1
|
Phugat S, Sharma J, Kumar S, Jain V, Dhua AK, Yadav DK, Agrawal V, Kumar N, Reddy RP, Suravajhala PN, Mathur P, Agarwala S, Goel P. Genetic landscape of congenital pouch colon: systematic review and functional enrichment study. Pediatr Surg Int 2024; 40:314. [PMID: 39557707 DOI: 10.1007/s00383-024-05878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Despite extensive clinical documentation, few studies have explored the genetic basis of congenital pouch colon (CPC) which is crucial for early detection, personalized treatment, and genetic counselling. OBJECTIVE To compile the information on the genetic basis of CPC and the functional enrichment of underlying molecular pathways. MATERIALS AND METHODS The review was conducted in accordance with PRISMA guidelines. The implicated genes were investigated for underlying molecular pathways. A network was subsequently created on String-database followed by gene-ontology analysis. RESULTS The study included 20 CPC cases and 52 controls (across 4 studies). Numerous variants, including 24 missense SNPs, 63 frameshift variants, and stop-gain/stop-loss mutations in 11 genes were identified. Notable genetic markers included MUC5B, FRG1, and TAF1B, with potential roles in mucosal barrier functions, colonic muscular development, and ribosomal RNA transcription, respectively. Copy number variants and lnc-EPB41-1-1 were also implicated. Genetic hotspots were identified on chromosomes 11, 17 and 16. RGPD2 and RGPD4, contributing to GTPase activator activity and known to be associated with bowel/colon, were differentially expressed. Pathway analysis highlighted Wnt and HOX pathways, with JAG1 and MLL relevant to CPC pathogenesis. CONCLUSION The study integrates genetic evidence and pathway analysis, shedding light on the complex genetic architecture of CPC. While the importance of genetic markers in the etiopathogenesis of CPC is underscored, the need for validating the findings on larger cohorts, diverse populations and through functional studies is suggested.
Collapse
Affiliation(s)
- Shivani Phugat
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jyoti Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sourabh Kumar
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vishesh Jain
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Anjan Kumar Dhua
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Devendra Kumar Yadav
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vikesh Agrawal
- Department of Paediatric Surgery, Netaji Subhash Chandra Bose Government Medical College, Jabalpur, India
| | - Neeta Kumar
- Indian Council of Medical Research, New Delhi, India
| | - Ravi P Reddy
- Department of Pediatric Surgery, Grant Government Medical College, Mumbai, Maharashtra, India
| | | | - Praveen Mathur
- Department of Paediatric Surgery, S.M.S. Medical College, Jaipur, India
| | - Sandeep Agarwala
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Prabudh Goel
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
2
|
Makovka YV, Oshchepkov DY, Fedoseeva LA, Markel AL, Redina OE. Effect of Short-Term Restraint Stress on the Expression of Genes Associated with the Response to Oxidative Stress in the Hypothalamus of Hypertensive ISIAH and Normotensive WAG Rats. Antioxidants (Basel) 2024; 13:1302. [PMID: 39594444 PMCID: PMC11590967 DOI: 10.3390/antiox13111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Normotensive and hypertensive organisms respond differently to stress factors; however, the features of the central molecular genetic mechanisms underlying the reaction of the hypertensive organism to stress have not been fully established. In this study, we examined the transcriptome profiles of the hypothalamus of hypertensive ISIAH rats, modeling a stress-sensitive form of arterial hypertension, and normotensive WAG rats at rest and after exposure to a single short-term restraint stress. It was shown that oxidative phosphorylation is the most significantly enriched process among metabolic changes in the hypothalamus of rats of both strains when exposed to a single short-term restraint stress. The analysis revealed DEGs representing both a common response to oxidative stress for both rat strains and a strain-specific response to oxidative stress for hypertensive ISIAH rats. Among the genes of the common response to oxidative stress, the most significant changes in the transcription level were observed in Nos1, Ppargc1a, Abcc1, Srxn1, Cryab, Hspb1, and Fosl1, among which Abcc1 and Nos1 are associated with hypertension, and Fosl1 and Ppargc1a encode transcription factors. The response to oxidative stress specific to hypertensive rats is associated with the activation of the Fos gene. The DEG's promoter region enrichment analysis allowed us to hypothesize that the response to oxidative stress may be mediated by the participation of the transcription factor CREB1 (Cyclic AMP-responsive element-binding protein 1) and the glucocorticoid receptor (NR3C1) under restraint stress in the hypothalamus of both rat strains. The results of the study revealed common and strain-specific features in the molecular mechanisms associated with oxidative phosphorylation and oxidative stress response in the hypothalamus of hypertensive ISIAH and normotensive WAG rats following a single short-term restraint stress. The obtained results expand the understanding of the most significant molecular targets for further research aimed at developing new therapeutic strategies for the prevention of the consequences of acute emotional stress, taking into account the hypertensive state of the patient.
