1
|
Liu J, Mu J, Liang Z, Zhang Y, Hu T, Wu F, Zhou H. TAM-Derived Exosomes Promote EMT by Upregulating lncRNA MIR4435-2HG in Head and Neck Cancer. Oral Dis 2025; 31:1154-1164. [PMID: 39652828 DOI: 10.1111/odi.15212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 03/17/2025]
Abstract
OBJECTIVE This study aimed to investigate the impact of tumor-associated macrophage (TAM)-derived exosomes on epithelial-mesenchymal transition (EMT) in head and neck squamous cell carcinoma (HNSCC) and the underlying mechanisms involved. SUBJECTS AND METHODS Exosomes were isolated and characterized using transmission electron microscopy, nanoparticle size analysis, and western blotting. The effect on EMT in HNSCC cells was assessed using wound healing, transwell invasion, and EMT marker assays. Bioinformatics analysis was conducted to predict key TAM-related long noncoding RNAs and evaluate their relationship with EMT in HNSCC. RESULTS We observed that treatment with TAM-derived conditioned medium (CM) promoted EMT in HNSCC cells. Within the CM, we observed abundant exosomes that were taken up by HNSCC cells. Furthermore, TAM-derived exosomes promoted EMT in HNSCC cells. Mechanistically, high MIR4435-2HG expression levels were observed in TAM-derived exosomes and in HNSCC cells after treatment with TAM-derived exosomes. Notably, high MIR4435-2HG expression levels may be closely related to molecules that promote EMT in HNSCC. CONCLUSIONS TAM-derived exosomes promote EMT in HNSCC cells by upregulating MIR4435-2HG expression, suggesting that MIR4435-2HG is a candidate target for HNSCC therapy.
Collapse
Affiliation(s)
- Junjiang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhi Liang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yizhi Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Yang Q, Huan R, Meng D, Qi J, Xia L. Progress in the study of anti-tumor effects and mechanisms of vitexin. Pharmacol Rep 2025; 77:124-134. [PMID: 39477892 DOI: 10.1007/s43440-024-00664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 01/21/2025]
Abstract
Vitexin (apigenin-8-C-beta-D-glucopyranoside) is a natural flavonoid derivative with anti-cancer, antioxidant, anti-inflammatory, antihypertensive, anti-asthma, anti-epilepsy, and other therapeutic effects. It is extracted from pearl millet, hawthorn, pigeon bean, mung bean, and other medicinal plants. Vitexin has received widespread attention because of its significant anti-tumor effect. It induces apoptosis and anti-tumor angiogenesis, inhibits tumor cell migration and invasion, regulates tumor cell autophagy and immunity, and increases patient sensitivity to radiotherapy and chemotherapy. It has a significant anti-tumor effect on breast, prostate, liver, cervical, and colon cancers, gliomas, and other malignant tumors. This review demonstrates the latest research progress on the anti-tumor effects and potential mechanisms of vitexin. It summarizes its anti-tumor mechanism to provide new theoretical support and reference for cancer treatment.
Collapse
Affiliation(s)
- Qiming Yang
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rui Huan
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Defeng Meng
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junwei Qi
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Xia
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Liang S, Zhu L, Yang F, Dong H. Transcription factor YY1-activated GNG5 facilitates glioblastoma cell growth, invasion, stemness and glycolysis through Wnt/β-catenin pathway. Sci Rep 2024; 14:25234. [PMID: 39448763 PMCID: PMC11502875 DOI: 10.1038/s41598-024-76019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
G protein subunit Gamma 5 (GNG5) has been found to be involved in regulating glioma progression. However, its function and mechanism in glioblastoma (GBM) progression need to be further elucidated. GBM cell proliferation, apoptosis, invasion and stemness were assessed by cell counting kit 8 assay, EdU assay, flow cytometry, transwell assay and sphere formation assay. The mRNA and protein levels of GNG5 and Yin Yang 1 (YY1) were determined by quantitative real-time PCR and western blot (WB). Detection of the glucose consumption, lactate production and ATP/ADP ratios were used to assess cell glycolysis. Besides, Wnt/β-catenin pathway-related protein levels were examined by WB. Mice xenograft model was also constructed to explore GNG5 roles in vivo. GNG5 was highly expressed in GBM, and its silencing inhibited GBM cell proliferation, invasion, stemness and glycolysis, while promoted apoptosis. Transcription factor YY1 could bind to the GNG5 promoter region and induce its expression. GNG5 overexpression reversed the inhibitory effects of YY1 silencing on GBM cell growth, invasion, stemness and glycolysis. YY1/GNG5 axis could activate the Wnt/β-catenin pathway, and Wnt/β-catenin pathway agonists SKL2001 could revert the effects of GNG5 silencing on GBM cell progression. Furthermore, GNG5 facilitated GBM tumor growth by mediating the Wnt/β-catenin pathway. YY1-mediated GNG5 promoted GBM progression through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Sheng Liang
- Department of Pharmacy, Cangzhou Central Hospital, No. 16 Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei, People's Republic of China.
