1
|
Kim SC, Park BK, Kim HJ. Comparison of the Complete Chloroplast Genomes of Astilbe: Two Korean Endemic Plant Species. Genes (Basel) 2024; 15:1410. [PMID: 39596611 PMCID: PMC11593540 DOI: 10.3390/genes15111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Astilbe, consisting of about 18 species, is distributed throughout East Asia and Northeastern America, and most Astilbe species are widely cultivated as ornamental plants. A total of four species of Astilbe have been confirmed to be distributed throughout Korea, two of which are endemic to Korea. METHODS In this study, we sequenced and assembled the complete chloroplast genomes of two endemic Korean plants using Illumina sequencing technology, identified simple sequence repeats (SSRs) and repetitive sequences, and compared them with three previously reported chloroplast genomes. RESULTS The chloroplast genomes of the two species were 156,968 and 57,142 bp in length and had a four-part circular structure. They consisted of a large single-copy region of 87,223 and 87,272 bp and a small single-copy region of 18,167 and 18,138 bp, separated by a pair of inverted repeats (IRa and IRb, 25,789 and 25,866 bp). The genomes contained 130 genes, 49 SSRs, and 49 long repetitive sequences. Comparative analysis with the chloroplast genomes of five Astilbe species indicated that A. uljinensis was closely related to A. chinensis and A. taquetii to A. koreana. CONCLUSIONS This study provides valuable references for the identification of two endemic Korean Astilbe species and contributes to a deeper understanding of the phylogeny and evolution of the genus Astilbe.
Collapse
Affiliation(s)
| | | | - Hyuk-Jin Kim
- Division of Forest Biodiversity, Korea National Arboretum, 509 Gwangneungsumogwon-ro, Soheul-eup, Pocheon-si 11186, Gyeonggi-do, Republic of Korea; (S.-C.K.); (B.K.P.)
| |
Collapse
|
2
|
Li JT, Ju WB, Li X, Zhu Y, Cao TY, Zhou YS, Wang YJ, Feng Y. The complete chloroplast genome sequence of Primula medogensis (Primulaceae) and its phylogeny. Mitochondrial DNA B Resour 2024; 9:1404-1408. [PMID: 39421293 PMCID: PMC11485687 DOI: 10.1080/23802359.2024.2415137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Primula medogensis W.B Ju, B. Xu & X.F. Gao 2023, a new species categorized under P. sect. Cordifoliae, was officially described in 2023. Given its recent classification, the genetic resources for this species are currently very limited. Here, we sequenced and assembled the first complete chloroplast genome of P. medogensis using Illumina sequencing technology. The complete chloroplast genome of P. medogensis is 151,486 bp in length, exhibiting a typical quadripartite structure. It consists of a large single-copy region (LSC; 83,407 bp) and a small single-copy region (SSC;17675 bp), separated by a pair of inverted repeat regions (IRs; 25202 bp). A total of 131 genes were annotated, including 86 protein-coding, 37 tRNA, and eight rRNA genes. The overall GC content was 37.1%. Phylogenetic analysis of 59 Primula species revealed a close relationship between P. medogensis and P. calliantha subsp. bryophila.
Collapse
Affiliation(s)
- Jiang-Tao Li
- College of Life Sciences, Sichuan Normal University, Sichuan, China Chengdu
| | - Wen-Bin Ju
- CDBI, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan, China
| | - Xiong Li
- CDBI, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan, China
| | - Yue Zhu
- College of Life Sciences, Sichuan Normal University, Sichuan, China Chengdu
| | - Ting-Ying Cao
- College of Life Sciences, Sichuan Normal University, Sichuan, China Chengdu
| | - Yu-Shan Zhou
- CDBI, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan, China
| | - Yan-Jie Wang
- College of Life Sciences, Sichuan Normal University, Sichuan, China Chengdu
| | - Yu Feng
- CDBI, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan, China
| |
Collapse
|
3
|
Almeida-Silva MA, Braga-Ferreira RS, Targueta CP, Corvalán LCJ, Silva-Neto CM, Franceschinelli EV, Sobreiro MB, Nunes R, Telles MPC. Chloroplast genomes of Simarouba Aubl., molecular evolution and comparative analyses within Sapindales. Sci Rep 2024; 14:21358. [PMID: 39266625 PMCID: PMC11393331 DOI: 10.1038/s41598-024-71956-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Simarouba, a neotropical genus in the family Simaroubaceae, currently lacks comprehensive genomic data in existing databases. This study aims to fill this gap by providing genomic resources for three Simarouba species, S. amara, S. versicolor, and S. glauca. It also aims to perform comparative molecular evolutionary analyses in relation to other species within the order Sapindales. The analysis of these three Simarouba species revealed the presence of the typical quadripartite structure expected in plastomes. However, some pseudogenization events were identified in the psbC, infA, rpl22, and ycf1 genes. In particular, the CDS of the psbC gene in S. amara was reduced from 1422 bp to 584 bp due to a premature stop codon. Nucleotide diversity data pointed to gene and intergenic regions as promising candidates for species and family discrimination within the group, specifically matK, ycf1, ndhF, rpl32, petA-psbJ, and trnS-trnG. Selection signal analyses showed strong evidence for positive selection on the rpl23 gene. Phylogenetic analyses indicated that S. versicolor and S. glauca have a closer phylogenetic relationship than S. amara. We provide chloroplast genomes of three Simaruba species and use them to elucidate plastome evolution, highlight the presence of pseudogenization, and identify potential DNA barcode regions.
