1
|
Vázquez-Rosas-Landa M, Pérez-Ceballos R, Zaldívar-Jiménez A, Hereira S, Pérez González L, Prieto-Davó A, Celis-Hernández O, Canales-Delgadillo JC. Impact of seasonal flooding and hydrological connectivity loss on microbial community dynamics in mangrove sediments of the southern Gulf of Mexico. PeerJ 2025; 13:e19371. [PMID: 40343087 PMCID: PMC12060900 DOI: 10.7717/peerj.19371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 04/04/2025] [Indexed: 05/11/2025] Open
Abstract
Background Mangrove ecosystems play essential roles in coastal resilience, carbon sequestration, and biodiversity but are under increasing threat from anthropogenic pressures. This study explores the impact of hydrological variability on microbial communities in mangrove sediments of the southern Gulf of Mexico. Methods We employed 16S rRNA sequencing to assess microbial diversity and function across different hydrological zones, seasons, and sediment depths at Estero Pargo. Results Our results show that microbial community composition is significantly influenced by hydrological conditions, with distinct microbial assemblages observed across the fringe, basin, and impaired zones. Seasonal variations were particularly pronounced, with higher microbial diversity during the flood season compared to the dry season. Depth also played a critical role, with surface layers (5 cm) predominantly featuring aerobic microbial communities, while deeper layers (20-40 cm) harbored anaerobic taxa such as Bathyarchaeota and Thermococcaceae. Notably, the impaired zone showed enrichment in genes related to denitrification and sulfur oxidation pathways, indicating strong microbial adaptation to reduced environments. These findings highlight the intricate interactions between microbial dynamics and environmental factors in mangrove ecosystems. Understanding these relationships is crucial for developing effective conservation and management strategies that enhance mangrove resilience in the face of global environmental changes.
Collapse
Affiliation(s)
- Mirna Vázquez-Rosas-Landa
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Rosela Pérez-Ceballos
- Instituto de Ciencias del Mar y Limnología Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen, Campeche, Mexico
- Secretaría de Ciencias, Humanidades, Tecnologíae Innovación (SECIHTI), Mexico, Mexico
| | | | - Stephanie Hereira
- Laboratorio de Interacciones Bióticas, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Leonardo Pérez González
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Alejandra Prieto-Davó
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto Abrigo, Yucatan, Mexico
| | - Omar Celis-Hernández
- Instituto de Ciencias del Mar y Limnología Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen, Campeche, Mexico
- Secretaría de Ciencias, Humanidades, Tecnologíae Innovación (SECIHTI), Mexico, Mexico
| | - Julio Cesar Canales-Delgadillo
- Instituto de Ciencias del Mar y Limnología Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen, Campeche, Mexico
- Secretaría de Ciencias, Humanidades, Tecnologíae Innovación (SECIHTI), Mexico, Mexico
| |
Collapse
|
2
|
Contreras-de la Rosa PA, De la Torre-Zavala S, O´Connor-Sánchez A, Prieto-Davó A, Góngora-Castillo EB. Exploring the microbial communities in coastal cenote and their hidden biotechnological potential. Microb Genom 2025; 11:001382. [PMID: 40178526 PMCID: PMC11968836 DOI: 10.1099/mgen.0.001382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Bacterial secondary metabolites are crucial bioactive compounds with significant therapeutic potential, playing key roles in ecological processes and the discovery of novel antimicrobial agents and natural products. Cenotes, as extreme environments, harbour untapped microbial diversity and hold an interesting potential as sources of novel secondary metabolites. While research has focused on the fauna and flora of cenotes, the study of their microbial communities and their biosynthetic capabilities remains limited. Advances in metagenomics and genome sequencing have greatly improved the capacity to explore these communities and their metabolites. In this study, we analysed the microbial diversity and biotechnological potential of micro-organisms inhabiting sediments from a coastal cenote. Metagenomic analyses revealed a rich diversity of bacterial and archaeal communities, containing several novel biosynthetic gene clusters (BGCs) linked to secondary metabolite production. Notably, polyketide synthase BGCs, including those encoding ladderanes and aryl-polyenes, were identified. Bioinformatics analyses of these pathways suggest the presence of compounds with potential industrial and pharmaceutical applications. These findings highlight the biotechnological value of cenotes as reservoirs of secondary metabolites. The study and conservation of these ecosystems are essential to facilitate the discovery of new bioactive compounds that could benefit various industries.
