1
|
Rahman SU, Hu Y, Rehman HU, Alrashed MM, Attia KA, Ullah U, Liang H. Analysis of synonymous codon usage bias of Lassa virus. Virus Res 2025; 353:199528. [PMID: 39832535 PMCID: PMC11815952 DOI: 10.1016/j.virusres.2025.199528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/17/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Lassa virus genome consists of two single-stranded, negative-sense RNA segments that lie in the genus Arenavirus. The disease associated with the Lassa virus is distributed all over the world, with approximately 3,000,000-5,000,000 infections diagnosed annually in West Africa. It shows high health risks to the human being. Previous research used the evolutionary time scale and adaptive evolution to describe the Lassa virus population pattern. However, it is still unclear how the Lassa virus takes advantage of synonymous codons. In this study, we analyzed the codon usage bias in 162 Lassa virus strains by calculating and comparing the nucleotide contents, effective number of codons (ENC), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and others. The results disclosed that LASV strains are rich in A/T. The average ENC value indicated a low codon usage bias in LASVs. The ENC-plot, neutrality plot and parity rule 2 plot demonstrated that, besides mutational pressure, other factors like natural selection also contributed to codon usage bias. This study is significant because it described the pattern of codon usage in the genomes of the Lassa viruses and provided the information needed for a fundamental evolutionary study of them.
Collapse
Affiliation(s)
- Siddiq Ur Rahman
- Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, PR China; Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, 27200, Pakistan
| | - Yikui Hu
- Department of Neurology, Wuhan Wuchang Hospital, Wuhan, PR China
| | - Hassan Ur Rehman
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, 27200, Pakistan
| | - May M Alrashed
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia.
| | - Ubaid Ullah
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, 27200, Pakistan
| | - Huiying Liang
- Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, PR China.
| |
Collapse
|
2
|
Wang R, Li Z, Yin Q, Zhang T, Zheng Y, Nie K, Li F, Fu S, Cui Q, Xu S, Li H, Wang H. Natural selection shapes codon usage and host adaptation of NS1 in mosquito-borne pathogenic flaviviruses. Int J Biol Macromol 2025; 292:139187. [PMID: 39736301 DOI: 10.1016/j.ijbiomac.2024.139187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025]
Abstract
The NS1 protein of nine mosquito-borne flaviviruses, including Dengue virus 1-4, Japanese encephalitis virus, West Nile virus, Yellow fever virus, Tembusu virus, and Zika virus, shows distinct codon usage and evolutionary traits. Codon usage analysis shows notable base composition bias and non-conservatism in NS1, with distinct evolutionary traits from its ORF. Analysis of relative synonymous codon usage (RSCU) indicates that the NS1 genes exhibit non-conservative RSCU patterns within different mosquito-borne pathogenic flaviviruses. Principal component analysis (PCA) based on the RSCU values, effective number of codons (ENC)-GC3, and parity rule 2 analysis (PR2) plot analyses demonstrate the similarity in codon usage patterns of NS1 genes among different mosquito-borne pathogenic flaviviruses. The ENC-GC3 and PR2 results, along with neutrality and selection pressure analyses, confirm that natural selection, especially purifying selection, plays a primary role in shaping NS1 codon usage. In addition, NS1 is subject to stronger positive selection than ORF, resulting in higher host adaptability in its codon bias, such as higher CAI index, hydrophilicity, aromaticity, and low CpG usage. These features indicate that the codon usage pattern of NS1 plays a crucial role in viral adaptation and immune evasion mechanisms, supporting the design and optimization of NS1-based vaccines.
Collapse
Affiliation(s)
- Ruichen Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ziyi Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qikai Yin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Tianzi Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuke Zheng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Kai Nie
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Fan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Shihong Fu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Qianqian Cui
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Songtao Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Hao Li
- Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Huanyu Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
3
|
Thomas PD, Ferrer MF, Lozano MJ, Gómez RM. Comparative genetic analysis of pathogenic and attenuated strains of Junín virus. Genetica 2025; 153:12. [PMID: 39921799 DOI: 10.1007/s10709-025-00228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
Junín virus (JUNV) is a mammarenavirus that causes Argentine hemorrhagic fever (AHF). Mammarenaviruses are RNA viruses with an ambisense, bi-segmented genome containing four genes encoding the glycoproteins (GPC), the nucleoprotein (NP), the RNA polymerase (L) and the matrix protein (Z). Several JUNV strains with different pathogenicity have already been fully sequenced. We performed a comprehensive and comparative analysis of their genetic differences and phylogeny, focusing on the synonymous codon usage patterns of the JUNV proteins. We found a nucleotide identity of > 95% between strains, with significant differences between all genes for GC% and Z and L genes for GC3%. Analysis of relative synonymous codon usage showed that codons AGA and AGG of the amino acid arginine were overrepresented, while CGC, CGA and CGG of arginine, GCG of alanine, ACG of threonine, CCG of proline and TCG of serine were underrepresented in the GPC, NP and L genes. A weak codon usage bias was observed, with GPC having a significantly higher effective number of codons. Moreover, selection could explain at least 83% of the observed bias. Analysis of the codon adaptation index revealed a better adaptation for B cells and kidney and a lower one for endothelial cells. We also observed a possible reassortment event between the MC2 and Romero strains. This work provides a new perspective on the genetic diversity of JUNV strains, which may contribute to the development of new approaches for future research into the evolutionary model, origin and host adaptation of JUNV causing AHF.