Collapse
Affiliation(s)
- Marla A Almeida-Silva
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil
- Universidade Estadual do Piauí, Campus Prof. Ariston Dias Lima, São Raimundo Nonato, PI, Brazil
| | - Ramilla S Braga-Ferreira
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil
- Universidade Federal de Rondonópolis, Rondonópolis, MT, Brazil
| | - Cíntia P Targueta
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Leonardo C J Corvalán
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil
- Instituto Federal de Goiás-Polo de Inovação, Goiânia, GO, Brazil
| | - Carlos M Silva-Neto
- Instituto Federal de Goiás-Polo de Inovação, Goiânia, GO, Brazil
- Laboratório de Bioinformática e Biodiversidade (LBB), Universidade Estadual de Goiás, Instituto Acadêmico de Ciências da Saúde e Biológicas (IACSB), Campus Oeste, Unidade Universitária de Iporá, Iporá, GO, 76200-000, Brazil
| | | | - Mariane B Sobreiro
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil
- Laboratório Estadual de Saúde Pública Dr. Giovanni Cysneiros - LACEN-GO, Goiânia, GO, Brazil
| | - Rhewter Nunes
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil.
- Laboratório de Bioinformática e Biodiversidade (LBB), Universidade Estadual de Goiás, Instituto Acadêmico de Ciências da Saúde e Biológicas (IACSB), Campus Oeste, Unidade Universitária de Iporá, Iporá, GO, 76200-000, Brazil.
| | - Mariana P C Telles
- Laboratório de Genética and Biodiversidade (LGBio), Universidade Federal de Goiás, Goiânia, GO, Brazil
- Pontifícia Universidade Católica de Goiás, Escola de Ciências Médicas e da Vida, Goiânia, GO, Brazil
| |
Collapse
|
4
|
Wang W, Xu T, Lu H, Li G, Gao L, Liu D, Han B, Yi S. Chloroplast genome of Justicia procumbens: genomic features, comparative analysis, and phylogenetic relationships among Justicieae species. J Appl Genet 2024; 65:31-46. [PMID: 38133708 DOI: 10.1007/s13353-023-00812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Justicia procumbens L. is a traditional medicinal plant that is widely distributed in China. However, little is known about the genetic diversity and evolution of this genus, and no genomic studies have been carried out on J. procumbens previously. In this study, we aimed to assemble and annotate the first complete chloroplast genome (cpDNA) of J. procumbens and compare it with all previously published cpDNAs within the tribe Justicieae. Genome structure and comparative and phylogenetic analyses were performed. The 150,454 bp-long J. procumbens cpDNA has a circular and quadripartite structure consisting of a large single copy, a small single copy, and two inverted repeat regions. It contains 133 genes, of which 88 are protein-coding genes, 37 are tRNA genes, and eight are rRNA genes. Twenty-four simple sequence repeats (SSRs) and 81 repeat sequences were identified. Comparative analyses with other Justicieae species revealed that the non-coding regions of J. procumbens cpDNA showed greater variation than did the coding regions. Moreover, phylogenetic analysis based on 14 cpDNA sequences from Justicieae species showed that J. procumbens and J. flava were most closely related. This study provides valuable genetic information to support further research on the genetic diversity and evolutionary development of the tribe Justicieae.
Collapse
Affiliation(s)
- Wei Wang
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Tao Xu
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Haibo Lu
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Guosi Li
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Leilei Gao
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Dong Liu
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China
| | - Bangxing Han
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China.
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China.
| | - Shanyong Yi
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an, Anhui, China.