Collapse
Affiliation(s)
- Yulia V. Makovka
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.V.M.); (D.Y.O.); (L.A.F.); (A.L.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Dmitry Yu. Oshchepkov
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.V.M.); (D.Y.O.); (L.A.F.); (A.L.M.)
- Kurchatov Genomic Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Larisa A. Fedoseeva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.V.M.); (D.Y.O.); (L.A.F.); (A.L.M.)
| | - Arcady L. Markel
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.V.M.); (D.Y.O.); (L.A.F.); (A.L.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Olga E. Redina
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.V.M.); (D.Y.O.); (L.A.F.); (A.L.M.)
| |
Collapse
|
3
|
Kurhaluk N. Supplementation with l-arginine and nitrates vs age and individual physiological reactivity. Nutr Rev 2024; 82:1239-1259. [PMID: 37903373 DOI: 10.1093/nutrit/nuad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Ageing is a natural ontogenetic phenomenon that entails a decrease in the adaptive capacity of the organism, as a result of which the body becomes less adaptable to stressful conditions. Nitrate and nitrite enter the body from exogenous sources and from nitrification of ammonia nitrogen by intestinal microorganisms. This review considers the mechanisms of action of l-arginine, a known inducer of nitric oxide (NO) biosynthesis, and nitrates as supplements in the processes of ageing and aggravated stress states, in which mechanisms of individual physiological reactivity play an important role. This approach can be used as an element of individual therapy or prevention of premature ageing processes depending on the different levels of initial reactivity of the functional systems. A search was performed of the PubMed, Scopus, and Google Scholar databases (n = 181 articles) and the author's own research (n = 4) up to May 5, 2023. The review presents analyses of data on targeted treatment of NO generation by supplementation with l-arginine or nitrates, which is a promising means for prevention of hypoxic conditions frequently accompanying pathological processes in an ageing organism. The review clarifies the role of the individual state of physiological reactivity, using the example of individuals with a high predominance of cholinergic regulatory mechanisms who already have a significant reserve of adaptive capacity. In studies of the predominance of adrenergic influences, a poorly trained organism as well as an elderly organism correspond to low resistance, which is an additional factor of damage at increased energy expenditure. CONCLUSION It is suggested that the role of NO synthesis from supplementation of dietary nitrates and nitrites increases with age rather than from oxygen-dependent biosynthetic reactions from l-arginine supplementation.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Animal Physiology, Institute of Biology, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
4
|
Ceylan C, Cetin N, Menevse E, Celik ZE, Akdam N, Pasayeva L, Tugay O, Rama ST, Buyukyıldırım T, Kose H, Ulukus D. Echinophora tournefortii Jaub. & Spach: Evaluation of the effect on indomethacin-induced gastric ulser in rats and phytochemical analyses by LC-HRMS. Fitoterapia 2024; 177:106072. [PMID: 38897249 DOI: 10.1016/j.fitote.2024.106072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
E. tournefortii has wound healing properties in folk medicine and 5% infusions are used for stomach ulcers. It is also used in colds, abdominal pain, digestive problems, as an appetite enhancer and antispasmodic. For this purpose, in the study biochemical and histopathological evaluation of the ulcer protective effect of the extract obtained from the E. tournefortii in the indomethacin-induced gastric ulcer model in rats was aimed to develop new strategies in the treatment of ulcers. The phytochemical profile of the plant was elucidated for the first time by LC-HRMS in this study. The results indicate that, in terms of TNF-α, IL-1β, IL-8, IL-6, PGE2, NF-κB, VEGF, NO, COX-1 and COX-2 biochemical parameters, E. tournefortii protects the gastric mucosa to the inflammation, and also modulates the PGE2 pathway, and has a similar effect or even a more positive effect than the reference substance lansoprazole. According to LC-HRMS analysis results, chlorogenic acid, genistein and quinic acid were the main constituents of E. tournefortii extract with 1397.081, 1014.177 and 992.527μg/g extract, respectively. Considering the anti-inflammatory and antioxidant effects of these phenolic components, it is thought that the major components are responsible for the anti-ulcer activity of the E. tournefortii extract.