Collapse
Affiliation(s)
- Pablo Daniel Thomas
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| | - María Florencia Ferrer
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| | - Mauricio J Lozano
- Laboratorio de Genómica y Ecología Molecular de Microorganismos del Suelo asociados con Plantas, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina.
| | - Ricardo Martín Gómez
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina.
| |
Collapse
|
4
|
Mohan G, Choudhury A, Bhat J, Phartyal R, Lal R, Verma M. Human Riboviruses: A Comprehensive Study. J Mol Evol 2025; 93:11-37. [PMID: 39739017 DOI: 10.1007/s00239-024-10221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025]
Abstract
The urgency to understand the complex interactions between viruses, their animal reservoirs, and human populations has been necessitated by the continuous spread of zoonotic viral diseases as evidenced in epidemics and pandemics throughout human history. Riboviruses are involved in some of the most prevalent human diseases, responsible for causing epidemics and pandemics. These viruses have an animal origin and have been known to cross the inter-species barrier time and time again, eventually infecting human beings. Their evolution has been a long road to harbour important adaptations for increasing fitness, mutability and virulence; a result of natural selection and mutation pressure, making these viruses highly infectious and difficult to counter. Accumulating favourable mutations in the course, they imitate the GC content and codon usage patterns of the host for maximising the chances of infection. A myriad of viral and host factors determine the fate of specific viral infections, which may include virus protein and host receptor compatibility, host restriction factors and others. Thus, understanding the biology, transmission and molecular mechanisms of Riboviruses is essential for the development of effective antiviral treatments, vaccine development and strategies to prevent and control viral infections. Keeping these aspects in mind, this review aims to provide a holistic approach towards understanding Riboviruses.
Collapse
Affiliation(s)
- Gauravya Mohan
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Akangkha Choudhury
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Jeevika Bhat
- Department of Biological Sciences, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Rajendra Phartyal
- Department of Zoology, Sri Venkateswara College, University of Delhi (South Campus), New Delhi, 110021, India
| | - Rup Lal
- PhiXGen Private Limited, Gurugram, Haryana, 122001, India
| | - Mansi Verma
- Department of Zoology, Hansraj College, University of Delhi, Mahatma Hansraj Marg, Malkaganj, Delhi, 110007, India.
| |
Collapse
|
5
|
Aktürk Dizman Y. Exploring Codon Usage Patterns and Influencing Factors in Ranavirus DNA Polymerase Genes. J Basic Microbiol 2024; 64:e2400289. [PMID: 39099168 DOI: 10.1002/jobm.202400289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
Ranaviruses, members of the genus Ranavirus within the family Iridoviridae, have become a significant concern for amphibian populations globally, along with other cold-blooded vertebrates, due to their emergence as a significant threat. We employed bioinformatics tools to examine the codon usage patterns in 61 DNA pol genes from Ranavirus, Lymphocystivirus, Megalocytivirus, and two unclassified ranaviruses, as no prior studies had been conducted on this topic. The results showed a slight or low level of codon usage bias (CUB) in the DNA pol genes of Ranavirus. Relative synonymous codon usage (RSCU) analysis indicated that the predominant codons favored in Ranavirus DNA pol genes terminate with C or G. Correlation analysis examining nucleotide content, third codon position, effective number of codons (ENC), correspondence analysis (COA), Aroma values, and GRAVY values indicated that the CUB across DNA pol genes could be influenced by both mutation pressure and natural selection. The neutrality plot indicated that natural selection is the primary factor driving codon usage. Furthermore, the analysis of the codon adaptation index (CAI) illustrated the robust adaptability of Ranavirus DNA pol genes to their hosts. Analysis of the relative codon deoptimization index (RCDI) suggested that Ranavirus DNA pol genes underwent greater selection pressure from their hosts. These findings will aid in comprehending the factors influencing the evolution and adaptation of Ranavirus to its hosts.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Türkiye
| |
Collapse
|
6
|
Ji H, Liu J, Chen Y, Yu X, Luo C, Sang L, Zhou J, Liao H. Bioinformatic Analysis of Codon Usage Bias of HSP20 Genes in Four Cruciferous Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:468. [PMID: 38498447 PMCID: PMC10892267 DOI: 10.3390/plants13040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 03/20/2024]
Abstract
Heat shock protein 20 (HSP20) serves as a chaperone and plays roles in numerous biological processes, but the codon usage bias (CUB) of its genes has remained unexplored. This study identified 140 HSP20 genes from four cruciferous species, Arabidopsis thaliana, Brassica napus, Brassica rapa, and Camelina sativa, that were identified from the Ensembl plants database, and we subsequently investigated their CUB. As a result, the base composition analysis revealed that the overall GC content of HSP20 genes was below 50%. The overall GC content significantly correlated with the constituents at three codon positions, implying that both mutation pressure and natural selection might contribute to the CUB. The relatively high ENc values suggested that the CUB of the HSP20 genes in four cruciferous species was relatively weak. Subsequently, ENc exhibited a negative correlation with gene expression levels. Analyses, including ENc-plot analysis, neutral analysis, and PR2 bias, revealed that natural selection mainly shaped the CUB patterns of HSP20 genes in these species. In addition, a total of 12 optimal codons (ΔRSCU > 0.08 and RSCU > 1) were identified across the four species. A neighbor-joining phylogenetic analysis based on coding sequences (CDS) showed that the 140 HSP20 genes were strictly and distinctly clustered into 12 subfamilies. Principal component analysis and cluster analysis based on relative synonymous codon usage (RSCU) values supported the fact that the CUB pattern was consistent with the genetic relationship at the gene level and (or) species levels. These results will not only enrich the HSP20 gene resource but also advance our understanding of the CUB of HSP20 genes, which may underlie the theoretical basis for exploration of their genetic and evolutionary pattern.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (H.J.); (J.L.); (Y.C.); (X.Y.); (C.L.); (L.S.)