| | - Liangliang Zhu
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, People's Republic of China
| | - Feng Yang
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei, People's Republic of China
| | - Haijun Dong
- Department of Neurosurgery, Handan First Hospital, Handan, 056000, Hebei, People's Republic of China
| |
Collapse
|
4
|
Zhou W, Yang F, Zhang X. Roles of M1 Macrophages and Their Extracellular Vesicles in Cancer Therapy. Cells 2024; 13:1428. [PMID: 39273000 PMCID: PMC11394047 DOI: 10.3390/cells13171428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are inflammatory cells that are important components of the tumor microenvironment. TAMs are functionally heterogeneous and divided into two main subpopulations with distinct and opposite functions: M1 and M2 macrophages. The secretory function of TAMs is essential for combating infections, regulating immune responses, and promoting tissue repair. Extracellular vesicles (EVs) are nanovesicles that are secreted by cells. They play a crucial role in mediating intercellular information transfer between cells. EVs can be secreted by almost all types of cells, and they contain proteins, microRNAs, mRNAs, and even long non-coding RNAs (lncRNAs) that have been retained from the parental cell through the process of biogenesis. EVs can influence the function and behavior of target cells by delivering their contents, thus reflecting, to some extent, the characteristics of their parental cells. Here, we provide an overview of the role of M1 macrophages and their EVs in cancer therapy by exploring the impact of M1 macrophage-derived EVs (M1-EVs) on tumors by transferring small microRNAs. Additionally, we discuss the potential of M1-EVs as drug carriers and the possibility of reprogramming M2 macrophages into M1 macrophages for disease treatment. We propose that M1-EVs play a crucial role in cancer therapy by transferring microRNAs and loading them with drugs. Reprogramming M2 macrophages into M1 macrophages holds great promise in the treatment of cancers.
Collapse
Affiliation(s)
| | | | - Xiuzhen Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China (F.Y.)
| |
Collapse
|
5
|
Hushmandi K, Saadat SH, Raei M, Aref AR, Reiter RJ, Nabavi N, Taheriazam A, Hashemi M. The science of exosomes: Understanding their formation, capture, and role in cellular communication. Pathol Res Pract 2024; 259:155388. [PMID: 38850846 DOI: 10.1016/j.prp.2024.155388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Extracellular vesicles (EVs) serve as a crucial method for transferring information among cells, which is vital in multicellular organisms. Among these vesicles, exosomes are notable for their small size, ranging from 20 to 150 nm, and their role in cell-to-cell communication. They carry lipids, proteins, and nucleic acids between cells. The creation of exosomes begins with the inward budding of the cell membrane, which then encapsulates various macromolecules as cargo. Once filled, exosomes are released into the extracellular space and taken up by target cells via endocytosis and similar processes. The composition of exosomal cargo varies, encompassing diverse macromolecules with specific functions. Because of their significant roles, exosomes have been isolated from various cell types, including cancer cells, endothelial cells, macrophages, and mesenchymal cells, with the aim of harnessing them for therapeutic applications. Exosomes influence cellular metabolism, and regulate lipid, glucose, and glutamine pathways. Their role in pathogenesis is determined by their cargo, which can manipulate processes such as apoptosis, proliferation, inflammation, migration, and other molecular pathways in recipient cells. Non-coding RNA transcripts, a common type of cargo, play a pivotal role in regulating disease progression. Exosomes are implicated in numerous biological and pathological processes, including inflammation, cancer, cardiovascular diseases, diabetes, wound healing, and ischemic-reperfusion injury. As a result, they hold significant potential in the treatment of both cancerous and non-cancerous conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Roshan-Zamir M, Khademolhosseini A, Rajalingam K, Ghaderi A, Rajalingam R. The genomic landscape of the immune system in lung cancer: present insights and continuing investigations. Front Genet 2024; 15:1414487. [PMID: 38983267 PMCID: PMC11231382 DOI: 10.3389/fgene.2024.1414487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Lung cancer is one of the most prevalent malignancies worldwide, contributing to over a million cancer-related deaths annually. Despite extensive research investigating the genetic factors associated with lung cancer susceptibility and prognosis, few studies have explored genetic predispositions regarding the immune system. This review discusses the most recent genomic findings related to the susceptibility to or protection against lung cancer, patient survival, and therapeutic responses. The results demonstrated the effect