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, Anhui, China.
| |
Collapse
|
5
|
Wang SB, Liu YQ, Zhang L, Li R, Huang Y. The complete chloroplast genome of Primula amethystina subsp . argutidens (Primulaceae). Mitochondrial DNA B Resour 2023; 8:737-741. [PMID: 37435317 PMCID: PMC10332233 DOI: 10.1080/23802359.2023.2231108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
Primula amethystina subsp. argutidens (Franchet) W. W. Smith & H. R. Fletcher (1942) is a blooming plant of the family Primulaceae. Here, we sequenced, assembled, and annotated the complete chloroplast (cp) genome of P. amethystina subsp. argutidens. The cp genome of P. amethystina subsp. argutidens is 151,560 bp in length with a GC content of 37%. The assembled genome has a typical quadripartite structure, containing a large single-copy (LSC) region of 83,516 bp, a small single-copy (SSC) region of 17,692 bp, and a pair of inverted repeat (IR) regions of 25,176 bp. The cp genome contains 115 unique genes, including 81 protein-coding genes, four rRNA genes, and 30 tRNA genes. Phylogenetic analysis showed that P. amethystina subsp. argutidens was closely related to P. amethystina.
Collapse
Affiliation(s)
- Shu-Bao Wang
- School of Life Sciences, Yunnan Normal University, Kunming, PR China
| | - Yun-Qi Liu
- School of Life Sciences, Yunnan Normal University, Kunming, PR China
| | - Li Zhang
- School of Life Sciences, Yunnan Normal University, Kunming, PR China
| | - Rui Li
- School of Life Sciences, Yunnan Normal University, Kunming, PR China
| | - Yuan Huang
- School of Life Sciences, Yunnan Normal University, Kunming, PR China
| |
Collapse
|
6
|
Liu Y, Zhang L, Wang S, Li R, Huang Y. The complete chloroplast genome of Primula vialii (Primulaceae), an ornamental plant. Mitochondrial DNA B Resour 2023; 8:619-623. [PMID: 37275395 PMCID: PMC10236967 DOI: 10.1080/23802359.2023.2202268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/07/2023] [Indexed: 06/07/2023] Open
Abstract
Primula vialii Delavay ex Franch. (1905) is an alpine species with an ornamental value. In this study, we sequenced, assembled, and annotated the chloroplast genome of P. vialii. The results showed that it was a double-stranded, closed circular DNA with 154,897 bp in length, comprising a small single-copy (SSC) region of 17,766 bp, a large single-copy (LSC) region of 85,379 bp and a pair of inverted repeat (IR) regions of 25,876 bp. A total of 113 unique genes were annotated, including 79 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. The phylogenetic analysis revealed that P. vialii is closely related to Primula flaccida. The cp genomic data will be useful for systematics and evolutionary studies of Primula.
Collapse
Affiliation(s)
- Yunqi Liu
- School of Life Sciences, Yunnan Normal University, Kunming, P. R. China
| | - Li Zhang
- School of Life Sciences, Yunnan Normal University, Kunming, P. R. China
| | - Shubao Wang
- School of Life Sciences, Yunnan Normal University, Kunming, P. R. China
| | - Rui Li
- School of Life Sciences, Yunnan Normal University, Kunming, P. R. China
| | - Yuan Huang
- School of Life Sciences, Yunnan Normal University, Kunming, P. R. China
| |
Collapse
|
7
|
Pouchon C, Boyer F, Roquet C, Denoeud F, Chave J, Coissac E, Alsos IG, Lavergne S. ORTHOSKIM: in silico sequence capture from genomic and transcriptomic libraries for phylogenomic and barcoding applications. Mol Ecol Resour 2022; 22:2018-2037. [PMID: 35015377 DOI: 10.1111/1755-0998.13584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
Abstract
Low-coverage whole genome shotgun sequencing (or genome skimming) has emerged as a cost-effective method for acquiring genomic data in non-model organisms. This method provides sequence information on chloroplast genome (cpDNA), mitochondrial genome (mtDNA) and nuclear ribosomal regions (rDNA), which are over-represented within cells. However, numerous bioinformatic challenges remain to accurately and rapidly obtain such data in organisms with complex genomic structures and rearrangements, in particular for mtDNA in plants or for cpDNA in some plant families. Here we introduce the pipeline ORTHOSKIM, which performs in silico capture of targeted sequences from genomic and transcriptomic libraries without assembling whole organelle genomes. ORTHOSKIM proceeds in three steps: 1) global sequence assembly, 2) mapping against reference sequences, and 3) target sequence extraction; importantly it also includes a range of quality control tests. Different modes are implemented to capture both coding and non-coding regions of cpDNA, mtDNA and rDNA sequences, along with predefined nuclear sequences (e.g. ultra-conserved elements) or collections of single-copy ortholog genes. Moreover, aligned DNA matrices are produced for phylogenetic reconstructions, by performing multiple alignments of the captured sequences. While ORTHOSKIM is suitable for any eukaryote, a case study is presented here, using 114 genome-skimming libraries and 4 RNAseq libraries obtained for two plant families, Primulaceae and Ericaceae, the latter being a well-known problematic family for cpDNA assemblies. ORTHOSKIM recovered with high success rates cpDNA, mtDNA and rDNA sequences, well suited to accurately infer evolutionary relationships within these families. ORTHOSKIM is released under a GPL-3 license and is available at: https://github.com/cpouchon/ORTHOSKIM.
