT and MFP has not been systemically investigated in tomatoes. Here, we conducted a bioinformatics analysis of KAT and MFP genes in tomatoes. Their physicochemical properties, protein secondary structure, subcellular localization, gene structure, phylogeny, and collinearity were also analyzed. In addition, a conserved motif analysis, an evolutionary pressure selection analysis, a cis-acting element analysis, tissue expression profiling, and a qRT-PCR analysis were conducted within tomato KAT and MFP family members. There are five KAT and four MFP family members in tomatoes, which are randomly distributed on four chromosomes. By analyzing the conserved motifs of tomato KAT and MFP family members, we found that both KAT and MFP members are highly conserved. In addition, the results of the evolutionary pressure selection analysis indicate that the KAT and MFP family members have evolved mainly from purifying selection, which makes them more structurally stable. The results of the cis-acting element analysis show that SlKAT and SlMFP with respect may respond to light, hormones, and adversity stresses. The tissue expression analysis showed that KAT and MFP family members have important roles in regulating the development of floral organs as well as fruit ripening. The qRT-PCR analysis revealed that the expressions of SlKAT and SlMFP genes can be regulated by ABA, MeJA, darkness, NaCl, PEG, UV, cold, heat, and H2O2 treatments. These results provide a basis for the involvement of the SlKAT and SlMFP genes in tomato floral organ development and abiotic stress response, which lay a foundation for future functional study of SlKAT and SlMFP in tomatoes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Yinmen Village, Anning District, Lanzhou 730070, China; (L.L.); (Z.L.); (X.P.); (K.Y.); (Y.W.); (T.Y.); (G.H.); (W.L.)
| |
Collapse
|
8
|
Pan X, Wang C, Liu Z, Gao R, Feng L, Li A, Yao K, Liao W. Identification of ABF/AREB gene family in tomato ( Solanum lycopersicum L.) and functional analysis of ABF/AREB in response to ABA and abiotic stresses. PeerJ 2023; 11:e15310. [PMID: 37163152 PMCID: PMC10164373 DOI: 10.7717/peerj.15310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/06/2023] [Indexed: 05/11/2023] Open
Abstract
Abscisic acid (ABA) is a plant hormone that plays an important regulatory role in plant growth and stress response. The AREB (ABA-responsive element binding protein)/ABF (ABRE-binding factor) are important ABA-signaling components that participate in abiotic stress response. However, genome-scale analysis of ABF/AREB has not been systemically investigated in tomato. This study was conducted to identify tomato ABF/AREB family members and analyze their response to ABA and abiotic stresses. The results show that a total of 10 ABF/AREB members were identified in tomato, which are randomly distributed on five chromosomes. Domain analysis showed that these members exhibit high protein similarity, especially in the basic leucine zipper (bZIP) domain region. Subcellular localization analysis indicated that all 10 ABF/AREB members are localized in the nucleus. Phylogenetic tree analysis showed that tomato ABF/AREB genes are divided into two groups, and they are similar with the orthologs of other plants. The analysis of cis-acting elements showed that most tomato ABF/AREB genes contain a variety of hormones and stress-related elements. Expression profiles of different tissues indicated that SlABF2 and SlABF10 play an important role in fruit ripening. Finally, qRT-PCR analysis revealed that 10 tomato ABF/AREB genes respond to ABA, with SlABF3 being the most sensitive. SlABF3, SlABF5 and SlABF10 positively respond to salt and cold stresses. SlABF1, SlABF3 and SlABF10 are significantly induced under UV radiation treatment. SlABF3 and SlABF5 are significantly induced in osmotic stress. Overall, this study may provide insight into the role of tomato ABF/AREB homologues in plant response to abiotic stresses, which laid a foundation for future functional study of ABF/AREB in tomato.
