1
|
Rodriguez-Cruz UE, Ochoa-Sánchez M, Eguiarte LE, Souza V. Running against the clock: exploring microbial diversity in an extremely endangered microbial oasis in the Chihuahuan Desert. FEMS Microbiol Ecol 2025; 101:fiaf033. [PMID: 40205473 PMCID: PMC11995699 DOI: 10.1093/femsec/fiaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/22/2025] [Accepted: 04/07/2025] [Indexed: 04/11/2025] Open
Abstract
The Cuatro Ciénegas Basin is a biodiversity hotspot known for its unique biodiversity. However, this ecosystem is facing severe anthropogenic threats that are drying its aquatic systems. We investigated microbial communities at three sites with different physicochemical and environmental characteristics (Pozas Rojas, Archean Domes, and the Churince system) within the basin to explore potential connections to deep aquifers and determine if the sites shared microorganisms. Utilizing 16S rRNA gene data, we identified a core microbiota between Pozas Rojas (PR) and Archean Domes (AD). Sulfur reduction appears to shape the microbial connectivity among sites, since sulfur-reducing bacteria has the highest prevalence between samples from PR and AD: Halanaerobium sp. (88.46%) and Desulfovermiculus halophilus (65%); and between the Churince system and AD: Halanaerobium sp. (63%) and D. halophilus (60%). Furthermore, metagenome-assembled genomes from Ectothiorhodospira genus were found in both AD and Churince, suggesting microbial dispersal. An important finding is that microbial diversity in the AD system declined, from 2016 to 2023 the ecosystem lost 29 microbial phyla. If this trend continues, the basin will lose most of its water, resulting in the loss of various prokaryotic lineages and potential biotechnological solutions, such as enzymes or novel antibiotics. Our findings highlighting the need for water extraction regulations to preserve the basin's biodiversity.
Collapse
Affiliation(s)
- Ulises E Rodriguez-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Manuel Ochoa-Sánchez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, 6200000, Chile
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, 6200000, Chile
| |
Collapse
|
2
|
Buenrostro-Muñoz J, Jarmusch SA, Souza V, Martínez-Cárdenas A, Fajardo-Hernández CA, Yeverino IR, Eguiarte LE, Figueroa M. Metabolomic Diversity in Microbial Mats Under Different Environmental Conditions: A Tool to Test Microbial Ecosystem Chemical Change. Chem Biodivers 2024; 21:e202300829. [PMID: 37721179 DOI: 10.1002/cbdv.202300829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
Microbial mats are microbial communities capable of recycling the essential elements of life and considered to be the oldest evidence of microbial communities on Earth. Due to their uniqueness and limited sampling material, analyzing their metabolomic profile in different seasons or conditions is challenging. In this study, microbial mats from a small pond in the Cuatro Cienegas Basin in Coahuila, Mexico, were collected in wet and dry seasons. In addition to these samples, mesocosm experiments from the wet samples were set. These mats are elastic and rise after heavy rainfall by forming gas domes structures known as "Archean domes", by the outgassing of methanogenic bacteria, archaea, and sulfur bacteria. Extracts from all mats and mesocosms were subjected to untargeted mass spectrometry-based metabolomics and molecular networking analysis. Interestingly, each mat showed high chemical diversity that may be explained by the temporal dynamic processes in which they were sampled.