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (H.J.); (J.L.); (Y.C.); (X.Y.); (C.L.); (L.S.)
| |
Collapse
|
7
|
Bai H, Ata G, Sun Q, Rahman SU, Tao S. Natural selection pressure exerted on "Silent" mutations during the evolution of SARS-CoV-2: Evidence from codon usage and RNA structure. Virus Res 2023; 323:198966. [PMID: 36244617 PMCID: PMC9561399 DOI: 10.1016/j.virusres.2022.198966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023]
Abstract
From the first emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) till now, multiple mutations that caused synonymous and nonsynonymous substitutions have accumulated. Among them, synonymous substitutions were regarded as "silent" mutations that received less attention than nonsynonymous substitutions that cause amino acid variations. However, the importance of synonymous substitutions can not be neglected. This research focuses on synonymous substitutions on SARS-CoV-2 and proves that synonymous substitutions were under purifying selection in its evolution. The evidence of purifying selection is provided by comparing the mutation number per site in coding and non-coding regions. We then study the two forces of purifying selection: synonymous codon usage and RNA secondary structure. Results show that the codon usage optimization leads to an adapted codon usage towards humans. Furthermore, our results show that the maintenance of RNA secondary structure causes the purifying of synonymous substitutions in the structural region. These results explain the selection pressure on synonymous substitutions during the evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Haoxiang Bai
- College of Life Sciences, Northwest A&F University, Yangling, China; Bioinformatics Center, Northwest A&F University, Yangling, China
| | - Galal Ata
- College of Life Sciences, Northwest A&F University, Yangling, China; Bioinformatics Center, Northwest A&F University, Yangling, China
| | - Qing Sun
- College of Life Sciences, Northwest A&F University, Yangling, China; Bioinformatics Center, Northwest A&F University, Yangling, China
| | - Siddiq Ur Rahman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, Pakistan
| | - Shiheng Tao
- College of Life Sciences, Northwest A&F University, Yangling, China; Bioinformatics Center, Northwest A&F University, Yangling, China.
| |
Collapse
|
8
|
Host adaptation of codon usage in SARS-CoV-2 from mammals indicates potential natural selection and viral fitness. Arch Virol 2022; 167:2677-2688. [PMID: 36166106 PMCID: PMC9514192 DOI: 10.1007/s00705-022-05612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/19/2022] [Indexed: 12/14/2022]
Abstract
SARS-CoV-2 infection, which is the cause of the COVID-19 pandemic, has expanded across various animal hosts, and the virus can be transmitted particularly efficiently in minks. It is still not clear how SARS-CoV-2 is selected and evolves in its hosts, or how mutations affect viral fitness. In this report, sequences of SARS-CoV-2 isolated from human and animal hosts were analyzed, and the binding energy and capacity of the spike protein to bind human ACE2 and the mink receptor were compared. Codon adaptation index (CAI) analysis indicated the optimization of viral codons in some animals such as bats and minks, and a neutrality plot demonstrated that natural selection had a greater influence on some SARS-CoV-2 sequences than mutational pressure. Molecular dynamics simulation results showed that the mutations Y453F and N501T in mink SARS-CoV-2 could enhance the binding of the viral spike to the mink receptor, indicating the involvement of these mutations in natural selection and viral fitness. Receptor binding analysis revealed that the mink SARS-CoV-2 spike interacted more strongly with the mink receptor than the human receptor. Tracking the variations and codon bias of SARS-CoV-2 is helpful for understanding the fitness of the virus in virus transmission, pathogenesis, and immune evasion.
Collapse
|