Collapse
Affiliation(s)
- Cengizhan Ceylan
- Selcuk University Faculty of Pharmacy, Department of Clinical Pharmacy, Konya, 42131, Turkey
| | - Nihal Cetin
- Selcuk University Faculty of Medicine, Department of Pharmacology, Konya, 42131, Turkey.
| | - Esma Menevse
- Selcuk University Faculty of Medicine, Department of Biochemistry, Konya, 42131, Turkey
| | - Zeliha Esin Celik
- Selcuk University Faculty of Medicine, Department of Pathology, Konya, 42131, Turkey
| | - Neriman Akdam
- Selcuk University Faculty of Medicine, Department of Biostatistics, Konya, 42131, Turkey
| | - Leyla Pasayeva
- Erciyes University Faculty of Pharmacy, Department of Pharmacognosy, Kayseri, 38280, Turkey
| | - Osman Tugay
- Selcuk University Faculty of Pharmacy, Department of Pharmaceutical Botany, Konya, 42131, Turkey
| | - Seyma Tetik Rama
- Selcuk University Faculty of Pharmacy, Department of Pharmacology, Konya, 42131, Turkey; Ankara University Graduate School of Health Science, Department of Pharmacology, Ankara, 06110, Turkey
| | - Tugsen Buyukyıldırım
- Selcuk University Faculty of Pharmacy, Department of Pharmacognosy, Konya, 42131, Turkey; Gazi University Graduate School of Health Science, Department of Pharmacognosy, Ankara, 06500, Turkey
| | - Hamiyet Kose
- Selcuk University Faculty of Medicine, Department of Biochemistry, Konya, 42131, Turkey
| | - Deniz Ulukus
- Selcuk University Faculty of Sciences, Department of Biotechnology, Konya, 42131, Turkey
| |
Collapse
|
5
|
Mack CM, Tsui-Bowen A, Smith AR, Jensen KF, Kodavanti PRS, Moser VC, Mundy WR, Shafer TJ, Herr DW. Identification of neural-relevant toxcast high-throughput assay intended gene targets: Applicability to neurotoxicity and neurotoxicant putative molecular initiating events. Neurotoxicology 2024; 103:256-265. [PMID: 38977203 DOI: 10.1016/j.neuro.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The US EPA's Toxicity Forecaster (ToxCast) is a suite of high-throughput in vitro assays to screen environmental toxicants and predict potential toxicity of uncharacterized chemicals. This work examines the relevance of ToxCast assay intended gene targets to putative molecular initiating events (MIEs) of neurotoxicants. This effort is needed as there is growing interest in the regulatory and scientific communities about developing new approach methodologies (NAMs) to screen large numbers of chemicals for neurotoxicity and developmental neurotoxicity. Assay gene function (GeneCards, NCBI-PUBMED) was used to categorize gene target neural relevance (1 = neural, 2 = neural development, 3 = general cellular process, 3 A = cellular process critical during neural development, 4 = unlikely significance). Of 481 unique gene targets, 80 = category 1 (16.6 %); 16 = category 2 (3.3 %); 303 = category 3 (63.0 %); 97 = category 3 A (20.2 %); 82 = category 4 (17.0 %). A representative list of neurotoxicants (548) was researched (ex. PUBMED, PubChem) for neurotoxicity associated MIEs/Key Events (KEs). MIEs were identified for 375 compounds, whereas only KEs for 173. ToxCast gene targets associated with MIEs were primarily neurotransmitter (ex. dopaminergic, GABA)receptors and ion channels (calcium, sodium, potassium). Conversely, numerous MIEs associated with neurotoxicity were absent. Oxidative stress (OS) mechanisms were 79.1 % of KEs. In summary, 40 % of ToxCast assay gene targets are relevant to neurotoxicity mechanisms. Additional receptor and ion channel subtypes and increased OS pathway coverage are identified for potential future assay inclusion to provide more complete coverage of neural and developmental neural targets in assessing neurotoxicity.
