1
|
Kumar P, Kumar A, Kumar D, Prajapati KB, Mahajan AK, Pant D, Yadav A, Giri A, Manda S, Bhandari S, Panjla R. Microplastics influencing aquatic environment and human health: A review of source, determination, distribution, removal, degradation, management strategy and future perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124249. [PMID: 39869960 DOI: 10.1016/j.jenvman.2025.124249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 12/15/2024] [Accepted: 01/19/2025] [Indexed: 01/29/2025]
Abstract
Microplastics (MPs) are produced from various primary and secondary sources and pose multifaceted environmental problems. They are of non-biodegradable nature and may stay in aquatic environments for a long time period. The present review has covered novel aspects pertaining to MPs that were not covered in earlier studies. It has been observed that several methods are being employed for samples collection, extraction and identification of MPs and polymer types using various equipment, chemicals and instrumental techniques. Aquatic species mistakenly ingest MPs, considering them prey and through food-chain, and then suffer from various metabolic disorders. The consumption of seafood and fish may consequently cause health implications in humans. Certain plasticizers are added during manufacturing to provide colour, durability, flexibility, and strength to plastics, but they leach out during usage, storage, and transport, as well as after entering the bodies of aquatic species and human beings. The leached chemicals (bisphenol-A, triclosan, phthalates, etc.) act as endocrine disrupting chemicals (EDCs), which effect on homeostasis; thereby causing neurotoxicity, cytotoxicity, reproductive problems, adverse behaviour and autism. Negative influence of MPs on carbon sequestration potential of water bodies is also observed, however more studies are required to understand it with a detail mechanism under natural conditions. The wastewater treatment plants are found to remove a large amount of MPs, but in turn, also act as significant sources of their release in sludge and effluents. Further, it is covered that how advanced oxidation processes, thermal- and photo-oxidation, fungi, algae and microbes degrade the plastics and increase their numbers in the surrounding environment. The management strategy comprising recovery of energy and other valuable by-products from plastic wastes, recycling and regulatory framework; are also described in detail. The future perspectives can be of paramount importance to control MPs generation and their abundance in the aquatic and other types of environments. The studies in future need to focus on advanced filtration techniques, advanced oxidation processes, energy recovery from plastic wastes and influences of MPs on carbon sequestration in aquatic environment and human health.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Natural Resources Management, Maharana Pratap Horticultural University, Karnal, Haryana, 132001, India.
| | - Anil Kumar
- Forest Ecology and Climate Change Division, ICFRE-Himalayan Forest Research Institute, Panthaghati, Shimla, Himachal Pradesh, 171013, India
| | - Deepak Kumar
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Kalp Bhusan Prajapati
- Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, India
| | - Ambrish Kumar Mahajan
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Deepak Pant
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Anoop Yadav
- Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, India
| | - Anand Giri
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, 171013, India
| | - Satish Manda
- Department of Natural Resources Management, Maharana Pratap Horticultural University, Karnal, Haryana, 132001, India
| | - Soniya Bhandari
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Richa Panjla
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| |
Collapse
|
2
|
Al-Tarshi M, Husband J, Dobretsov S. Evaluating microplastic contamination in Omani mangrove habitats using large mud snails (Terebralia palustris). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107220. [PMID: 39736165 DOI: 10.1016/j.aquatox.2024.107220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/10/2024] [Accepted: 12/22/2024] [Indexed: 01/01/2025]
Abstract
This study investigated microplastic pollution in the large mud snail Terebralia palustris (Linnaeus, 1767) (Gastropoda: Potamididae) inhabiting the Avicennia marina mangrove ecosystems along the Sea of Oman. A modified digestion protocol, combining two methods, was employed to improve the detection of microplastics within the snail tissue. Results indicated that 50 % of the examined snails contained microplastics, with significant variability observed among different lagoons. Snails from the polluted Shinas lagoon exhibited higher levels of microplastics compared to those from the lowest polluted Al-Qurum Natural Reserve (MPA). The most prevalent type of microplastic in snail tissues was fibers, making up 75.7 % of the total. Fragments constituted about 24.2 %. Using portable Raman spectrometry, Polyurethane (PU) was identified as the predominant polymer, accounting for 50 % of the total. This was followed by Acrylic and Polyethylene, each representing 18.75 %, and Polyethylene Vynil Acetate (PEVA) at 12.50 %. Overall, it is clear that while snails do reflect the presence of microplastics (MPs) in their environment, their physical attributes do not strongly correlate with the levels or types of MPs they contain. Additionally, the significant difference between the abundance of MPs in sediment and in snails illustrates that, while snails may serve as general indicators of microplastic pollution, they may not be reliable as precise bioindicators or sentinel species for quantifying the extent of this pollution. Further studies are needed to explore other potential bioindicators in mangrove habitats.