Collapse
Affiliation(s)
- Charles Pouchon
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d'Ecologie Alpine (LECA), 38000, Grenoble, France
| | - Frédéric Boyer
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d'Ecologie Alpine (LECA), 38000, Grenoble, France
| | - Cristina Roquet
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d'Ecologie Alpine (LECA), 38000, Grenoble, France.,Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - France Denoeud
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 rue Gaston Crémieux, 91057, Evry, France
| | - Jérome Chave
- Laboratoire Évolution et Diversité Biologique (EDB), UMR CNRS-IRD-UPS 5174, 31062, Toulouse Cedex, France
| | - Eric Coissac
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d'Ecologie Alpine (LECA), 38000, Grenoble, France
| | - Inger Greve Alsos
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, NO-9037, Tromsø, Norway
| | | | | | - Sébastien Lavergne
- Univ. Grenoble Alpes, CNRS, Univ. Savoie Mont Blanc, LECA, Laboratoire d'Ecologie Alpine (LECA), 38000, Grenoble, France
| |
Collapse
|
8
|
Hsieh CL, Yu CC, Huang YL, Chung KF. Mahonia vs. Berberis Unloaded: Generic Delimitation and Infrafamilial Classification of Berberidaceae Based on Plastid Phylogenomics. FRONTIERS IN PLANT SCIENCE 2022; 12:720171. [PMID: 35069611 PMCID: PMC8770955 DOI: 10.3389/fpls.2021.720171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/15/2021] [Indexed: 05/12/2023]
Abstract
The early-diverging eudicot family Berberidaceae is composed of a morphologically diverse assemblage of disjunctly distributed genera long praised for their great horticultural and medicinal values. However, despite century-long studies, generic delimitation of Berberidaceae remains controversial and its tribal classification has never been formally proposed under a rigorous phylogenetic context. Currently, the number of accepted genera in Berberidaceae ranges consecutively from 13 to 19, depending on whether to define Berberis, Jeffersonia, and Podophyllum broadly, or to segregate these three genera further and recognize Alloberberis, Mahonia, and Moranothamnus, Plagiorhegma, and Dysosma, Diphylleia, and Sinopodophyllum, respectively. To resolve Berberidaceae's taxonomic disputes, we newly assembled 23 plastomes and, together with 85 plastomes from the GenBank, completed the generic sampling of the family. With 4 problematic and 14 redundant plastome sequences excluded, robust phylogenomic relationships were reconstructed based on 93 plastomes representing all 19 genera of Berberidaceae and three outgroups. Maximum likelihood phylogenomic relationships corroborated with divergence time estimation support the recognition of three subfamilies Berberidoideae, Nandinoideae, and Podophylloideae, with tribes Berberideae and Ranzanieae, Leonticeae and Nandineae, and Podophylleae, Achlydeae, Bongardieae tr. nov., Epimedieae, and Jeffersonieae tr. nov. in the former three subfamilies, respectively. By applying specifically stated criteria, our phylogenomic data also support the classification of 19 genera, recognizing Alloberberis, Mahonia, and Moranothamnus, Plagiorhegma, and Diphylleia, Dysosma, and Sinopodophyllum that are morphologically and evolutionarily distinct from Berberis, Jeffersonia, and Podophyllum, respectively. Comparison of plastome structures across Berberidaceae confirms inverted repeat expansion in the tribe Berberideae and reveals substantial length variation in accD gene caused by repeated sequences in Berberidoideae. Comparison of plastome tree with previous studies and nuclear ribosomal DNA (nrDNA) phylogeny also reveals considerable conflicts at different phylogenetic levels, suggesting that incomplete lineage sorting and/or hybridization had occurred throughout the evolutionary history of Berberidaceae and that Alloberberis and Moranothamnus could have resulted from reciprocal hybridization between Berberis and Mahonia in ancient times prior to the radiations of the latter two genera.