Collapse
Affiliation(s)
- Cina M Mack
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | - Alicia R Smith
- Oak Ridge Institute for Science Education, Oak Ridge, TN 37830, USA.
| | - Karl F Jensen
- US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Prasada Rao S Kodavanti
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Virginia C Moser
- US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - William R Mundy
- US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Timothy J Shafer
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - David W Herr
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
6
|
Ma CY, Zhao J, Zhou JY. Microbiome profiling and Co-metabolism pathway analysis in cervical cancer patients with acute radiation enteritis. Heliyon 2024; 10:e29598. [PMID: 38655340 PMCID: PMC11036041 DOI: 10.1016/j.heliyon.2024.e29598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Background Intestinal bacteria significantly contribute to the metabolism of intestinal epithelial tissues. As the occurrence and development of radiation enteritis (RE) depend on the "co-metabolism" microenvironment formed by the host and intestinal microbiota, which involves complex influencing factors and strong correlations, ordinary techniques struggle to fully explain the underlying mechanisms. However, given that it is based on systems biology, metabolomics analysis is well-suited to address these issues. This study aimed to analyze the metabolomic changes in urine, serum, and fecal samples during volumetric modulated arc therapy (VMAT) for cervical cancer and screen for characteristic metabolites of severe acute radiation enteritis (SARE) and RE. Methods We enrolled 50 patients who received radiotherapy for cervical cancer. Urine, serum, and fecal samples of patients were collected at one day before radiotherapy and the second week, fourth week, and sixth week after the start of radiotherapy. Control group samples were collected during the baseline period. Differential metabolites were identified by metabolomics analysis; co-metabolic pathways were clarified. We used the mini-SOM library for incorporating characteristic metabolites, and established metabolite classification models for predicting SARE and RE. Results Urine and serum sample data showed remarkable clustering effect; metabolomics data of the fecal supernatant were evidently disturbed. Patient sample analyses during VMAT revealed the following. Urine samples: Downregulation of the pyrimidine and riboflavin metabolism pathways as well as initial upregulation followed by downregulation of arginine and proline metabolism pathways and the arginine biosynthesis pathway. Fecal samples: Upregulation of linoleic acid and phenylalanine metabolic pathways and initial downregulation followed by upregulation of arachidonic acid (AA) metabolic pathways. Serum samples: Initial upregulation followed by downregulation of the arginine biosynthesis pathway and downregulation of glutathione, AA, and arginine and proline metabolic pathways. Conclusion Patients with cervical cancer exhibited characteristic metabolic pathways and characteristic metabolites predicting RE and SARE were screened out. An effective RE mini-SOM classification model was successfully established.
Collapse
Affiliation(s)
- Chen-Ying Ma
- Department of Radiation Oncology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jing Zhao
- Department of Radiation Oncology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Ju-Ying Zhou
- Department of Radiation Oncology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
7
|
Cetin N, Menevse E, Ceylan C, Celik ZE, Akdam N, Rama ST, Buyukyildirim T, Pasayeva L, Tugay O, Gumus M. Histopathological and biochemical evaluation of the protective efficacy of Prunus spinosa L. extract in a rat model of indomethacin-induced gastric ulcer. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1464-1474. [PMID: 39386230 PMCID: PMC11459347 DOI: 10.22038/ijbms.2024.78382.16941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/05/2024] [Indexed: 10/12/2024]
Abstract
Objectives Some species of Prunus L. are popularly used to treat gastric ulcers. However, the possible healing mechanisms of the anti-ulcer activity of P. spinosa, which has proven antioxidant, anti-inflammatory, and wound-healing properties, are unclear. Materials and Methods Ethanol extracts of P. spinosa fruits were administered orally at 100 mg/kg and 200 mg/kg to Wistar albino rats, with an indomethacin-induced gastric ulcer model. The ulcerous areas on the stomach surface were examined macroscopically. Tissues were examined histopathologically and biochemically. LC-HRMS revealed the phytochemical content. Results TNF-α, IL-6, IL-1β, IL-8, and NF-kB levels were higher in the gastric ulcer group than in the extract groups. The VEGF values did not differ in each group. A significant difference was found between the lansoprazole group and the high-dose P. spinosa group regarding PGE2 levels. A histopathologically significant difference was observed between the healthy group and the indomethacin-applied groups in terms of neutrophilic infiltration of the gastric mucosa. Ascorbic acid (1547.521 µg/g), homoprotocatechuic acid (1268.217 µg/g), and genistein (1014.462 µg/g) were found as the main compounds in the P. spinosa extract by LC-HRMS. Conclusion Our results demonstrated that P. spinosa protected the gastric mucosa from inflammation and also modulated the PGE2 pathway. When considered in terms of TNF-α, IL-1β, IL-8, IL-6, PGE2, and NF-kB values, it can be concluded that it has a similar or even more positive effect than the reference substance. P. spinosa showed its effects in a dose-dependent manner.
