1
|
Al-Khafaji AH, Kwao S, Gómez Galindo F, Sajeevan RS. Germination and stress tolerance of oats treated with pulsed electric field at different phases of seedling growth. Bioelectrochemistry 2024; 158:108692. [PMID: 38547778 DOI: 10.1016/j.bioelechem.2024.108692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 05/25/2024]
Abstract
This study explores the impact of pulsed electric field (PEF) application on oat seedling growth and stress tolerance. PEF treatment (99 monopolar, rectangular pulses lasting 10 µs each, with a frequency of 13 Hz and a nominal electric field strength of 2250 V/cm) was applied at two growth stages: (i) when the seedlings had 0.2 cm roots emerging from the kernel, and (ii) when they had a 0.4 cm shoot emerging from the kernel. Post-treatment, the seedlings were hydroponically grown for 8 days. To induce stress, the hydroponic medium was augmented with PEG (15 %) to induce drought stress and NaCl (150 mM) to induce salinity stress. Results demonstrate that applying PEF improved the growth of the root and shoot of oat seedlings. This effect was more pronounced when applied to more developed seedlings. When PEF was applied during the later stage of germination, seedlings exposed to salinity stress showed enhanced shoot growth compared to the control. Under the studied conditions, the application of PEF had no impact on the growth of seedlings under drought stress.
Collapse
Affiliation(s)
- Alia Hussain Al-Khafaji
- Division of Food Technology, Engineering and Nutrition, Lund University, Sweden, PO Box 124, SE-22100 Lund, Sweden
| | - Stephen Kwao
- OptiCept Technologies AB, Skiffervägen 12, 22478 Lund, Sweden
| | - Federico Gómez Galindo
- Division of Food Technology, Engineering and Nutrition, Lund University, Sweden, PO Box 124, SE-22100 Lund, Sweden.
| | - Radha Sivarajan Sajeevan
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 23422 Lomma, Sweden.
| |
Collapse
|
2
|
Jiang L, Yun M, Ma Y, Qu T. Melatonin Mitigates Water Deficit Stress in Cenchrus alopecuroides (L.) Thunb through Up-Regulating Gene Expression Related to the Photosynthetic Rate, Flavonoid Synthesis, and the Assimilatory Sulfate Reduction Pathway. PLANTS (BASEL, SWITZERLAND) 2024; 13:716. [PMID: 38475560 DOI: 10.3390/plants13050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Melatonin can improve plant adaptability to water deficit stress by regulating the biosynthesis of flavonoids and improving the reactive oxygen species-scavenging enzyme system. However, it remains unclear whether melatonin mitigates the effects and causes of water deficit stress in Cenchrus alopecuroides. We conducted a PEG-simulated water stress pot experiment to determine whether and how exogenous melatonin alleviates water deficit in C. alopecuroides. The experiment was divided into four treatments: (1) normal watering (Control), (2) 40% PEG-6000 treatment (D), (3) 100 μmol·L-1 melatonin treatment (MT), and (4) both melatonin and PEG-6000 treatment (DMT). The results showed that melatonin can alleviate water deficit in C. alopecuroides by effectively inhibiting plant chlorophyll degradation and MDA accumulation while increasing antioxidant enzyme activities and photosynthetic rates under water deficit stress. The transcriptome results indicated that melatonin regulates the expression of genes with the biosynthesis pathway of flavonoids (by increasing the expression of PAL, 4CL, HCT, and CHS), photosynthesis-antenna proteins (by increasing the expression of LHC), and sulfur metabolism (the expression of PAPSS and CysC is up-regulated in the assimilatory sulfate reduction pathway), while up-regulating the transcription factors (AP2/ERF-ERF-, C2H2-, WRKY-, Tify-, bHLH-, NAC-, and MYB-related). These findings revealed the possible causes by which melatonin mitigates water deficit stress in C. alopecuroides, which provided novel insights into the role of melatonin in water deficit stress.