Collapse
Affiliation(s)
- Chia-Lun Hsieh
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Chieh Yu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Yu-Lan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Kuo-Fang Chung
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Ren F, Wang L, Li Y, Zhuo W, Xu Z, Guo H, Liu Y, Gao R, Song J. Highly variable chloroplast genome from two endangered Papaveraceae lithophytes Corydalis tomentella and Corydalis saxicola. Ecol Evol 2021; 11:4158-4171. [PMID: 33976800 PMCID: PMC8093665 DOI: 10.1002/ece3.7312] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 01/27/2023] Open
Abstract
The increasingly wide application of chloroplast (cp) genome super-barcode in taxonomy and the recent breakthrough in cp genetic engineering make the development of new cp gene resources urgent and significant. Corydalis is recognized as the most genotypes complicated and taxonomically challenging plant taxa in Papaveraceae. However, there currently are few reports about cp genomes of the genus Corydalis. In this study, we sequenced four complete cp genomes of two endangered lithophytes Corydalis saxicola and Corydalis tomentella in Corydalis, conducted a comparison of these cp genomes among each other as well as with others of Papaveraceae. The cp genomes have a large genome size of 189,029-190,247 bp, possessing a quadripartite structure and with two highly expanded inverted repeat (IR) regions (length: 41,955-42,350 bp). Comparison between the cp genomes of C. tomentella, C. saxicola, and Papaveraceae species, five NADH dehydrogenase-like genes (ndhF, ndhD, ndhL, ndhG, and ndhE) with psaC, rpl32, ccsA, and trnL-UAG normally located in the SSC region have migrated to IRs, resulting in IR expansion and gene duplication. An up to 9 kb inversion involving five genes (rpl23, ycf2, ycf15, trnI-CAU, and trnL-CAA) was found within IR regions. The accD gene was found to be absent and the ycf1 gene has shifted from the IR/SSC border to the SSC region as a single copy. Phylogenetic analysis based on the sequences of common CDS showed that the genus Corydalis is quite distantly related to the other genera of Papaveraceae, it provided a new clue for recent advocacy to establish a separate Fumariaceae family. Our results revealed one special cp genome structure in Papaveraceae, provided a useful resources for classification of the genus Corydalis, and will be valuable for understanding Papaveraceae evolutionary relationships.
Collapse
Affiliation(s)
- Fengming Ren
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
- Medicinal Biological Technology Research CenterChongqing Institute of Medicinal Plant CultivationBio‐Resource Research and Utilization Joint Key Laboratory Sichuan and ChongqingChongqingChina
| | | | - Ying Li
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
- Engineering Research Center of Chinese Medicine ResourceMinistry of EducationBeijingChina
| | - Wei Zhuo
- Medicinal Biological Technology Research CenterChongqing Institute of Medicinal Plant CultivationBio‐Resource Research and Utilization Joint Key Laboratory Sichuan and ChongqingChongqingChina
| | - Zhichao Xu
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
- Engineering Research Center of Chinese Medicine ResourceMinistry of EducationBeijingChina
| | | | - Yan Liu
- Medicinal Biological Technology Research CenterChongqing Institute of Medicinal Plant CultivationBio‐Resource Research and Utilization Joint Key Laboratory Sichuan and ChongqingChongqingChina
| | - Ranran Gao
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
| | - Jingyuan Song
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeKey Lab of Chinese Medicine Resources ConservationState Administration of Traditional Chinese Medicine of the People's Republic of ChinaBeijingChina
- Engineering Research Center of Chinese Medicine ResourceMinistry of EducationBeijingChina
| |
Collapse
|
10
|
Sun HY, Zhong L, Guo YJ, Zhou W, Wu ZK. The complete chloroplast genome of a distylous-homostylous species, Primula homogama (Primulaceae). Mitochondrial DNA B Resour 2021; 6:393-394. [PMID: 33659689 PMCID: PMC7872557 DOI: 10.1080/23802359.2020.1869614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Primula homogama F. H. Chen & C. M. Hu (Primulaceae) is endemic to the Emei Mountain of China. In this study, we characterized the complete chloroplast genome of P. homogama based on next-generation sequencing (NGS). The complete chloroplast genome of P. homogama was 154,677 bp in size with a typical quadripartite structure, containing a large single-copy (LSC) region of 85,299 bp and a small single-copy (SSC) region of 17,816 bp. These two regions were separated by a pair of inverted repeat regions (IRs), each of 25,781 bp. A total of 130 functional genes were encoded, consisted of 86 protein-coding genes (PCG), 36 tRNA genes, and eight ribosomal RNA (rRNA) genes.