of immunogenetic variations in immune system-related genes associated with innate and adaptive immune responses, cytokine, and chemokine secretions, and signaling pathways. These genetic diversities may affect the crosstalk between tumor and immune cells within the tumor microenvironment, influencing cancer progression, invasion, and prognosis. Given the considerable variability in the individual immunegenomics profiles, future studies should prioritize large-scale analyses to identify potential genetic variations associated with lung cancer using highthroughput technologies across different populations. This approach will provide further information for predicting response to targeted therapy and promotes the development of new measures for individualized cancer treatment.
Collapse
Affiliation(s)
- Mina Roshan-Zamir
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Khademolhosseini
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kavi Rajalingam
- Cowell College, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Abbas Ghaderi
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
7
|
Kang J, Hua P, Wu X, Wang B. Exosomes: efficient macrophage-related immunomodulators in chronic lung diseases. Front Cell Dev Biol 2024; 12:1271684. [PMID: 38655063 PMCID: PMC11035777 DOI: 10.3389/fcell.2024.1271684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Macrophages, the predominant immune cells in the lungs, play a pivotal role in maintaining the delicate balance of the pulmonary immune microenvironment. However, in chronic inflammatory lung diseases and lung cancer, macrophage phenotypes undergo distinct transitions, with M1-predominant macrophages promoting inflammatory damage and M2-predominant macrophages fostering cancer progression. Exosomes, as critical mediators of intercellular signaling and substance exchange, participate in pathological reshaping of macrophages during development of pulmonary inflammatory diseases and lung cancer. Specifically, in inflammatory lung diseases, exosomes promote the pro-inflammatory phenotype of macrophages, suppress the anti-inflammatory phenotype, and subsequently, exosomes released by reshaped macrophages further exacerbate inflammatory damage. In cancer, exosomes promote pro-tumor tumor-associated macrophages (TAMs); inhibit anti-tumor TAMs; and exosomes released by TAMs further enhance tumor proliferation, metastasis, and resistance to chemotherapy. Simultaneously, exosomes exhibit a dual role, holding the potential to transmit immune-modulating molecules and load therapeutic agents and offering prospects for restoring immune dysregulation in macrophages during chronic inflammatory lung diseases and lung cancer. In chronic inflammatory lung diseases, this is manifested by exosomes reshaping anti-inflammatory macrophages, inhibiting pro-inflammatory macrophages, and alleviating inflammatory damage post-reshaping. In lung cancer, exosomes reshape anti-tumor macrophages, inhibit pro-tumor macrophages, and reshaped macrophages secrete exosomes that suppress lung cancer development. Looking ahead, efficient and targeted exosome-based therapies may emerge as a promising direction for treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Jianxiong Kang
- Department of Thoracic Surgery at The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Peiyan Hua
- Department of Thoracic Surgery at The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaojing Wu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Bin Wang
- Department of Thoracic Surgery at The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Yao M, Mao X, Zhang Z, Cui F, Shao S, Mao B. Communication molecules (ncRNAs) mediate tumor-associated macrophage polarization and tumor progression. Front Cell Dev Biol 2024; 12:1289538. [PMID: 38523627 PMCID: PMC10957787 DOI: 10.3389/fcell.2024.1289538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
Non-coding RNAs play important roles in tumor cells and macrophages and participate in their communication as messengers. Non-coding RNAs have an impact in tumor cell proliferation, migration, and apoptosis, and they also regulate the differentiation and regulation of immune cells. In macrophages, they stimulate the polarization of macrophages into M1 or M2 by regulating proteins related to signaling pathways; in tumor cells, non-coding RNAs can enter macrophages through exosomes and affect the latter polarization. The polarization of macrophages further regulates the biological functions of cancer cells. The direction of macrophage polarization determines tumor progression, angiogenesis and drug resistance. This often creates a feedback loop. Non-coding RNAs act as bridges between tumor cells and macrophages to regulate the balance of the tumor microenvironment. We reviewed the signaling pathways related to macrophage polarization and the regulatory mechanisms of non-coding RNA in tumor-associated macrophages M1 and M2, and discussed the potential applications and prospects of exosome engineering.