Collapse
|
9
|
Ma'ruf IF, Restiawaty E, Syihab SF, Honda K. Characterization of thermostable serine hydroxymethyltransferase for β-hydroxy amino acids synthesis. Amino Acids 2023; 55:75-88. [PMID: 36528680 PMCID: PMC9876860 DOI: 10.1007/s00726-022-03205-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/21/2022] [Indexed: 12/23/2022]
Abstract
β-hydroxy amino acids, such as serine, threonine, and phenylserine, are important compounds for medical purposes. To date, there has been only limited exploration of thermostable serine hydroxylmethyltransferase (SHMT) for the synthesis of these amino acids, despite the great potential that thermostable enzymes may offer for commercial use due to their high stability and catalytic efficiencies. ITBSHMT_1 (ITB serine hydroxylmethyltransferase clone number 1) from thermophilic and methanol-tolerant bacteria Pseudoxanthomonas taiwanensis AL17 was successfully cloned. Biocomputational analysis revealed that ITBSHMT_1 contains Pyridoxal-3'-phosphate and tetrahydrofolatebinding residues. Structural comparisons show that ITBSHMT_1 has 5 additional residues VSRQG on loop near PLP-binding site as novel structural feature which distinguish this enzyme with other characterized SHMTs. In silico mutation revealed that the fragment might have very essential role in maintaining of PLP binding on structure of ITBSHMT_1. Recombinant protein was produced in Escherichia coli Rosetta 2(DE3) in soluble form and purified using NiNTA affinity chromatography. The purified protein demonstrated the best activity at 80 °C and pH 7.5 based on the retro aldol cleavage of phenylserine. Activity decreased significantly in the presence of 3 mM transition metal ions but increased in the presence of 30 mM β-mercaptoethanol. ITBSHMT_1 demonstrated Vmax, Km, Kcat, and Kcat/Km at 242 U/mg, 23.26 mM, 186/s, and 8/(mM.s), respectively. The aldol condensation reaction showed the enzyme's best activity at 80 °C for serine, threonine, or phenylserine, with serine synthesis showing the highest specific activity. Biocomputational analysis revealed that high intramolecular interaction within the 3D structure of ITBSHMT_1 might be correlated with the enzyme's high thermal stability. The above data suggest that ITBSHMT_1 is a potential and novel enzyme for the production of various β-hydroxy amino acids.
Collapse
Affiliation(s)
- Ilma Fauziah Ma'ruf
- Doctoral Program of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
| | - Elvi Restiawaty
- Chemical Engineering Process Design and Development Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Syifa Fakhomah Syihab
- Faculty of Sports and Health Education, Universitas Pendidikan Indonesia, Bandung, Indonesia
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, Suita, Japan
| |
Collapse
|
10
|
Wai AH, Rahman MM, Waseem M, Cho LH, Naing AH, Jeon JS, Lee DJ, Kim CK, Chung MY. Comprehensive Genome-Wide Analysis and Expression Pattern Profiling of PLATZ Gene Family Members in Solanum Lycopersicum L. under Multiple Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:3112. [PMID: 36432841 PMCID: PMC9697139 DOI: 10.3390/plants11223112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 05/29/2023]
Abstract
PLATZ (plant AT-rich sequence and zinc-binding) family proteins with two conserved zinc-dependent DNA-binding motifs are transcription factors specific to the plant kingdom. The functions of PLATZ proteins in growth, development, and adaptation to multiple abiotic stresses have been investigated in various plant species, but their role in tomato has not been explored yet. In the present work, 20 non-redundant Solanum lycopersicum PLATZ (SlPLATZ) genes with three segmentally duplicated gene pairs and four tandemly duplicated gene pairs were identified on eight tomato chromosomes. The comparative modeling and gene ontology (GO) annotations of tomato PLATZ proteins indicated their probable roles in defense response, transcriptional regulation, and protein metabolic processes as well as their binding affinity for various ligands, including nucleic acids, peptides, and zinc. SlPLATZ10 and SlPLATZ17 were only expressed in 1 cm fruits and flowers, respectively, indicating their preferential involvement in the development of these organs. The expression of SlPLATZ1, SlPLATZ12, and SlPLATZ19 was up- or down-regulated following exposure to various abiotic stresses, whereas that of SlPLATZ11 was induced under temperature stresses (i.e., cold and heat stress), revealing their probable function in the abiotic stress tolerance of tomato. Weighted gene co-expression network analysis corroborated the aforementioned findings by spotlighting the co-expression of several stress-associated genes with SlPLATZ genes. Confocal fluorescence microscopy revealed the localization of SlPLATZ−GFP fusion proteins in the nucleus, hinting at their functions as transcription factors. These findings provide a foundation for a better understanding of the structure and function of PLATZ genes and should assist in the selection of potential candidate genes involved in the development and abiotic stress adaptation in tomato.