Collapse
Affiliation(s)
- Nihal Cetin
- Department of Pharmacology, Faculty of Medicine, Selcuk University, 42131, Konya, Turkey
| | - Esma Menevse
- Department of Biochemistry, Faculty of Medicine, Selcuk University, 42131, Konya, Turkey
| | - Cengizhan Ceylan
- Department of Clinical Pharmacy, Faculty of Pharmacy, Selcuk University, 42100, Konya, Turkey
| | - Zeliha Esin Celik
- Department of Pathology, Faculty of Medicine, Selcuk University, 42131, Konya, Turkey
| | - Neriman Akdam
- Department of Biostatistics, Faculty of Medicine, Selcuk University, 42131, Konya, Turkey
| | - Seyma Tetik Rama
- Research Assistant, Department of Pharmacology, Faculty of Pharmacy, Selcuk University, 42100, Konya, Turkey
| | - Tugsen Buyukyildirim
- Research Assistant, Department of Pharmacognosy, Faculty of Pharmacy, Selcuk University, 42100, Konya, Turkey
| | - Leyla Pasayeva
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - Osman Tugay
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Selcuk University, 42100, Konya, Turkey
| | - Meltem Gumus
- Department of Pediatrics, Division of Pediatric Gastroenterology, Faculty of Medicine, Selcuk University, 42131, Konya, Turkey
| |
Collapse
|
8
|
D’Agostino A, Lanzafame LG, Buono L, Crisci G, D’Assante R, Leone I, De Vito L, Bossone E, Cittadini A, Marra AM. Modulating NO-GC Pathway in Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 25:36. [PMID: 38203205 PMCID: PMC10779316 DOI: 10.3390/ijms25010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The pathogenesis of complex diseases such as pulmonary arterial hypertension (PAH) is entirely rooted in changes in the expression of some vasoactive factors. These play a significant role in the onset and progression of the disease. Indeed, PAH has been associated with pathophysiologic alterations in vascular function. These are often dictated by increased oxidative stress and impaired modulation of the nitric oxide (NO) pathway. NO reduces the uncontrolled proliferation of vascular smooth muscle cells that leads to occlusion of vessels and an increase in pulmonary vascular resistances, which is the mainstay of PAH development. To date, two classes of NO-pathway modulating drugs are approved for the treatment of PAH: the phosphodiesterase-5 inhibitors (PD5i), sildenafil and tadalafil, and the soluble guanylate cyclase activator (sGC), riociguat. Both drugs provide considerable improvement in exercise capacity and pulmonary hemodynamics. PD5i are the recommended drugs for first-line PAH treatment, whereas sGCs are also the only drug approved for the treatment of resistant or inoperable chronic thromboembolic pulmonary hypertension. In this review, we will focus on the current information regarding the nitric oxide pathway and its modulation in PAH.
Collapse
Affiliation(s)
- Anna D’Agostino
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (L.B.); (I.L.)
| | - Lorena Gioia Lanzafame
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi Hospital, University of Catania, Via Palermo 636, 95122 Catania, Italy;
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy; (G.C.); (R.D.); (L.D.V.); (A.C.)
| | - Lorena Buono
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (L.B.); (I.L.)
| | - Giulia Crisci
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy; (G.C.); (R.D.); (L.D.V.); (A.C.)
| | - Roberta D’Assante
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy; (G.C.); (R.D.); (L.D.V.); (A.C.)
| | - Ilaria Leone
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (L.B.); (I.L.)
| | - Luigi De Vito
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy; (G.C.); (R.D.); (L.D.V.); (A.C.)
| | - Eduardo Bossone
- Department of Public Health, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy;
| | - Antonio Cittadini
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy; (G.C.); (R.D.); (L.D.V.); (A.C.)
- Gender Interdipartimental Institute of Research (GENESIS), “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Alberto Maria Marra
- Department of Translational Medical Sciences, “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy; (G.C.); (R.D.); (L.D.V.); (A.C.)