Collapse
Affiliation(s)
- Min Yao
- The Affiliated Yixing Hospital of Jiangsu University, WuXi, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xuhua Mao
- The Affiliated Yixing Hospital of Jiangsu University, WuXi, China
| | - Zherui Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Feilun Cui
- The Affiliated Taizhou Second People`s Hospital of Yangzhou University, Taizhou, Jiangsu, China
| | - Shihe Shao
- The Affiliated Yixing Hospital of Jiangsu University, WuXi, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Boneng Mao
- The Affiliated Yixing Hospital of Jiangsu University, WuXi, China
| |
Collapse
|
9
|
Meng F, Yin Z, Lu F, Wang W, Zhang H. Disruption of LPA-LPAR1 pathway results in lung tumor growth inhibition by downregulating B7-H3 expression in fibroblasts. Thorac Cancer 2024; 15:316-326. [PMID: 38124403 PMCID: PMC10834189 DOI: 10.1111/1759-7714.15193] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Lysophosphatidic acids (LPAs) belong to a class of bioactive lysophospholipids with multiple functions including immunomodulatory roles in tumor microenvironment (TME). LPA exerts its biological effects via its receptors that are highly expressed in fibroblasts among other cell types. As cancer-associated fibroblasts (CAFs) are a key component of the TME, it is important to understand LPA signaling and regulation of receptors in fibroblasts or CAFs and associated regulatory roles on immunomodulation-related molecules. METHODS Cluster analysis, immunoblotting, real-time quantitative-PCR, CRISPR-Cas9 gene editing system, immunohistochemical staining, coculture model, and in vivo xenograft model were used to investigate the effects of LPA-LPAR1 on B7-H3 in tumor promotion of CAFs. RESULTS In this study, we found that LPAR1 and CD276 (B7-H3) were generally highly expressed in fibroblasts with good expression correlation. LPA induced B7-H3 up-expression through LPAR1, and stimulated fibroblasts proliferation that could be inhibited by silencing LPAR1 or B7-H3 as well as small molecule LPAR1 antagonist (Ki16425). Using engineered fibroblasts and non-small cell lung carcinoma (NSCLC) cell lines, subsequent investigations demonstrated that CAFs promoted the proliferation of NSCLC in vitro and in vivo, and such effect could be inhibited by knocking out LPAR1 or B7-H3. CONCLUSION The present study provided new insights for roles of LPA in CAFs, which could lead to the development of innovative therapies targeting CAFs in the TME. It is also reasonable to postulate a combinatory approach to treat malignant fibrous tumors (such as NSCLC) with LPAR1 antagonists and B7-H3 targeting therapies.
Collapse
Affiliation(s)
- Fanyi Meng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zhiyue Yin
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Feifei Lu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Hongjian Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Chen X, Li Y, Li M, Xie Y, Wang K, Zhang L, Zou Z, Xiong L. Exosomal miRNAs assist in the crosstalk between tumor cells and immune cells and its potential therapeutics. Life Sci 2023; 329:121934. [PMID: 37460057 DOI: 10.1016/j.lfs.2023.121934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
Exosomes are small extracellular vesicles that carry active substances (including proteins, lipids, and nucleic acids) and are essential for homeostasis and signal transmission. Recent studies have focused on the function of exosomal miRNAs in tumor progression. Researchers have expanded the use of exosomes and miRNAs as potential therapeutic tools and biomarkers to detect tumor progression. Immune cells, as an important part of the tumor microenvironment (TME), secrete a majority of exosome-derived miRNAs involved in the biological processes of malignancies. However, the underlying mechanisms remain unclear. Currently, there is no literature that systematically summarizes the communication of exosome-derived miRNAs between tumor cells and immune cells. Based on the cell specificity of exosome-derived miRNAs, this review provides the first comprehensive summary of the significant miRNAs from the standpoint of exosome sources, which are tumor cells and immune cells. Furthermore, we elaborated on the potential clinical applications of these miRNAs, attempting to propose existing difficulties and future possibilities in tumor diagnostics and therapy.