Collapse
Affiliation(s)
- Hua-Ying Sun
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Yunnan, China
| | - Li Zhong
- Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Jie Guo
- Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhou
- Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
| | - Zhi-Kun Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou, China
| |
Collapse
|
11
|
Budniak L, Vasenda M, Marchyshyn S, Kurylo K. Determination of the optimum extraction regime of reducing compounds and flavonoids of Primula denticulata Smith leaves by a dispersion analysis. PHARMACIA 2020. [DOI: 10.3897/pharmacia.67.e54170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Herbal medicines are widely used in the complex treatment of various diseases. Therefore, theoretical and practical interest is the in-depth study of drumstick primrose (Primula denticulata Smith). The study aimed to determine the optimal extraction mode of flavonoids and reducing compounds of drumstick primrose leaves. The concentration of ethanol, the ratio of raw materials and extractant, and extraction method were studied by dispersion analysis. This allowed reducing the number of experiments from 64 to 16. To obtain the alcohol extract of drumstick primrose leaves with the highest content of reducing compounds and flavonoids, found that maceration is the optimal method of extraction, the ratio of raw materials to extractant should be 1 to 5 and 40% ethanol is the most appropriate extractant.
Collapse
|
12
|
Xu W, Xia B, Li X. The complete chloroplast genome sequences of five pinnate-leaved Primula species and phylogenetic analyses. Sci Rep 2020; 10:20782. [PMID: 33247172 PMCID: PMC7699626 DOI: 10.1038/s41598-020-77661-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/12/2020] [Indexed: 11/23/2022] Open
Abstract
The six pinnate-leaved species are a very particular group in the genus Primula. In the present paper, we sequenced, assembled and annotated the chloroplast genomes of five of them (P. cicutarrifolia, P. hubeiensis, P. jiugongshanensis, P. merrilliana, P. ranunculoides). The five chloroplast genomes ranged from ~ 150 to 152 kb, containing 113 genes (four ribosomal RNA genes, 29 tRNA genes and 80 protein-coding genes). The six pinnate-leaved species exhibited synteny of gene order and possessed similar IR boundary regions in chloroplast genomes. The gene accD was pseudogenized in P. filchnerae. In the chloroplast genomes of the six pinnate-leaved Primula species, SSRs, repeating sequences and divergence hotspots were identified; ycf1 and trnH-psbA were the most variable markers among CDSs and noncoding sequences, respectively. Phylogenetic analyses showed that the six Primula species were separated into two distant clades: one was formed by P. filchnerae and P. sinensis and the other clade was consisting of two subclades, one formed by P. hubeiensis and P. ranunculoides, the other by P. merrilliana, P. cicutarrifolia and P. jiugongshanensis. P. hubeiensis was closely related with P. ranunculoides and therefore it should be placed into Sect. Ranunculoides. P. cicutarrifolia did not group first with P. ranunculoides but with P. merrilliana, although the former two were once united in one species, our results supported the separation of P. ranunculoides from P. cicutarrifolia as one distinct species.
Collapse
Affiliation(s)
- Wenbin Xu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Boshun Xia
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xinwei Li
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
13
|
Sobreiro MB, Vieira LD, Nunes R, Novaes E, Coissac E, Silva-Junior OB, Grattapaglia D, Collevatti RG. Chloroplast genome assembly of Handroanthus impetiginosus: comparative analysis and molecular evolution in Bignoniaceae. PLANTA 2020; 252:91. [PMID: 33098500 DOI: 10.1007/s00425-020-03498-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Bignoniaceae species have conserved chloroplast structure, with hotspots of nucleotide diversity. Several genes are under positive selection, and can be targets for evolutionary studies. Bignoniaceae is one of the most species-rich family of woody plants in Neotropical seasonally dry forests. Here we report the assembly of Handroanthus impetiginosus chloroplast genome and evolutionary comparative analyses of ten Bignoniaceae species representing the genera for which whole-genome chloroplast sequences were available. The chloroplast genome of H. impetiginosus is 159,462 bp in size and has a similar structure compared to the other nine species. The total number of genes was slightly variable amongst the Bignoniaceae, ranging from 124 in H. impetiginosus to 144 in Anemopaegma acutifolium. The inverted repeat (IR) size was variable, ranging from 24,657 bp (Tecomaria capensis) to 40,481 bp (A. acutifolium), due to the contraction and retraction at its boundaries. However, gene boundaries were very similar among the ten species. We found 98 forward and palindromic dispersed repeats, and 85 simple sequence repeats (SSRs). In general, chloroplast sequences were highly conserved, with few nucleotide diversity hotspots in the genes accD, clpP, rpoA, ycf1, ycf2. The phylogenetic analysis based on 77 coding genes was highly consistent with Angiosperm Phylogeny Group (APG) IV. Our results also indicate that most genes are under negative selection or neutral evolution. We found no evidence of branch-site selection, implying that H. impetiginosus is not evolving faster than the other species analyzed, notwithstanding we found site positive selection signal in several genes. These genes can provide targets for evolutionary studies in Bignoniaceae and Lamiales species.