Collapse
Affiliation(s)
- Muna Al-Tarshi
- Environment Authority, DG of Nature Conservation, Marine Conservation Department P.O.Box: 323, Muscat, Oman; Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 PO Box 34, Muscat, Oman.
| | - John Husband
- Department of Chemistry, College of Science, Sultan Qaboos University, Al Khoud 123, PO Box 34, Muscat, Oman
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 PO Box 34, Muscat, Oman; UNESCO Chair in Marine Biotechnology, CEMB, Sultan Qaboos University, Al Khoud 123, PO Box 50, Muscat, Oman.
| |
Collapse
|
3
|
Teampanpong J, Duengkae P. Terrestrial wildlife as indicators of microplastic pollution in western Thailand. PeerJ 2024; 12:e17384. [PMID: 38784402 PMCID: PMC11114113 DOI: 10.7717/peerj.17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Plastic pollution in terrestrial wildlife represents a new conservation challenge, with research in this area, especially within protected areas (PAs), being scant. This study documents the accumulation of microplastics (MPs) in terrestrial wildlife both inside and outside PAs in western Thailand. Carcasses of road-killed vertebrates in good condition, as well as live tadpoles, were collected to examine their exposure to plastic pollution. The digestive tracts of the vertebrate carcasses and the entire bodies of tadpoles were analyzed for MPs, which were identified if they measured over 50 µm. A total of 136 individuals from 48 vertebrate species were examined. The sample comprised snakes (44.12%), birds (11.03%), lizards (5.15%), tadpoles (32.25%), amphibians (5.88%), and mammals (1.47%). In total, 387 MPs were found in 44 species (91.67%), with an average occurrence of 3.25 ± 3.63 MPs per individual or 0.05 ± 0.08 MPs per gram of body weight. The quantities of MPs significantly varied among the animal groups, both in terms of number per individual (p < 0.05) and number per gram of body weight (p < 0.01). Furthermore, a significant difference in MP quantities was observed between specimens collected inside and outside PAs on an individual basis (p < 0.05), but not on a body weight basis (p = 0.07). Most MPs were fibers (77%), followed by fragments (22.22%), with only a minimal presence of film (0.52%) and foam (0.26%). Of all the MPs identified, 36.84% were confirmed as plastics or fibers made from natural materials, and 31.58% were plastics, including Polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), Polyvinylidene chloride (PVDC), and polyester (PES). Additionally, fibers made of cotton, and those containing polyurethane (PU), rayon, PES, and combinations of rayon and PU, were identified. The quantities of MPs were significantly influenced by animal body weight, factors associated with human settlement/activity, and land use types. Our findings highlight the prevalence of plastic pollution in terrestrial vertebrates within Thai PAs. Further toxicological studies are required to establish plastic pollution standards. It is proposed that snakes, obtained from road kills, could serve as a non-invasive method for monitoring plastic pollution, thus acting as an indicator of the pollution threat to species within terrestrial ecosystems. There is an urgent need for the standardization of solid waste management at garbage dump sites in remote areas, especially within PAs. Conservation education focusing on MP occurrence, potential sources, and impacts could enhance awareness, thereby influencing changes in behaviors and attitudes toward plastic waste management at the household level.
Collapse
Affiliation(s)
- Jiraporn Teampanpong
- Department of Conservation, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Prateep Duengkae
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
4
|
Soe KK, Maae S, Jaafar Z, Chuaduangpui P, Jantarat S, Hajisamae S. Plastic ingestion by three species of Scylla (Brachyura) from the coastal areas of Thailand. MARINE POLLUTION BULLETIN 2024; 198:115914. [PMID: 38101055 DOI: 10.1016/j.marpolbul.2023.115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
This study marked the first investigation into the presence of plastic particles in the stomachs of three mud crab species (Scylla olivacea, S. paramamosain and S. tranquebarica) collected across the Andaman Sea and the Gulf of Thailand. The highest number of plastic particles in the stomach of crab samples was polyethylene (PE) that contributed 88.5 %; while green was the predominant colour (60.3 %). Ingested particles recovered from the stomachs of crabs differed significantly between species and sites (p < 0.001). The average number of plastic particles per individual was 2.3 ± 8.6 in Scylla olivacea, 7.2 ± 16.9 in S. paramamosain, and 13.5 ± 48.9 in S. tranquebarica. Satun, revealed the highest number of plastic particles recovered from mud crabs, while the lowest number of plastic particles were from Pattani. To conclude, species of crab and site of collection plays a crucial factor in the propensity of plastic particles ingested by the genus Scylla mud crabs.
Collapse
Affiliation(s)
- Kay Khine Soe
- Department of Agricultural and Fishery Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Sofiyudin Maae
- Department of Agricultural and Fishery Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand; Aquatic Science and Innovative Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla 90110, Thailand
| | - Zeehan Jaafar
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Pornpimon Chuaduangpui
- Aquatic Science and Innovative Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sitthisak Jantarat
- Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Sukree Hajisamae
- Department of Agricultural and Fishery Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand.
| |
Collapse
|