1
|
Slominski AT, Kim TK, Janjetovic Z, Slominski RM, Ganguli-Indra G, Athar M, Indra AK, Reiter RJ, Kleszczyński K. Melatonin and the Skin: Current Progress and Perspectives for Human Health. J Invest Dermatol 2025; 145:1345-1360.e2. [PMID: 39918482 PMCID: PMC12103292 DOI: 10.1016/j.jid.2024.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 05/25/2025]
Abstract
Skin has the capacity to produce and metabolize melatonin into biologically active metabolites. These metabolites exert phenotypic activities through receptor-dependent and receptor-independent action, including direct antioxidant activity, interaction with regulatory proteins, and regulation of mitochondrial function. They can act on G-protein-coupled melatonin receptors (MT1 and MT2) as well as nuclear aryl hydrocarbon receptor and peroxisome proliferator-activated receptor γ receptors. These metabolic pathways, together with receptor- and nonreceptor-mediated phenotypic activities of its intermediates, has been identified as a cutaneous melatoninergic system. Its pharmacological modulation and topical application of melatonin or its metabolites can be used to prevent and treat skin disorders and cutaneous aging.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA; Cancer Chemoprevention Program, Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA; Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, Alabama, USA.
| | - Tae-Kang Kim
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zorica Janjetovic
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Radomir M Slominski
- Department of Medicine-Immunology/Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA; Informatics Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Mohammad Athar
- Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA; Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, Alabama, USA
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA; Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
2
|
Ma Y, Wang Y, Tong S, Wang Y, Wang Z, Sui R, Yang K, Witte F, Yang S. Porous metal materials for applications in orthopedic field: A review on mechanisms in bone healing. J Orthop Translat 2024; 49:135-155. [PMID: 40226784 PMCID: PMC11993841 DOI: 10.1016/j.jot.2024.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 04/15/2025] Open
Abstract
Background Porous metal materials have been widely studied for applications in orthopedic field, owing to their excellent features and properties in bone healing. Porous metal materials with different compositions, manufacturing methods, and porosities have been developed. Whereas, the systematic mechanisms on how porous metal materials promote bone healing still remain unclear. Methods This review is concerned on the porous metal materials from three aspects with accounts of specific mechanisms, inflammatory regulation, angiogenesis and osteogenesis. We place great emphasis on different cells regulated by porous metal materials, including mesenchymal stem cells (MSCs), macrophages, endothelial cells (ECs), etc. Result The design of porous metal materials is diversified, with its varying pore sizes, porosity material types, modification methods and coatings help researchers create the most experimentally suitable and clinically effective scaffolds. Related signal pathways presented from different functions showed that porous metal materials could change the behavior of cells and the amount of cytokines, achieving good influence on osteogenesis. Conclusion This article summarizes the current progress achieved in the mechanism of porous metal materials promoting bone healing. By modulating the cellular behavior and physiological status of a spectrum of cellular constituents, such as macrophages, osteoblasts, and osteoclasts, porous metal materials are capable of activating different pathways and releasing regulatory factors, thus exerting pivotal influence on improving the bone healing effect. The translational potential of this article Porous metal materials play a vital role in the treatment of bone defects. Unfortunately, although an increasing number of studies have been concentrated on the effect of porous metal materials on osteogenesis-related cells, the comprehensive regulation of porous metal materials on the host cell functions during bone regeneration and the related intrinsic mechanisms remain unclear. This review summarizes different design methods for porous metal materials to fabricate the most suitable scaffolds for bone remodeling, and systematically reviews the corresponding mechanisms on inflammation, angiogenesis and osteogenesis of porous metal materials. This review can provide more theoretical framework and innovative optimization for the application of porous metal materials in orthopedics, dentistry, and other areas, thereby advancing their clinical utility and efficacy.
