1
|
Filipović I, Hapuarachchi HC, Tien WP, Razak MABA, Lee C, Tan CH, Devine GJ, Rašić G. Using spatial genetics to quantify mosquito dispersal for control programs. BMC Biol 2020; 18:104. [PMID: 32819378 PMCID: PMC7439557 DOI: 10.1186/s12915-020-00841-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/05/2020] [Indexed: 11/10/2022] Open
Abstract
Background Hundreds of millions of people get a mosquito-borne disease every year and nearly one million die. Transmission of these infections is primarily tackled through the control of mosquito vectors. The accurate quantification of mosquito dispersal is critical for the design and optimization of vector control programs, yet the measurement of dispersal using traditional mark-release-recapture (MRR) methods is logistically challenging and often unrepresentative of an insect’s true behavior. Using Aedes aegypti (a major arboviral vector) as a model and two study sites in Singapore, we show how mosquito dispersal can be characterized by the spatial analyses of genetic relatedness among individuals sampled over a short time span without interruption of their natural behaviors. Results Using simple oviposition traps, we captured adult female Ae. aegypti across high-rise apartment blocks and genotyped them using genome-wide SNP markers. We developed a methodology that produces a dispersal kernel for distance which results from one generation of successful breeding (effective dispersal), using the distance separating full siblings and 2nd- and 3rd-degree relatives (close kin). The estimated dispersal distance kernel was exponential (Laplacian), with a mean dispersal distance (and dispersal kernel spread σ) of 45.2 m (95% CI 39.7–51.3 m), and 10% probability of a dispersal > 100 m (95% CI 92–117 m). Our genetically derived estimates matched the parametrized dispersal kernels from previous MRR experiments. If few close kin are captured, a conventional genetic isolation-by-distance analysis can be used, as it can produce σ estimates congruent with the close-kin method if effective population density is accurately estimated. Genetic patch size, estimated by spatial autocorrelation analysis, reflects the spatial extent of the dispersal kernel “tail” that influences, for example, the critical radii of release zones and the speed of Wolbachia spread in mosquito replacement programs. Conclusions We demonstrate that spatial genetics can provide a robust characterization of mosquito dispersal. With the decreasing cost of next-generation sequencing, the production of spatial genetic data is increasingly accessible. Given the challenges of conventional MRR methods, and the importance of quantified dispersal in operational vector control decisions, we recommend genetic-based dispersal characterization as the more desirable means of parameterization.
Collapse
Affiliation(s)
- Igor Filipović
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia.
| | | | - Wei-Ping Tien
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore, 138667, Singapore
| | | | - Caleb Lee
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore, 138667, Singapore
| | - Cheong Huat Tan
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore, 138667, Singapore
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia
| | - Gordana Rašić
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia.
| |
Collapse
|
2
|
Nagamitsu T, Shuri K, Kikuchi S, Koike S, Naoe S, Masaki T. Multiscale spatial genetic structure within and between populations of wild cherry trees in nuclear genotypes and chloroplast haplotypes. Ecol Evol 2019; 9:11266-11276. [PMID: 31641471 PMCID: PMC6802027 DOI: 10.1002/ece3.5628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 11/10/2022] Open
Abstract
Spatial genetic structure (SGS) of plants mainly depends on the effective population size and gene dispersal. Maternally inherited loci are expected to have higher genetic differentiation between populations and more intensive SGS within populations than biparentally inherited loci because of smaller effective population sizes and fewer opportunities of gene dispersal in the maternally inherited loci. We investigated biparentally inherited nuclear genotypes and maternally inherited chloroplast haplotypes of microsatellites in 17 tree populations of three wild cherry species under different conditions of tree distribution and seed dispersal. As expected, interpopulation genetic differentiation was 6-9 times higher in chloroplast haplotypes than in nuclear genotypes. This difference indicated that pollen flow 4-7 times exceeded seed flow between populations. However, no difference between nuclear and chloroplast loci was detected in within-population SGS intensity due to their substantial variation among the populations. The SGS intensity tended to increase as trees became more aggregated, suggesting that tree aggregation biased pollen and seed dispersal distances toward shorter. The loss of effective seed dispersers, Asian black bears, did not affect the SGS intensity probably because of mitigation of the bear loss by other vertebrate dispersers and too few tree generations after the bear loss to alter SGS. The findings suggest that SGS is more variable in smaller spatial scales due to various ecological factors in local populations.