- Gender Interdipartimental Institute of Research (GENESIS), “Federico II” University of Naples, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
9
|
Cao C, Cai Y, Li Y, Li T, Zhang J, Hu Z, Zhang J. Characterization and comparative transcriptomic analysis of skeletal muscle in female Pekin duck and Hanzhong Ma duck during different growth stages using RNA-seq. Poult Sci 2023; 102:103122. [PMID: 37832186 PMCID: PMC10568565 DOI: 10.1016/j.psj.2023.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
Duck is an economically important poultry, and there is currently a major focus on improving its meat quality through breeding. There are wide variations in the growth regulation mechanisms of different duck breeds, that fundamental research on skeletal muscle growth is essential for understanding the regulation of unknown genes. The study aimed to broaden the understanding the duck skeletal muscle development and thereby to improve the performance of domestic ducks. In this study, RNA-seq data from skeletal muscles (breast muscle and leg muscle) of Pekin duck and Hanzhong Ma duck sampled at d 17, 21, and 27 of embryo (E17d, E21d, and E27d), as well as at 6-mo-old following birth (M6), to investigate and compare the mRNA temporal expression profiles and associated pathways that regulate skeletal myogenesis of different duck breeds. There were 331 to 1,440 annotated differentially expressed genes (DEGs) in breast muscle and 380 to 1,790 annotated DEGs in leg muscle from different databases between 2 duck breeds. Gene ontology (GO) enrichment in skeletal muscles indicated that these DEGs were mainly involved in biosynthetic process, developmental process, regulation of protein metabolic process and regulation of gene expression. KEGG analysis in skeletal muscles showed that a total of 41 DEGs were mapped to 7 KEGG pathways, including ECM-receptor interaction, focal adhesion, carbon metabolism, regulation of actin cytoskeleton, calcium signaling pathway, biosynthesis of amino acids and PPAR signaling pathway. The differential expression of 8 selected DEGs was verified by qRT-PCR, and the results were consistent with RNA-seq data. The identified DEGs, such as SDC, SPP1, PAK1, MYL9, PGK1, NOS1, PHGDH, TNNT2, FN1, and AQP4, were specially highlighted, indicating their associations with muscle development in the Pekin duck and Hanzhong Ma duck. This study provides a basis for revealing the differences in skeletal muscle development between Pekin duck and Hanzhong Ma duck.
Collapse
Affiliation(s)
- Chang Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yingjie Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yuxiao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Tao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jiqiao Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Zhigang Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jianqin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China.
| |
Collapse
|
10
|
Mazur U, Lepiarczyk E, Janikiewicz P, Łopieńska-Biernat E, Majewski MK, Bossowska A. Distribution and Chemistry of Phoenixin-14, a Newly Discovered Sensory Transmission Molecule in Porcine Afferent Neurons. Int J Mol Sci 2023; 24:16647. [PMID: 38068975 PMCID: PMC10706208 DOI: 10.3390/ijms242316647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Phoenixin-14 (PNX), initially discovered in the rat hypothalamus, was also detected in dorsal root ganglion (DRG) cells, where its involvement in the regulation of pain and/or itch sensation was suggested. However, there is a lack of data not only on its distribution in DRGs along individual segments of the spinal cord, but also on the pattern(s) of its co-occurrence with other sensory neurotransmitters. To fill the above-mentioned gap and expand our knowledge about the occurrence of PNX in mammalian species other than rodents, this study examined (i) the pattern(s) of PNX occurrence in DRG neurons of subsequent neuromeres along the porcine spinal cord, (ii) their intraganglionic distribution and (iii) the pattern(s) of PNX co-occurrence with other biologically active agents. PNX was found in approximately 20% of all nerve cells of each DRG examined; the largest subpopulation of PNX-positive (PNX+) cells were small-diameter neurons, accounting for 74% of all PNX-positive neurons found. PNX+ neurons also co-contained calcitonin gene-related peptide (CGRP; 96.1%), substance P (SP; 88.5%), nitric oxide synthase (nNOS; 52.1%), galanin (GAL; 20.7%), calretinin (CRT; 10%), pituitary adenylate cyclase-activating polypeptide (PACAP; 7.4%), cocaine and amphetamine related transcript (CART; 5.1%) or somatostatin (SOM; 4.7%). Although the exact function of PNX in DRGs is not yet known, the high degree of co-localization of this peptide with the main nociceptive transmitters SP and CGRP may suggests its function in modulation of pain transmission.