Collapse
Affiliation(s)
- Yutong Ma
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yi Wang
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Shuang Tong
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yuehan Wang
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Zhuoya Wang
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Rongze Sui
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Frank Witte
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité Medical University, Assmannshauser Strasse 4–6, 14197, Berlin, Germany
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
3
|
Greco G, Di Lorenzo R, Ricci L, Di Serio T, Vardaro E, Laneri S. Clinical Studies Using Topical Melatonin. Int J Mol Sci 2024; 25:5167. [PMID: 38791203 PMCID: PMC11121188 DOI: 10.3390/ijms25105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Melatonin is ubiquitously present in all animals and plants, where it exerts a variety of physiological activities thanks to its antioxidant properties and its key role as the first messenger of extracellular signaling functions. Most of the clinical studies on melatonin refer to its widespread oral use as a dietary supplement to improve sleep. A far smaller number of articles describe the clinical applications of topical melatonin to treat or prevent skin disorders by exploiting its antioxidant and anti-inflammatory activities. This review focuses on the clinical studies in which melatonin was applied on the skin as a photoprotective, anti-aging, or hair growth-promoting agent. The methodologies and results of such studies are discussed to provide an overall picture of the state of the art in this intriguing field of research. The clinical studies in which melatonin was applied on the skin before exposure to radiation (UV, sunlight, and high-energy beams) were all characterized by an appropriate design (randomized, double-blind, and placebo-controlled) and strongly support its clinical efficacy in preventing or reducing skin damage such as dermatitis, erythema, and sunburn. Most of the studies examined in this review do not provide a clear demonstration of the efficacy of topical melatonin as a skin anti-aging or as a hair growth-promoting agent owing to limitations in their design and/or to the use of melatonin combined with extra active ingredients, except for one trial that suggests a possible beneficial role of melatonin in treating some forms of alopecia in women. Further research efforts are required to reach definitive conclusions concerning the actual benefits of topical melatonin to counteract skin aging and hair loss.
Collapse
Affiliation(s)
| | | | | | | | | | - Sonia Laneri
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (G.G.); (R.D.L.); (L.R.); (T.D.S.); (E.V.)
| |
Collapse
|
4
|
Park S, Lim YJ, Kim HS, Shin HJ, Kim JS, Lee JN, Lee JH, Bae S. Phloroglucinol Enhances Anagen Signaling and Alleviates H 2O 2-Induced Oxidative Stress in Human Dermal Papilla Cells. J Microbiol Biotechnol 2024; 34:812-827. [PMID: 38480001 DOI: 10.4014/jmb.2311.11047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 05/16/2024]
Abstract
Phloroglucinol (PG) is one of the abundant isomeric benzenetriols in brown algae. Due to its polyphenolic structure, PG exhibits various biological activities. However, the impact of PG on anagen signaling and oxidative stress in human dermal papilla cells (HDPCs) is unknown. In this study, we investigated the therapeutic potential of PG for improving hair loss. A non-cytotoxic concentration of PG increased anagen-inductive genes and transcriptional activities of β-Catenin. Since several anagen-inductive genes are regulated by β-Catenin, further experiments were performed to elucidate the molecular mechanism by which PG upregulates anagen signaling. Various biochemical analyses revealed that PG upregulated β-Catenin signaling without affecting the expression of Wnt. In particular, PG elevated the phosphorylation of protein kinase B (AKT), leading to an increase in the inhibitory phosphorylation of glycogen synthase kinase 3 beta (GSK3β) at serine 9. Treatment with the selective phosphoinositide 3-kinase/AKT inhibitor, LY294002, restored the increased AKT/GSK3β/β-Catenin signaling and anagen-inductive proteins induced by PG. Moreover, conditioned medium from PG-treated HDPCs promoted the proliferation and migration of human epidermal keratinocytes via the AKT signaling pathway. Subsequently, we assessed the antioxidant activities of PG. PG ameliorated the elevated oxidative stress markers and improved the decreased anagen signaling in hydrogen peroxide (H2O2)-induced HDPCs. The senescence-associated β-galactosidase staining assay also demonstrated that the antioxidant abilities of PG effectively mitigated H2O2-induced senescence. Overall, these results indicate that PG potentially enhances anagen signaling and improves oxidative stress-induced cellular damage in HDPCs. Therefore, PG can be employed as a novel therapeutic component to ameliorate hair loss symptoms.