Collapse
Affiliation(s)
- Antt Htet Wai
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon 57922, Republic of Korea
- Department of Biology, Yangon University of Education, Kamayut Township 11041, Yangon Region, Myanmar
| | - Md Mustafizur Rahman
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Muhammad Waseem
- Department of Botany, University of Narowal, Narowal 51600, Pakistan
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang-si 50463, Gyeongsangnam-do, Republic of Korea
| | - Aung Htay Naing
- Department of Horticulture, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Do-jin Lee
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon 57922, Republic of Korea
| | - Chang-Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi-Young Chung
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon 57922, Republic of Korea
| |
Collapse
|
11
|
Li H, Li Y, Zhang X, Cai K, Li Y, Wang Q, Qu G, Han R, Zhao X. Genome-wide identification and expression analysis of the MADS-box gene family during female and male flower development in Juglans mandshurica. FRONTIERS IN PLANT SCIENCE 2022; 13:1020706. [PMID: 36388573 PMCID: PMC9664150 DOI: 10.3389/fpls.2022.1020706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The MADS-box gene family plays a crucial role in multiple developmental processes of plants, especially in floral organ specification and the regulation of fruit development and ripening. Juglans mandshurica is a precious fruit material whose quality and yield are determined by floral organ development. The molecular mechanism of J. mandshurica female and male flower development depending on MADS-box genes remains unclear. In our study, 67 JmMADS genes were identified and unevenly distributed on 15 of 16 J. mandshurica chromosomes. These genes were divided into two types [type I (Mα, Mγ, Mδ) and type II (MIKC)]. The gene structure and motif analyses showed that most genes belonging to the same type had similar gene structures and conserved motifs. The analysis of syntenic relationships showed that MADS-box genes in J. mandshurica, J. sigillata, and J. regia exhibited the highest homology and great collinearity. Analysis of cis-acting elements showed that JmMADS gene promoter regions contained light, stress and hormone response cis-acting elements. The gene expression patterns demonstrated that 30 and 26 JmMADS genes were specifically expressed in the female and male flowers, respectively. In addition, 12 selected genes common to J. mandshurica female and male flowers were significantly upregulated at the mature stage and were used to validate the reliability of the transcriptome data using quantitative real-time PCR. This comprehensive and systematic analysis of J. mandshurica MADS-box genes lays a foundation for future studies on MADS-box gene family functions.
Collapse
Affiliation(s)
- Hanxi Li
- State Key Laboratory of tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Yuxi Li
- State Key Laboratory of tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xinxin Zhang
- State Key Laboratory of tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Kewei Cai
- State Key Laboratory of tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yan Li
- State Key Laboratory of tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Qingcheng Wang
- State Key Laboratory of tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guanzheng Qu
- State Key Laboratory of tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Rui Han
- State Key Laboratory of tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- State Key Laboratory of tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
12
|
Sun H, Ren M, Zhang J. Genome-wide identification and expression analysis of fibrillin ( FBN) gene family in tomato ( Solanum lycopersicum L.). PeerJ 2022; 10:e13414. [PMID: 35573169 PMCID: PMC9097668 DOI: 10.7717/peerj.13414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/19/2022] [Indexed: 01/14/2023] Open
Abstract
Background Fibrillin (FBN) proteins are widely distributed in the photosynthetic organs. The members of FBN gene family play important roles in plant growth and development, and response to hormone and stresses. Tomato is a vegetable crop with significantly economic value and model plant commonly used in research. However, the FBN family has not been systematical studied in tomato. Methods In this study, 14 FBN genes were identified in tomato genome by Pfam and Hmmer 3.0 software. ExPASy, MEGA 6.0, MEME, GSDS, TBtools, PlantCARE and so on were used for physical and chemical properties analysis, phylogenetic analysis, gene structure and conserved motifs analysis, collinearity analysis and cis-acting element analysis of FBN family genes in tomato. Expression characteristics of SlFBNs in different tissues, fruit shape near isogenic lines (NILs), Pst DC3000 and ABA treatments were analyzed based on transcriptome data and quantitative Real-time qPCR (qRT-PCR) analysis. Results The SlFBN family was divided into 11 subgroups. There were 8 FBN homologous gene pairs between tomato and Arabidopsis. All the members of SlFBN family contained PAP conserved domain, but their gene structure and conserved motifs showed apparent differences. The cis-acting elements of light and hormone (especially ethylene, methyl jasmonate (MeJA) and abscisic acid (ABA)) were widely distributed in the SlFBN promoter regions. The expression analysis found that most of SlFBNs were predominantly expressed in leaves of Heinz and S. pimpinellifolium LA1589, and showed higher expressions in mature or senescent leaves than in young leaves. Expression analysis of different tissues and fruit shape NILs indicated SlFBN1, SlFBN2b and SlFBN7a might play important roles during tomato fruit differentiation. All of the SlFBNs responded to Pst DC3000 and ABA treatments. The results of this study contribute to exploring the functions and molecular mechanisms of SlFBNs in leaf development, fruit differentiation, stress and hormone responses.
Collapse
Affiliation(s)
- Huiru Sun
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi Province, China
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, Shaanxi Province, China
| | - Min Ren
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi Province, China
| | - Jianing Zhang
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi Province, China
| |
Collapse
|