Collapse
Affiliation(s)
- Xinyue Chen
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang 330006, China; Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yuqiu Li
- Queen Mary College of Nanchang University, Nanchang 330006, China
| | - Miao Li
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yujie Xie
- College of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Keqin Wang
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Lifang Zhang
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang 330006, China
| | - Zhuoling Zou
- Queen Mary College of Nanchang University, Nanchang 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
11
|
Jo H, Shim K, Jeoung D. Exosomes: Diagnostic and Therapeutic Implications in Cancer. Pharmaceutics 2023; 15:pharmaceutics15051465. [PMID: 37242707 DOI: 10.3390/pharmaceutics15051465] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Exosomes are a subset of extracellular vesicles produced by all cells, and they are present in various body fluids. Exosomes play crucial roles in tumor initiation/progression, immune suppression, immune surveillance, metabolic reprogramming, angiogenesis, and the polarization of macrophages. In this work, we summarize the mechanisms of exosome biogenesis and secretion. Since exosomes may be increased in the cancer cells and body fluids of cancer patients, exosomes and exosomal contents can be used as cancer diagnostic and prognostic markers. Exosomes contain proteins, lipids, and nucleic acids. These exosomal contents can be transferred into recipient cells. Therefore, this work details the roles of exosomes and exosomal contents in intercellular communications. Since exosomes mediate cellular interactions, exosomes can be targeted for developing anticancer therapy. This review summarizes current studies on the effects of exosomal inhibitors on cancer initiation and progression. Since exosomal contents can be transferred, exosomes can be modified to deliver molecular cargo such as anticancer drugs, small interfering RNAs (siRNAs), and micro RNAs (miRNAs). Thus, we also summarize recent advances in developing exosomes as drug delivery platforms. Exosomes display low toxicity, biodegradability, and efficient tissue targeting, which make them reliable delivery vehicles. We discuss the applications and challenges of exosomes as delivery vehicles in tumors, along with the clinical values of exosomes. In this review, we aim to highlight the biogenesis, functions, and diagnostic and therapeutic implications of exosomes in cancer.
Collapse
Affiliation(s)
- Hyein Jo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyeonghee Shim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
12
|
Lai X, Zhong J, Zhang B, Zhu T, Liao R. Exosomal Non-Coding RNAs: Novel Regulators of Macrophage-Linked Intercellular Communication in Lung Cancer and Inflammatory Lung Diseases. Biomolecules 2023; 13:536. [PMID: 36979471 PMCID: PMC10046066 DOI: 10.3390/biom13030536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Macrophages are innate immune cells and often classified as M1 macrophages (pro-inflammatory states) and M2 macrophages (anti-inflammatory states). Exosomes are cell-derived nanovesicles that range in diameter from 30 to 150 nm. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are abundant in exosomes and exosomal ncRNAs influence immune responses. Exosomal ncRNAs control macrophage-linked intercellular communication via their targets or signaling pathways, which can play positive or negative roles in lung cancer and inflammatory lung disorders, including acute lung injury (ALI), asthma, and pulmonary fibrosis. In lung cancer, exosomal ncRNAs mediated intercellular communication between lung tumor cells and tumor-associated macrophages (TAMs), coordinating cancer proliferation, migration, invasion, metastasis, immune evasion, and therapy resistance. In inflammatory lung illnesses, exosomal ncRNAs mediate macrophage activation and inflammation to promote or inhibit lung damage. Furthermore, we also discussed the possible applications of exosomal ncRNA-based therapies for lung disorders.
Collapse
Affiliation(s)
- Xingning Lai
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhong
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu 610041, China
| | - Boyi Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ren Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit for Perioperative Stress Assessment and Clinical Decision, Chinese Academy of Medical Sciences (2018RU012), West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|