Collapse
Affiliation(s)
- Seokmuk Park
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ye Jin Lim
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee Su Kim
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee-Jae Shin
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji-Seon Kim
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae Nam Lee
- Department of Cosmetology, Graduate School of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
5
|
Rong Y, Ma R, Zhang Y, Guo Z. Melatonin's effect on hair follicles in a goat ( Capra hircus) animal model. Front Endocrinol (Lausanne) 2024; 15:1361100. [PMID: 38628581 PMCID: PMC11018883 DOI: 10.3389/fendo.2024.1361100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Melatonin can treat androgenetic alopecia in males. Goats can be used as animal models to study melatonin treatment for human alopecia. In this study, a meta-analysis of melatonin's effects on goat hair follicles was pursued. Methods Literature from the last 20 years was searched in Scopus, Science Direct, Web of Science and PubMed. Melatonin's effect on goat hair follicles and litter size were performed through a traditional meta-analysis and trial sequential analysis. A network meta-analysis used data from oocyte development to blastocyst. The hair follicle genes regulated by melatonin performed KEGG and PPI. We hypothesized that there are differences in melatonin receptors between different goats, and therefore completed melatonin receptor 1A homology modelling and molecular docking. Results The results showed that melatonin did not affect goat primary follicle or litter size. However, there was a positive correlation with secondary follicle growth. The goat melatonin receptor 1A SNPs influence melatonin's functioning. The wild type gene defect MR1 is a very valuable animal model. Discussion Future studies should focus on the relationship between goat SNPs and the effect of embedded melatonin. This study will provide theoretical guidance for the cashmere industry and will be informative for human alopecia research.
Collapse
Affiliation(s)
- Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Rong Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Northern Agriculture and Livestock Husbandry Technical Innovation Center, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zhenhua Guo
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
6
|
Ji S, Li Y, Xiang L, Liu M, Xiong M, Cui W, Fu X, Sun X. Cocktail Cell-Reprogrammed Hydrogel Microspheres Achieving Scarless Hair Follicle Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306305. [PMID: 38225741 DOI: 10.1002/advs.202306305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/24/2023] [Indexed: 01/17/2024]
Abstract
The scar repair inevitably causes damage of skin function and loss of skin appendages such as hair follicles (HF). It is of great challenge in wound repair that how to intervene in scar formation while simultaneously remodeling HF niche and inducing in situ HF regeneration. Here, chemical reprogramming techniques are used to identify a clinically chemical cocktail (Tideglusib and Tamibarotene) that can drive fibroblasts toward dermal papilla cell (DPC) fate. Considering the advantage of biomaterials in tissue repair and their regulation in cell behavior that may contributes to cellular reprogramming, the artificial HF seeding (AHFS) hydrogel microspheres, inspired by the natural processes of "seeding and harvest", are constructed via using a combination of liposome nanoparticle drug delivery system, photoresponsive hydrogel shell, positively charged polyamide modification, microfluidic and photocrosslinking techniques. The identified chemical cocktail is as the core nucleus of AHFS. In vitro and in vivo studies show that AHFS can regulate fibroblast fate, induce fibroblast-to-DPC reprogramming by activating the PI3K/AKT pathway, finally promoting wound healing and in situ HF regeneration while inhibiting scar formation in a two-pronged translational approach. In conclusion, AHFS provides a new and effective strategy for functional repair of skin wounds.