Collapse
Affiliation(s)
- Perla A. Contreras-de la Rosa
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Susana De la Torre-Zavala
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, 66425, San Nicolás de los Garza, Nuevo León, Mexico
| | - Aileen O´Connor-Sánchez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Alejandra Prieto-Davó
- Unidad de Química-Sisal, Facultad de Química. Universidad Nacional Autónoma de México, 97356, Sisal, Yucatán, México
| | - Elsa B. Góngora-Castillo
- CONAHCYT- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo 97205, Mérida, Yucatán, México
- CONAHCYT-Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 6. Antigua carretera a Progreso. Cordemex, 97310, Mérida, Yucatán, México
| |
Collapse
|
3
|
Liu Y, Chen S, Liang J, Song J, Sun Y, Liao R, Liang M, Cao H, Chen X, Wu Y, Bei L, Pan Y, Yan B, Li Y, Tao Y, Bu R, Gong B. Bacterial Community Structure and Environmental Driving Factors in the Surface Sediments of Six Mangrove Sites from Guangxi, China. Microorganisms 2024; 12:2607. [PMID: 39770809 PMCID: PMC11678403 DOI: 10.3390/microorganisms12122607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Mangroves, as blue carbon reservoirs, provide a unique habitat for supporting a variety of microorganisms. Among these, bacteria play crucial roles in the biogeochemical processes of mangrove sediments. However, little is known about their community composition, spatial distribution patterns, and environmental driving factors, particularly across the large geographical scales of mangrove wetlands. In this study, the composition and spatial distribution of the bacterial community structure and its response to fifteen physicochemical parameters (including temperature, pH, salinity, moisture, clay, silt, sand, organic carbon (OC), total nitrogen (TN), total phosphorus (TP), inorganic phosphorus (IP), organic phosphorus (OP), δ13C, δ15N, and carbon/nitrogen ratio (C/N ratio)) were characterized in 32 sampling locations of six different mangrove habitats from Guangxi, China, applying 16S rRNA gene high-throughput sequencing technology and correlation analysis. Our results indicated that the spatial distribution patterns in bacterial communities were significantly different among the six different mangrove sites, as evidenced by NMDS (non-metric multidimensional scaling), ANOSIM (analysis of similarity), and LDA (linear discriminant analysis) analysis. Composition analysis of bacterial communities showed that overall, Chloroflexi (8.3-31.6%), Proteobacteria (13.6-30.1%), Bacteroidota (5.0-24.6%), and Desulfobacterota (3.8-24.0%) were the most abundant bacterial phyla in the mangrove surface sediments. Redundancy analysis (RDA) further highlighted that salinity, δ13C, temperature, δ15N, and silt were the most critical environmental variables influencing the composition of bacterial communities across the whole mangrove samples. Notably, Chloroflexi, one of the most abundant bacterial phyla in the mangrove wetlands, displayed a significantly positive correlation with OC and a negative correlation with δ13C, suggesting its essential role in the degradation of terrestrial-derived organic carbon. These findings support the current understanding of the roles of the bacterial communities and their interactions with environmental factors in diverse mangrove ecosystems.
Collapse
Affiliation(s)
- Ying Liu
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Songze Chen
- Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China;
| | - Jinyu Liang
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Jingjing Song
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Yue Sun
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Riquan Liao
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Mingzhong Liang
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Hongming Cao
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Xiuhao Chen
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Yuxia Wu
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Liting Bei
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Yuting Pan
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Baishu Yan
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Yunru Li
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Yun Tao
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Rongping Bu
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| | - Bin Gong
- Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China; (Y.L.); (J.L.); (J.S.); (Y.S.); (R.L.); (M.L.); (H.C.); (X.C.); (Y.W.); (L.B.); (Y.P.); (B.Y.); (Y.L.); (Y.T.)