Collapse
Affiliation(s)
- Mariane B Sobreiro
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Lucas D Vieira
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Rhewter Nunes
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Evandro Novaes
- Laboratório de Genética Molecular, Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil
| | - Eric Coissac
- Laboratoire d'Écologie Alpine (LECA), University Grenoble-Alpes, Grenoble, Switzerland
| | | | - Dario Grattapaglia
- EMBRAPA Recursos Genéticos e Biotecnologia, EPqB, Brasília, DF, 70770-910, Brazil
| | - Rosane Garcia Collevatti
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
14
|
Köhler M, Reginato M, Souza-Chies TT, Majure LC. Insights Into Chloroplast Genome Evolution Across Opuntioideae (Cactaceae) Reveals Robust Yet Sometimes Conflicting Phylogenetic Topologies. FRONTIERS IN PLANT SCIENCE 2020; 11:729. [PMID: 32636853 PMCID: PMC7317007 DOI: 10.3389/fpls.2020.00729] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/06/2020] [Indexed: 05/22/2023]
Abstract
Chloroplast genomes (plastomes) are frequently treated as highly conserved among land plants. However, many lineages of vascular plants have experienced extensive structural rearrangements, including inversions and modifications to the size and content of genes. Cacti are one of these lineages, containing the smallest plastome known for an obligately photosynthetic angiosperm, including the loss of one copy of the inverted repeat (∼25 kb) and the ndh gene suite, but only a few cacti from the subfamily Cactoideae have been sufficiently characterized. Here, we investigated the variation of plastome sequences across the second-major lineage of the Cactaceae, the subfamily Opuntioideae, to address (1) how variable is the content and arrangement of chloroplast genome sequences across the subfamily, and (2) how phylogenetically informative are the plastome sequences for resolving major relationships among the clades of Opuntioideae. Our de novo assembly of the Opuntia quimilo plastome recovered an organelle of 150,347 bp in length with both copies of the inverted repeat and the presence of all the ndh gene suite. An expansion of the large single copy unit and a reduction of the small single copy unit was observed, including translocations and inversion of genes, as well as the putative pseudogenization of some loci. Comparative analyses among all clades within Opuntioideae suggested that plastome structure and content vary across taxa of this subfamily, with putative independent losses of the ndh gene suite and pseudogenization of genes across disparate lineages, further demonstrating the dynamic nature of plastomes in Cactaceae. Our plastome dataset was robust in resolving three tribes with high support within Opuntioideae: Cylindropuntieae, Tephrocacteae and Opuntieae. However, conflicting topologies were recovered among major clades when exploring different assemblies of markers. A plastome-wide survey for highly informative phylogenetic markers revealed previously unused regions for future use in Sanger-based studies, presenting a valuable dataset with primers designed for continued evolutionary studies across Cactaceae. These results bring new insights into the evolution of plastomes in cacti, suggesting that further analyses should be carried out to address how ecological drivers, physiological constraints and morphological traits of cacti may be related with the common rearrangements in plastomes that have been reported across the family.