Collapse
Affiliation(s)
- Li Jiang
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
| | - Minqiang Yun
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
| | - Yinxi Ma
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
| | - Tongbao Qu
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Ameen M, Zafar A, Mahmood A, Zia MA, Kamran K, Javaid MM, Yasin M, Khan BA. Melatonin as a master regulatory hormone for genetic responses to biotic and abiotic stresses in model plant Arabidopsis thaliana: a comprehensive review. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23248. [PMID: 38310885 DOI: 10.1071/fp23248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Melatonin is a naturally occurring biologically active amine produced by plants, animals and microbes. This review explores the biosynthesis of melatonin in plants, with a particular focus on its diverse roles in Arabidopsis thaliana , a model species. Melatonin affects abiotic and biotic stress resistance in A. thaliana . Exogenous and endogenous melatonin is addressed in association with various conditions, including cold stress, high light stress, intense heat and infection with Botrytis cinerea or Pseudomonas , as well as in seed germination and lateral root formation. Furthermore, melatonin confers stress resistance in Arabidopsis by initiating the antioxidant system, remedying photosynthesis suppression, regulating transcription factors involved with stress resistance (CBF, DREB, ZAT, CAMTA, WRKY33, MYC2, TGA) and other stress-related hormones (abscisic acid, auxin, ethylene, jasmonic acid and salicylic acid). This article additionally addresses other precursors, metabolic components, expression of genes (COR , CBF , SNAT , ASMT , PIN , PR1 , PDF1.2 and HSFA ) and proteins (JAZ, NPR1) associated with melatonin and reducing both biological and environmental stressors. Furthermore, the future perspective of melatonin rich agri-crops is explored to enhance plant tolerance to abiotic and biotic stresses, maximise crop productivity and enhance nutritional worth, which may help improve food security.
Collapse
Affiliation(s)
- Muaz Ameen
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Asma Zafar
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Anjum Zia
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Kashif Kamran
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Mansoor Javaid
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Yasin
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Bilal Ahmad Khan
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| |
Collapse
|
4
|
Wang P, Wan Z, Luo S, Wei H, Zhao J, Wang G, Yu J, Zhang G. Silencing the CsSnRK2.11 Gene Decreases Drought Tolerance of Cucumis sativus L. Int J Mol Sci 2023; 24:15761. [PMID: 37958744 PMCID: PMC10649623 DOI: 10.3390/ijms242115761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Drought stress restricts vegetable growth, and abscisic acid plays an important role in its regulation. Sucrose non-fermenting1-related protein kinase 2 (SnRK2) is a key enzyme in regulating ABA signal transduction in plants, and it plays a significant role in response to multiple abiotic stresses. Our previous experiments demonstrated that the SnRK2.11 gene exhibits a significant response to drought stress in cucumbers. To further investigate the function of SnRK2.11 under drought stress, we used VIGS (virus-induced gene silencing) technology to silence this gene and conducted RNA-seq analysis. The SnRK2.11-silencing plants displayed increased sensitivity to drought stress, which led to stunted growth and increased wilting speed. Moreover, various physiological parameters related to photosynthesis, chlorophyll fluorescence, leaf water content, chlorophyll content, and antioxidant enzyme activity were significantly reduced. The intercellular CO2 concentration, non-photochemical burst coefficient, and malondialdehyde and proline content were significantly increased. RNA-seq analysis identified 534 differentially expressed genes (DEGs): 311 were upregulated and 223 were downregulated. GO functional annotation analysis indicated that these DEGs were significantly enriched for molecular functions related to host cells, enzyme activity, and stress responses. KEGG pathway enrichment analysis further revealed that these DEGs were significantly enriched in phytohormone signalling, MAPK signalling, and carotenoid biosynthesis pathways, all of which were associated with abscisic acid. This study used VIGS technology and transcriptome data to investigate the role of CsSnRK2.11 under drought stress, offering valuable insights into the mechanism of the SnRK2 gene in enhancing drought resistance in cucumbers.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.W.); (Z.W.); (S.L.); (H.W.); (J.Z.); (G.W.); (J.Y.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zilong Wan
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.W.); (Z.W.); (S.L.); (H.W.); (J.Z.); (G.W.); (J.Y.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shilei Luo
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.W.); (Z.W.); (S.L.); (H.W.); (J.Z.); (G.W.); (J.Y.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Haotai Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.W.); (Z.W.); (S.L.); (H.W.); (J.Z.); (G.W.); (J.Y.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianuo Zhao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.W.); (Z.W.); (S.L.); (H.W.); (J.Z.); (G.W.); (J.Y.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoshuai Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.W.); (Z.W.); (S.L.); (H.W.); (J.Z.); (G.W.); (J.Y.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jihua Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.W.); (Z.W.); (S.L.); (H.W.); (J.Z.); (G.W.); (J.Y.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Guobin Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.W.); (Z.W.); (S.L.); (H.W.); (J.Z.); (G.W.); (J.Y.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|