Collapse
Affiliation(s)
- Urszula Mazur
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Paweł Janikiewicz
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Agnieszka Bossowska
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| |
Collapse
|
11
|
Zhang W, Chen SJ, Guo LY, Zhang Z, Zhang JB, Wang XM, Meng XB, Zhang MY, Zhang KK, Chen LL, Li YW, Wen Y, Wang L, Hu JH, Bai YY, Zhang XJ. Nitric oxide synthase and its function in animal reproduction: an update. Front Physiol 2023; 14:1288669. [PMID: 38028794 PMCID: PMC10662090 DOI: 10.3389/fphys.2023.1288669] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Nitric oxide (NO), a free radical labile gas, is involved in the regulation of various biological functions and physiological processes during animal reproduction. Recently, increasing evidence suggests that the biological role and chemical fate of NO is dependent on dynamic regulation of its biosynthetic enzyme, three distinct nitric oxide synthase (NOS) according to their structure, location and function. The impact of NOS isoforms on reproductive functions need to be timely elucidated. Here, we focus on and the basic background and latest studies on the development, structure, importance inhibitor, location pattern, complex functions. Moreover, we summarize the exactly mechanisms which involved some cell signal pathways in the regulation of NOS with cellular and molecular level in the animal reproduction. Therefore, this growing research area provides the new insight into the important role of NOS male and female reproduction system. It also provides the treatment evidence on targeting NOS of reproductive regulation and diseases.
Collapse
Affiliation(s)
- Wei Zhang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Su juan Chen
- Department of Life Science and Technology, Xinxiang Medical College, Xinxiang, Henan, China
| | - Li ya Guo
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Jia bin Zhang
- College of Veterinary Medicine, Jilin Agriculture University, Changchun, China
| | - Xiao meng Wang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xiang bo Meng
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Min ying Zhang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Ke ke Zhang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Lin lin Chen
- College of Veterinary Medicine, Jilin Agriculture University, Changchun, China
| | - Yi wei Li
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Yuliang Wen
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Lei Wang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Jian he Hu
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Yue yu Bai
- Animal Health Supervision in Henan Province, Zhengzhou, Henan, China
| | - Xiao jian Zhang
- College of Animal Science, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|
12
|
Xie W, Xing N, Qu J, Liu D, Pang Q. The Physiological Function of nNOS-Associated CAPON Proteins and the Roles of CAPON in Diseases. Int J Mol Sci 2023; 24:15808. [PMID: 37958792 PMCID: PMC10647562 DOI: 10.3390/ijms242115808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
In this review, the structure, isoform, and physiological role of the carboxy-terminal PDZ ligand of neuronal nitric oxide synthase (CAPON) are summarized. There are three isoforms of CAPON in humans, including long CAPON protein (CAPON-L), short CAPON protein (CAPON-S), and CAPON-S' protein. CAPON-L includes three functional regions: a C-terminal PDZ-binding motif, carboxypeptidase (CPE)-binding region, and N-terminal phosphotyrosine (PTB) structural domain. Both CAPON-S and CAPON-S' only contain the C-terminal PDZ-binding motif. The C-terminal PDZ-binding motif of CAPON can bind with neuronal nitric oxide synthase (nNOS) and participates in regulating NO production and neuronal development. An overview is given on the relationship between CAPON and heart diseases, diabetes, psychiatric disorders, and tumors. This review will clarify future research directions on the signal pathways related to CAPON, which will be helpful for studying the regulatory mechanism of CAPON. CAPON may be used as a drug target, which will provide new ideas and solutions for treating human diseases.
Collapse
Affiliation(s)
| | | | | | - Dongwu Liu
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (W.X.); (N.X.)
| | - Qiuxiang Pang
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (W.X.); (N.X.)
| |
Collapse
|
13
|
Elizaldi SR, Hawes CE, Verma A, Dinasarapu AR, Lakshmanappa YS, Schlegel BT, Rajasundaram D, Li J, Durbin-Johnson BP, Ma ZM, Beckman D, Ott S, Lifson J, Morrison JH, Iyer SS. CCR7+ CD4 T Cell Immunosurveillance Disrupted in Chronic SIV-Induced Neuroinflammation in Rhesus Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555037. [PMID: 37693567 PMCID: PMC10491118 DOI: 10.1101/2023.08.28.555037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
CD4 T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4 T cells resembling lymph node central memory (T CM ) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of T CM . Brain CCR7+ CD4 T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside other CNS border tissues. Sequestering T CM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4 T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL57 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4 T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4 T cells in CNS immune surveillance and their decline during chronic SIV-induced neuroinflammation highlights their responsiveness to neuroinflammatory processes. GRAPHICAL ABSTRACT In Brief Utilizing single-cell and spatial transcriptomics on adult rhesus brain, we uncover a unique CCR7+ CD4 T cell subset resembling central memory T cells (T CM ) within brain and border tissues, including skull bone marrow. Our findings show decreased frequencies of this subset during SIV- induced chronic neuroinflammation, emphasizing responsiveness of CCR7+ CD4 T cells to CNS disruptions. Highlights CCR7+ CD4 T cells survey border and parenchymal CNS compartments during homeostasis; reduced presence of CCR7+ CD4 T cells in cerebrospinal fluid leads to immune activation, implying a role in neuroimmune homeostasis. CNS CCR7+ CD4 T cells exhibit phenotypic and functional features of central memory T cells (T CM ) including production of interleukin 2 and the capacity for rapid recall proliferation. Furthermore, CCR7+ CD4 T cells reside in the skull bone marrow. CCR7+ CD4 T cells are markedly decreased within the brain parenchyma during chronic viral neuroinflammation.