Collapse
Affiliation(s)
- Jhoselinne Buenrostro-Muñoz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
- Posgrado de Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
| | - Scott A Jarmusch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800, Kongens Lyngby, Denmark
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Anahí Martínez-Cárdenas
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
| | | | - Itzel R Yeverino
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04530, México
| |
Collapse
|
3
|
Viladomat Jasso M, García-Ulloa M, Zapata-Peñasco I, Eguiarte LE, Souza V. Metagenomic insight into taxonomic composition, environmental filtering and functional redundancy for shaping worldwide modern non-lithifying microbial mats. PeerJ 2024; 12:e17412. [PMID: 38827283 PMCID: PMC11144394 DOI: 10.7717/peerj.17412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Modern microbial mats are relictual communities mostly found in extreme environments worldwide. Despite their significance as representatives of the ancestral Earth and their important roles in biogeochemical cycling, research on microbial mats has largely been localized, focusing on site-specific descriptions and environmental change experiments. Here, we present a global comparative analysis of non-lithifying microbial mats, integrating environmental measurements with metagenomic data from 62 samples across eight sites, including two new samples from the recently discovered Archaean Domes from Cuatro Ciénegas, Mexico. Our results revealed a notable influence of environmental filtering on both taxonomic and functional compositions of microbial mats. Functional redundancy appears to confer resilience to mats, with essential metabolic pathways conserved across diverse and highly contrasting habitats. We identified six highly correlated clusters of taxa performing similar ecological functions, suggesting niche partitioning and functional specialization as key mechanisms shaping community structure. Our findings provide insights into the ecological principles governing microbial mats, and lay the foundation for future research elucidating the intricate interplay between environmental factors and microbial community dynamics.
Collapse
Affiliation(s)
- Mariette Viladomat Jasso
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Icoquih Zapata-Peñasco
- Dirección de Investigación en Transformación de Hidrocarburos, Instituto Mexicano del Petróleo, Ciudad de México, Mexico
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| |
Collapse
|
4
|
Rodríguez-Cruz UE, Castelán-Sánchez HG, Madrigal-Trejo D, Eguiarte LE, Souza V. Uncovering novel bacterial and archaeal diversity: genomic insights from metagenome-assembled genomes in Cuatro Cienegas, Coahuila. Front Microbiol 2024; 15:1369263. [PMID: 38873164 PMCID: PMC11169877 DOI: 10.3389/fmicb.2024.1369263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
A comprehensive study was conducted in the Cuatro Ciénegas Basin (CCB) in Coahuila, Mexico, which is known for its diversity of microorganisms and unique physicochemical properties. The study focused on the "Archaean Domes" (AD) site in the CCB, which is characterized by an abundance of hypersaline, non-lithifying microbial mats. In AD, we analyzed the small domes and circular structures using metagenome assembly genomes (MAGs) with the aim of expanding our understanding of the prokaryotic tree of life by uncovering previously unreported lineages, as well as analyzing the diversity of bacteria and archaea in the CCB. A total of 325 MAGs were identified, including 48 Archaea and 277 Bacteria. Remarkably, 22 archaea and 104 bacteria could not be classified even at the genus level, highlighting the remarkable novel diversity of the CCB. Besides, AD site exhibited significant diversity at the phylum level, with Proteobacteria being the most abundant, followed by Desulfobacteria, Spirochaetes, Bacteroidetes, Nanoarchaeota, Halobacteriota, Cyanobacteria, Planctomycetota, Verrucomicrobiota, Actinomycetes and Chloroflexi. In Archaea, the monophyletic groups of MAGs belonged to the Archaeoglobi, Aenigmarchaeota, Candidate Nanoarchaeota, and Halobacteriota. Among Bacteria, monophyletic groups were also identified, including Spirochaetes, Proteobacteria, Planctomycetes, Actinobacteria, Verrucomicrobia, Bacteroidetes, Candidate Bipolaricaulota, Desulfobacteria, and Cyanobacteria. These monophyletic groups were possibly influenced by geographic isolation, as well as the extreme and fluctuating environmental conditions in the pond AD, such as stoichiometric imbalance of C:N:P of 122:42:1, fluctuating pH (5-9.8) and high salinity (5.28% to saturation).