| |
Collapse
|
4
|
Esguerra-Rodríguez D, De León-Lorenzana A, Teutli C, Prieto-Davó A, García-Maldonado JQ, Herrera-Silveira J, Falcón LI. Do restoration strategies in mangroves recover microbial diversity? A case study in the Yucatan peninsula. PLoS One 2024; 19:e0307929. [PMID: 39150908 PMCID: PMC11329136 DOI: 10.1371/journal.pone.0307929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/15/2024] [Indexed: 08/18/2024] Open
Abstract
Mangrove forests are fundamental coastal ecosystems for the variety of services they provide, including green-house gas regulation, coastal protection and home to a great biodiversity. Mexico is the fourth country with the largest extension of mangroves of which 60% occurs in the Yucatan Peninsula. Understanding the microbial component of mangrove forests is necessary for their critical roles in biogeochemical cycles, ecosystem health, function and restoration initiatives. Here we study the relation between the microbial community from sediments and the restoration process of mangrove forests, comparing conserved, degraded and restored mangroves along the northern coast of the Yucatan peninsula. Results showed that although each sampling site had a differentiated microbial composition, the taxa belonged predominantly to Proteobacteria (13.2-23.6%), Desulfobacterota (7.6-8.3%) and Chloroflexi (9-15.7%) phyla, and these were similar between rainy and dry seasons. Conserved mangroves showed significantly higher diversity than degraded ones, and restored mangroves recovered their microbial diversity from the degraded state (Dunn test p-value Benjamini-Hochberg adjusted = 0.0034 and 0.0071 respectively). The structure of sediment microbial β-diversity responded significantly to the mangrove conservation status and physicochemical parameters (organic carbon content, redox potential, and salinity). Taxa within Chloroflexota, Desulfobacterota and Thermoplasmatota showed significantly higher abundance in degraded mangrove samples compared to conserved ones. This study can help set a baseline that includes the microbial component in health assessment and restoration strategies of mangrove forests.
Collapse
Affiliation(s)
- Daniel Esguerra-Rodríguez
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Instituto de Ecología, Laboratorio de Ecología Bacteriana, Unidad Mérida, Ucú, Yucatán, México
| | - Arit De León-Lorenzana
- Instituto de Ecología, Laboratorio de Ecología Bacteriana, Unidad Mérida, Ucú, Yucatán, México
| | - Claudia Teutli
- Escuela Nacional de Estudios Superiores Mérida, Universidad Nacional Autónoma de México, Ucú, Yucatán, México
| | - Alejandra Prieto-Davó
- Facultad de Química, Unidad de Química Sisal, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
| | - José Q García-Maldonado
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán, México
| | - Jorge Herrera-Silveira
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán, México
| | - Luisa I Falcón
- Instituto de Ecología, Laboratorio de Ecología Bacteriana, Unidad Mérida, Ucú, Yucatán, México
| |
Collapse
|
5
|
Fiard M, Militon C, Sylvi L, Migeot J, Michaud E, Jézéquel R, Gilbert F, Bihannic I, Devesa J, Dirberg G, Cuny P. Uncovering potential mangrove microbial bioindicators to assess urban and agricultural pressures on Martinique island in the eastern Caribbean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172217. [PMID: 38583633 DOI: 10.1016/j.scitotenv.2024.172217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Martinique's mangroves, which cover 1.85 ha of the island (<0.1 % of the total area), are considerably vulnerable to local urban, agricultural, and industrial pollutants. Unlike for temperate ecosystems, there are limited indicators that can be used to assess the anthropogenic pressures on mangroves. This study investigated four stations on Martinique Island, with each being subject to varying anthropogenic pressures. An analysis of mangrove sediment cores approximately 18 cm in depth revealed two primary types of pressures on Martinique mangroves: (i) an enrichment in organic matter in the two stations within the highly urbanized bay of Fort-de-France and (ii) agricultural pressure observed in the four studied mangrove stations. This pressure was characterized by contamination, exceeding the regulatory thresholds, with dieldrin, total DDT, and metals (As, Cu and Ni) found in phytosanitary products. The mangroves of Martinique are subjected to varying degrees of anthropogenic pressure, but all are subjected to contamination by organochlorine pesticides. Mangroves within the bay of Fort-de-France experience notably higher pressures compared to those in the island's northern and southern regions. In these contexts, the microbial communities exhibited distinct responses. The microbial biomass and the abundance of bacteria and archaea were higher in the two less-impacted stations, while in the mangrove of Fort-de-France, various phyla typically associated with polluted environments were more prevalent. These differences in the microbiota composition led to the identification of 65 taxa, including Acanthopleuribacteraceae, Spirochaetaceae, and Pirellulaceae, that could potentially serve as indicators of an anthropogenic influence on the mangrove sediments of Martinique Island.
Collapse
Affiliation(s)
- Maud Fiard
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Cécile Militon
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Léa Sylvi
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Jonathan Migeot
- Impact Mer consulting, expertise, and R&D firm, 20 rue Karukéra, 97200 Fort de France, Martinique/FWI, France.
| | - Emma Michaud
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, France.
| | - Ronan Jézéquel
- CEDRE, 715 rue Alain Colas, 29218 Brest CEDEX 2, France.
| | - Franck Gilbert
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier, Toulouse, France.
| | | | - Jeremy Devesa
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, France.
| | - Guillaume Dirberg
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Rue Buffon, 75005 Paris, France.
| | - Philippe Cuny
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| |
Collapse
|