1
|
Sun T, Yu H, Li D, Zhang H, Fu J. Emerging role of metabolic reprogramming in hyperoxia-associated neonatal diseases. Redox Biol 2023; 66:102865. [PMID: 37659187 PMCID: PMC10480540 DOI: 10.1016/j.redox.2023.102865] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
Oxygen therapy is common during the neonatal period to improve survival, but it can increase the risk of oxygen toxicity. Hyperoxia can damage multiple organs and systems in newborns, commonly causing lung conditions such as bronchopulmonary dysplasia and pulmonary hypertension, as well as damage to other organs, including the brain, gut, and eyes. These conditions are collectively referred to as newborn oxygen radical disease to indicate the multi-system damage caused by hyperoxia. Hyperoxia can also lead to changes in metabolic pathways and the production of abnormal metabolites through a process called metabolic reprogramming. Currently, some studies have analyzed the mechanism of metabolic reprogramming induced by hyperoxia. The focus has been on mitochondrial oxidative stress, mitochondrial dynamics, and multi-organ interactions, such as the lung-gut, lung-brain, and brain-gut axes. In this article, we provide an overview of the major metabolic pathway changes reported in hyperoxia-associated neonatal diseases and explore the potential mechanisms of metabolic reprogramming. Metabolic reprogramming induced by hyperoxia can cause multi-organ metabolic disorders in newborns, including abnormal glucose, lipid, and amino acid metabolism. Moreover, abnormal metabolites may predict the occurrence of disease, suggesting their potential as therapeutic targets. Although the mechanism of metabolic reprogramming caused by hyperoxia requires further elucidation, mitochondria and the gut-lung-brain axis may play a key role in metabolic reprogramming.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Danni Li
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jianhua Fu
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Bettag J, Po L, Cunningham C, Tallam R, Kurashima K, Nagarapu A, Hutchinson C, Morfin S, Nazzal M, Lin CJ, Mathur A, Aurora R, Jain AK. Novel Therapeutic Approaches for Mitigating Complications in Short Bowel Syndrome. Nutrients 2022; 14:4660. [PMID: 36364922 PMCID: PMC9658734 DOI: 10.3390/nu14214660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Short bowel syndrome (SBS) is a particularly serious condition in which the small intestine does not absorb sufficient nutrients for biological needs, resulting in severe illness and potentially death if not treated. Given the important role of the gut in many signaling cascades throughout the body, SBS results in disruption of many pathways and imbalances in various hormones. Due to the inability to meet sufficient nutritional needs, an intravenous form of nutrition, total parental nutrition (TPN), is administered. However, TPN presents difficulties such as severe liver injury and altered signaling secondary to the continued lack of luminal contents. This manuscript aims to summarize relevant studies into the systemic effects of TPN on systems such as the gut-brain, gut-lung, and gut-liver axis, as well as present novel therapeutics currently under use or investigation as mitigation strategies for TPN induced injury.
Collapse
Affiliation(s)
- Jeffery Bettag
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Loren Po
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Cassius Cunningham
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Rahul Tallam
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Kento Kurashima
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Aakash Nagarapu
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Chelsea Hutchinson
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Sylvia Morfin
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Mustafa Nazzal
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Chien-Jung Lin
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Amit Mathur
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Rajeev Aurora
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| | - Ajay K. Jain
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| |
Collapse
|