Collapse
|
14
|
Wang L, Dan Q, Xu B, Chen Y, Zheng T. Research progress on gas signal molecular therapy for Parkinson's disease. Open Life Sci 2023; 18:20220658. [PMID: 37588999 PMCID: PMC10426759 DOI: 10.1515/biol-2022-0658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 08/18/2023] Open
Abstract
The pathogenesis of Parkinson's disease (PD) remains unclear. Among the pathological manifestations is the progressive degeneration of the nigrostriatal dopaminergic pathway, leading to massive loss of neurons in the substantia nigra pars compacta and dopamine (DA) depletion. Therefore, the current drug treatment is primarily based on DA supplementation and delaying the progression of the disease. However, as patients' symptoms continue to worsen, the drug effect will gradually decrease or even disappear, thereby further aggravating clinical symptoms. Gas signaling molecules, such as hydrogen sulfide (H2S), nitric oxide (NO), carbon monoxide (CO), and hydrogen (H2), exhibit pleiotropic biological functions and play crucial roles in physiological and pathological effects. In common neurodegenerative diseases including Alzheimer's disease and PD, gas signal molecules can prevent or delay disease occurrence via the primary mechanisms of antioxidation, anti-inflammatory response, and antiapoptosis. This article reviews the therapeutic progress of gas signaling molecules in PD models and discusses the possibility of their clinical applications.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Hubei University of Medicine, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen518036, P. R. China
| | - Qing Dan
- Department of Hubei University of Medicine, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen518036, P. R. China
| | - Bingxuan Xu
- Department of Hubei University of Medicine, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen518036, P. R. China
| | - Yun Chen
- Department of Hubei University of Medicine, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen518036, P. R. China
| | - Tingting Zheng
- Department of Hubei University of Medicine, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen518036, P. R. China
| |
Collapse
|
15
|
Seabra AB, Pieretti JC, de Melo Santana B, Horue M, Tortella GR, Castro GR. Pharmacological applications of nitric oxide-releasing biomaterials in human skin. Int J Pharm 2022; 630:122465. [PMID: 36476664 DOI: 10.1016/j.ijpharm.2022.122465] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is an important endogenous molecule that plays several roles in biological systems. NO is synthesized in human skin by three isoforms of nitric oxide synthase (NOS) and, depending on the produced NO concentration, it can actuate in wound healing, dermal vasodilation, or skin defense against different pathogens, for example. Besides being endogenously produced, NO-based pharmacological formulations have been developed for dermatological applications targeting diverse pathologies such as bacterial infection, wound healing, leishmaniasis, and even esthetic issues such as acne and skin aging. Recent strategies focus mainly on developing smart NO-releasing nanomaterials/biomaterials, as they enable a sustained and targeted NO release, promoting an improved therapeutic effect. This review aims to overview and discuss the main mechanisms of NO in human skin, the recent progress in the field of dermatological formulations containing NO, and their application in several skin diseases, highlighting promising advances and future perspectives in the field.
Collapse
Affiliation(s)
- Amedea B Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| | - Joana C Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Bianca de Melo Santana
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Manuel Horue
- Laboratorio de Nanobiomateriales, CINDEFI - Facultad de Ciencias Exactas, Universidad Nacional de La Plata- CONICET (CCT La Plata), Argentina
| | - Gonzalo R Tortella
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile; Centro de Excelencia en Investigación Biotecnologica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Guillermo R Castro
- Nanobiotechnology Area, Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG) - CONICET. Maipú 1065, S2000 Rosario, Santa Fe, Argentina; Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|