Collapse
Affiliation(s)
- Teruyoshi Nagamitsu
- Hokkaido Research CenterForestry and Forest Products Research InstituteForest Research and Management OrganizationSapporoJapan
| | - Kato Shuri
- Tama Forest Science GardenForestry and Forest Products Research InstituteForest Research and Management OrganizationHachiojiJapan
| | - Satoshi Kikuchi
- Forestry and Forest Products Research InstituteForest Research and Management OrganizationTsukubaJapan
| | - Shinsuke Koike
- Institute of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Shoji Naoe
- Tohoku Research CenterForestry and Forest Products Research InstituteForest Research and Management OrganizationMoriokaJapan
| | - Takashi Masaki
- Forestry and Forest Products Research InstituteForest Research and Management OrganizationTsukubaJapan
| |
Collapse
|
3
|
Favretti M. Replicated point processes with application to population dynamics models. Theor Popul Biol 2019; 127:49-57. [PMID: 30978361 DOI: 10.1016/j.tpb.2019.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/21/2019] [Accepted: 04/02/2019] [Indexed: 11/26/2022]
Abstract
In this paper we study spatially clustered distribution of individuals using point process theory. In particular we discuss the spatially explicit neutral model of population dynamics of Shimatani (2010) which extends previous works on Malécot theory of isolation by distance. We reformulate Shimatani model of replicated Neyman-Scott process to allow for a general dispersal kernel function and we show that the random migration hypothesis can be substituted by the long dispersal distance property of the kernel. Moreover, the extended framework presented here is fit to handle spatially explicit statistical estimators of genetic variability like Moran autocorrelation index or Sørensen similarity index. We discuss the pivotal role of the choice of dispersal kernel for the above estimators in a toy model of dynamic population genetics theory.
Collapse
Affiliation(s)
- Marco Favretti
- Dipartimento di Matematica "Tullio Levi-Civita", Università di Padova, Padova, Italy.
| |
Collapse
|
4
|
Relative strength of fine-scale spatial genetic structure in paternally vs biparentally inherited DNA in a dioecious plant depends on both sex proportions and pollen-to-seed dispersal ratio. Heredity (Edinb) 2016; 117:449-459. [PMID: 27577692 DOI: 10.1038/hdy.2016.65] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 11/08/2022] Open
Abstract
In plants, the spatial genetic structure (SGS) is shaped mainly by gene dispersal and effective population density. Among additional factors, the mode of DNA inheritance and dioecy influence SGS. However, their joint impact on SGS remains unclear, especially in the case of paternally inherited DNA. Using theoretical approximations and computer simulations, here we showed that the relative intensity of SGS measured in paternally and biparentally inherited DNA in a dioecious plant population depends on both the proportion of males and the pollen-to-seed dispersal ratio. As long as males do not prevail in a population, SGS is more intense in paternally than biparentally inherited DNA. When males prevail, the intensity of SGS in paternally vs biparentally inherited DNA depends on the compound effect of sex proportions and the pollen-to-seed dispersal ratio. To empirically validate our predictions, we used the case of Taxus baccata, a dioecious European tree. First, we showed that mitochondrial DNA (mtDNA) in T. baccata is predominantly (98%) paternally inherited. Subsequently, using nuclear DNA (nuDNA) and mitochondrial microsatellite data, we compared the fine-scale SGS intensity at both marker types in two natural populations. The population with equal sex proportions showed stronger SGS in mtDNA than in nuDNA. On the other hand, we found lower SGS intensity in mtDNA than in nuDNA in the population with 67% males. Thus, the empirical results provided good support for the theoretical predictions, suggesting that knowledge about SGS in paternally vs biparentally inherited DNA may provide insight into effective sex proportions within dioecious populations.
Collapse
|