Collapse
Affiliation(s)
- Shuaifei Ji
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yingying Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Lei Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Mingyue Liu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Wenguo Cui
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| |
Collapse
|
7
|
Park S, Han N, Lee JM, Lee JH, Bae S. Effects of Allium hookeri Extracts on Hair-Inductive and Anti-Oxidative Properties in Human Dermal Papilla Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091919. [PMID: 37176977 PMCID: PMC10181221 DOI: 10.3390/plants12091919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Oxidative stress and cellular senescence in dermal papilla cells (DPCs) are major etiological factors causing hair loss. In this study, the effect of the Allium hookeri extract (AHE) on hair-inductive and anti-oxidative properties was investigated in human DPCs. As a result, it was found that a non-cytotoxic concentration of the extracts increased the viability and size of the human DPC spheroid, which was associated with the increased expression of hair-growth-related genes in cells. To determine whether or not these effects could be attributed to intracellular anti-oxidative effects, liquid chromatography-mass spectrometry alongside various biochemical analyses are conducted herein. An ingredient called alliin was identified as one of the main components. Furthermore, AHE treatment induced a significant decrease in H2O2-mediated cytotoxicities, cell death, and cellular senescence in human DPCs. Upon analyzing these results with a molecular mechanism approach, it was shown that AHE treatment increased β-Catenin and NRF2 translocation into the nucleus while inhibiting the translocation of NF-κB (p50) through p38 and PKA-mediated phosphorylations of GSK3β, an upstream regulator of those proteins. These results overall indicate the possibility that AHE can regulate GSK3β-mediated β-Catenin, NRF2, and NF-κB signaling to enhance hair-inductive properties and ultimately protect against oxidative stress-induced cellular damage in human DPCs.
Collapse
Affiliation(s)
- Seokmuk Park
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nayeon Han
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Derma Bio Medical Research Center, Dermato Bio, Inc., 174-1 Songdo-dong, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Jung-Min Lee
- Derma Bio Medical Research Center, Dermato Bio, Inc., 174-1 Songdo-dong, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Jae-Ho Lee
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Fu H, Li W, Weng Z, Huang Z, Liu J, Mao Q, Ding B. Water extract of cacumen platycladi promotes hair growth through the Akt/GSK3β/β-catenin signaling pathway. Front Pharmacol 2023; 14:1038039. [PMID: 36891275 PMCID: PMC9986263 DOI: 10.3389/fphar.2023.1038039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Cacumen Platycladi (CP) consists of the dried needles of Platycladus orientalis L.) Franco. It was clinically demonstrated that it effectively regenerates hair, but the underlying mechanism remains unknown. Thus, we employed shaved mice to verify the hair growth-promoting capability of the water extract of Cacumen Platycladi (WECP). The morphological and histological analyses revealed that WECP application could significantly promote hair growth and hair follicles (HFs) construction, in comparison to that of control group. Additionally, the skin thickness and hair bulb diameter were significantly increased by the application of WECP in a dose-dependent manner. Besides, the high dose of WECP also showed an effect similar to that of finasteride. In an in vitro assay, WECP stimulated dermal papilla cells (DPCs) proliferation and migration. Moreover, the upregulation of cyclins (cyclin D1, cyclin-dependent kinase 2 (CDK2), and cyclin-dependent kinase 4 (CDK4)) and downregulation of P21 in WECP-treated cell assays have been evaluated. We identified the ingredients of WECP using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) and endeavored to predict their relevant molecular mechanisms by network analysis. We found that the Akt (serine/threonine protein kinase) signaling pathway might be a crucial target of WECP. It has been demonstrated that WECP treatment activated the phosphorylation of Akt and glycogen synthase kinase-3-beta (GSK3β), promoted β-Catenin and Wnt10b accumulation, and upregulated the expression of lymphoid enhancer-binding factor 1 (LEF1), vascular endothelial growth factor (VEGF), and insulin-like growth factor 1 (IGF1). We also found that WECP significantly altered the expression levels of apoptosis-related genes in mouse dorsal skin. The enhancement capability of WECP on DPCs proliferation and migration could be abrogated by the Akt-specific inhibitor MK-2206 2HCl. These results suggested that WECP might promote hair growth by modulating DPCs proliferation and migration through the regulation of the Akt/GSK3β/β-Catenin signaling pathway.
Collapse
Affiliation(s)
- Hangjie Fu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenxia Li
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiwei Weng
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiguang Huang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinyuan Liu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingqing Mao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Ding
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|