Collapse
Affiliation(s)
- Ulises E. Rodríguez-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - David Madrigal-Trejo
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| |
Collapse
|
5
|
Cisneros-Martínez AM, Rodriguez-Cruz UE, Alcaraz LD, Becerra A, Eguiarte LE, Souza V. Comparative evaluation of bioinformatic tools for virus-host prediction and their application to a highly diverse community in the Cuatro Ciénegas Basin, Mexico. PLoS One 2024; 19:e0291402. [PMID: 38300968 PMCID: PMC10833507 DOI: 10.1371/journal.pone.0291402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Due to the enormous diversity of non-culturable viruses, new viruses must be characterized using culture-independent techniques. The associated host is an important phenotypic feature that can be inferred from metagenomic viral contigs thanks to the development of several bioinformatic tools. Here, we compare the performance of recently developed virus-host prediction tools on a dataset of 1,046 virus-host pairs and then apply the best-performing tools to a metagenomic dataset derived from a highly diverse transiently hypersaline site known as the Archaean Domes (AD) within the Cuatro Ciénegas Basin, Coahuila, Mexico. Among host-dependent methods, alignment-based approaches had a precision of 66.07% and a sensitivity of 24.76%, while alignment-free methods had an average precision of 75.7% and a sensitivity of 57.5%. RaFAH, a virus-dependent alignment-based tool, had the best overall performance (F1_score = 95.7%). However, when predicting the host of AD viruses, methods based on public reference databases (such as RaFAH) showed lower inter-method agreement than host-dependent methods run against custom databases constructed from prokaryotes inhabiting AD. Methods based on custom databases also showed the greatest agreement between the source environment and the predicted host taxonomy, habitat, lifestyle, or metabolism. This highlights the value of including custom data when predicting hosts on a highly diverse metagenomic dataset, and suggests that using a combination of methods and qualitative validations related to the source environment and predicted host biology can increase the number of correct predictions. Finally, these predictions suggest that AD viruses infect halophilic archaea as well as a variety of bacteria that may be halophilic, halotolerant, alkaliphilic, thermophilic, oligotrophic, sulfate-reducing, or marine, which is consistent with the specific environment and the known geological and biological evolution of the Cuatro Ciénegas Basin and its microorganisms.
Collapse
Affiliation(s)
- Alejandro Miguel Cisneros-Martínez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ulises E. Rodriguez-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luis D. Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Arturo Becerra
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| |
Collapse
|
6
|
Medina-Chávez NO, Torres-Cerda A, Chacón JM, Harcombe WR, De la Torre-Zavala S, Travisano M. Disentangling a metabolic cross-feeding in a halophilic archaea-bacteria consortium. Front Microbiol 2023; 14:1276438. [PMID: 38179456 PMCID: PMC10764424 DOI: 10.3389/fmicb.2023.1276438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Microbial syntrophy, a cooperative metabolic interaction among prokaryotes, serves a critical role in shaping communities, due to the auxotrophic nature of many microorganisms. Syntrophy played a key role in the evolution of life, including the hypothesized origin of eukaryotes. In a recent exploration of the microbial mats within the exceptional and uniquely extreme Cuatro Cienegas Basin (CCB), a halophilic isolate, designated as AD140, emerged as a standout due to its distinct growth pattern. Subsequent genome sequencing revealed AD140 to be a co-culture of a halophilic archaeon from the Halorubrum genus and a marine halophilic bacterium, Marinococcus luteus, both occupying the same ecological niche. This intriguing coexistence hints at an early-stage symbiotic relationship that thrives on adaptability. By delving into their metabolic interdependence through genomic analysis, this study aims to uncover shared characteristics that enhance their symbiotic association, offering insights into the evolution of halophilic microorganisms and their remarkable adaptations to high-salinity environments.
Collapse
Affiliation(s)
- Nahui Olin Medina-Chávez
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Abigail Torres-Cerda
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, San Nicolás de los Garza, Mexico
| | - Jeremy M. Chacón
- Minnesota Supercomputing Institute, Minneapolis, MN, United States
| | - William R. Harcombe
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Susana De la Torre-Zavala
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, San Nicolás de los Garza, Mexico
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
- Minnesota Center for the Philosophy of Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
7
|
Madrigal-Trejo D, Sánchez-Pérez J, Espinosa-Asuar L, Valdivia-Anistro JA, Eguiarte LE, Souza V. A Metagenomic Time-Series Approach to Assess the Ecological Stability of Microbial Mats in a Seasonally Fluctuating Environment. MICROBIAL ECOLOGY 2023; 86:2252-2270. [PMID: 37393557 PMCID: PMC10640475 DOI: 10.1007/s00248-023-02231-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/23/2023] [Indexed: 07/04/2023]
Abstract
Microbial mats are complex ecological assemblages that have been present in the rock record since the Precambrian and can still be found in extant marginalized environments. These structures are considered highly stable ecosystems. In this study, we evaluate the ecological stability of dome-forming microbial mats in a modern, water-level fluctuating, hypersaline pond located in the Cuatro Ciénegas Basin, Mexico. We conducted metagenomic sampling of the site from 2016 to 2019 and detected 2250 genera of Bacteria and Archaea, with only <20 belonging to the abundant taxa (>1%). The microbial community was dominated by Proteobacteria, Euryarchaeota, Bacteroidetes, Firmicutes, and Cyanobacteria, and was compositionally sensitive to disturbances, leading to high taxonomic replacement even at the phylum level, with a significant increase in Archaea from [Formula: see text]1-4% to [Formula: see text]33% throughout the 2016-2019 study period. Although a core community represented most of the microbial community (>75%), relative abundances shifted significantly between samples, as demonstrated by changes in the abundance of Coleofasciculus from 10.2% in 2017 to 0.05% in 2019. Although functional differences between seasons were subtle, co-occurrence networks suggest differential ecological interactions between the seasons, with the addition of a new module during the rainy season and the potential shift in hub taxa. Functional composition was slightly more similar between samples, but basic processes such as carbohydrate, amino acid, and nucleic acid metabolisms were widely distributed among samples. Major carbon fixation processes included sulfur oxidation, nitrogen fixation, and photosynthesis (both oxygenic and anoxygenic), as well as the Wood-Ljundgahl and Calvin cycles.
Collapse
Affiliation(s)
- David Madrigal-Trejo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico
| | - Jazmín Sánchez-Pérez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico
| | - Laura Espinosa-Asuar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico
| | - Jorge A Valdivia-Anistro
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico.
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile.
| |
Collapse
|
8
|
Cisneros-Martínez AM, Eguiarte LE, Souza V. Metagenomic comparisons reveal a highly diverse and unique viral community in a seasonally fluctuating hypersaline microbial mat. Microb Genom 2023; 9:mgen001063. [PMID: 37459167 PMCID: PMC10438804 DOI: 10.1099/mgen.0.001063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
In spring 2016, a shallow hypersaline pond (50×25 m) was found in the Cuatro Cienegas Basin (CCB). This pond, known as Archaean Domes (AD) because of its elastic microbial mats that form dome-shaped structures due to the production of reducing gases reminiscent of the Archaean eon, such as methane and hydrogen sulfide, harbour a highly diverse microbial community, rich in halophilic and methanogenic archaea. AD is a seasonally fluctuating hypersaline site, with salinity ranging from low hypersaline (5.3%) during the wet season to high hypersaline (saturation) during the dry season. To characterize the viral community and to test whether it resembles those of other hypersaline sites (whose diversity is conditioned by salinity), or if it is similar to other CCB sites (with which it shares a common geological history), we generated 12 metagenomes from different seasons and depths over a 4 year period and compared them to 35 metagenomes from varied environments. Haloarchaeaviruses were detected, but were never dominant (average of 15.37 % of the total viral species), and the viral community structure and diversity were not affected by environmental fluctuations. In fact, unlike other viral communities at hypersaline sites, AD remained more diverse than other environments regardless of season. β-Diversity analyses show that AD is closely related to other CCB sites, although it has a unique viral community that forms a cluster of its own. The similarity of two surface samples to the 30 and 50 cm depth samples, as well as the observed increase in diversity at greater depths, supports the hypothesis that the diversity of CCB has evolved as a result of a long time environmental stability of a deep aquifer that functions as a 'seed bank' of great microbial diversity that is transported to the surface by sporadic groundwater upwelling events.
Collapse
Affiliation(s)
- Alejandro Miguel Cisneros-Martínez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| |
Collapse
|