Collapse
Affiliation(s)
- Matias Köhler
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Florida Museum of Natural History, University of Florida Herbarium (FLAS), Gainesville, FL, United States
| | - Marcelo Reginato
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Lucas C Majure
- Florida Museum of Natural History, University of Florida Herbarium (FLAS), Gainesville, FL, United States
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, United States
| |
Collapse
|
15
|
Alzahrani DA, Yaradua SS, Albokhari EJ, Abba A. Complete chloroplast genome sequence of Barleria prionitis, comparative chloroplast genomics and phylogenetic relationships among Acanthoideae. BMC Genomics 2020; 21:393. [PMID: 32532210 PMCID: PMC7291470 DOI: 10.1186/s12864-020-06798-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/27/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The plastome of medicinal and endangered species in Kingdom of Saudi Arabia, Barleria prionitis was sequenced. The plastome was compared with that of seven Acanthoideae species in order to describe the plastome, spot the microsatellite, assess the dissimilarities within the sampled plastomes and to infer their phylogenetic relationships. RESULTS The plastome of B. prionitis was 152,217 bp in length with Guanine-Cytosine and Adenine-Thymine content of 38.3 and 61.7% respectively. It is circular and quadripartite in structure and constitute of a large single copy (LSC, 83, 772 bp), small single copy (SSC, 17, 803 bp) and a pair of inverted repeat (IRa and IRb 25, 321 bp each). 131 genes were identified in the plastome out of which 113 are unique and 18 were repeated in IR region. The genome consists of 4 rRNA, 30 tRNA and 80 protein-coding genes. The analysis of long repeat showed all types of repeats were present in the plastome and palindromic has the highest frequency. A total number of 98 SSR were also identified of which mostly were mononucleotide Adenine-Thymine and are located at the non coding regions. Comparative genomic analysis among the plastomes revealed that the pair of the inverted repeat is more conserved than the single copy region. In addition high variation is observed in the intergenic spacer region than the coding region. The genes, ycf1and ndhF and are located at the border junction of the small single copy region and IRb region of all the plastome. The analysis of sequence divergence in the protein coding genes indicates that the following genes undergo positive selection (atpF, petD, psbZ, rpl20, petB, rpl16, rps16, rpoC, rps7, rpl32 and ycf3). Phylogenetic analysis indicated sister relationship between Ruellieae and Justcieae. In addition, Barleria, Justicia and Ruellia are paraphyletic, suggesting that Justiceae, Ruellieae, Andrographideae and Barlerieae should be treated as tribes. CONCLUSIONS This study sequenced and assembled the first plastome of the taxon Barleria and reported the basics resources for evolutionary studies of B. prionitis and tools for phylogenetic relationship studies within the core Acanthaceae.
Collapse
Affiliation(s)
- Dhafer A Alzahrani
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samaila S Yaradua
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia. .,Department of Biology, Umaru Musa Yaradua University, Centre for Biodiversity and Conservation, Katsina, Nigeria.
| | - Enas J Albokhari
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biological Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abidina Abba
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Valencia-D J, Murillo-A J, Orozco CI, Parra-O C, Neubig KM. -Complete plastid genome sequences of two species of the Neotropical genus Brunellia (Brunelliaceae). PeerJ 2020; 8:e8392. [PMID: 32025370 PMCID: PMC6993752 DOI: 10.7717/peerj.8392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022] Open
Abstract
Here we present the first two complete plastid genomes for Brunelliaceae, a Neotropical family with a single genus, Brunellia. We surveyed the entire plastid genome in order to find variable cpDNA regions for further phylogenetic analyses across the family. We sampled morphologically different species, B. antioquensis and B. trianae, and found that the plastid genomes are 157,685 and 157,775 bp in length and display the typical quadripartite structure found in angiosperms. Despite the clear morphological distinction between both species, the molecular data show a very low level of divergence. The amount of nucleotide substitutions per site is one of the lowest reported to date among published congeneric studies (π = 0.00025). The plastid genomes have gene order and content coincident with other COM (Celastrales, Oxalidales, Malpighiales) relatives. Phylogenetic analyses of selected superrosid representatives show high bootstrap support for the ((C,M)O) topology. The N-fixing clade appears as the sister group of the COM clade and Zygophyllales as the sister to the rest of the fabids group.
Collapse
Affiliation(s)
- Janice Valencia-D
- School of Biological Sciences, Southern Illinois University at Carbondale, Carbondale, IL, United States of America
| | - José Murillo-A
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Clara Inés Orozco
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Carlos Parra-O
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Kurt M. Neubig
- School of Biological Sciences, Southern Illinois University at Carbondale, Carbondale, IL, United States of America
| |
Collapse
|
17
|
Chloroplast Genomes and Comparative Analyses among Thirteen Taxa within Myrsinaceae s.str. Clade (Myrsinoideae, Primulaceae). Int J Mol Sci 2019; 20:ijms20184534. [PMID: 31540236 PMCID: PMC6769889 DOI: 10.3390/ijms20184534] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 01/01/2023] Open
Abstract
The Myrsinaceae s.str. clade is a tropical woody representative in Myrsinoideae of Primulaceae and has ca. 1300 species. The generic limits and alignments of this clade are unclear due to the limited number of genetic markers and/or taxon samplings in previous studies. Here, the chloroplast (cp) genomes of 13 taxa within the Myrsinaceae s.str. clade are sequenced and characterized. These cp genomes are typical quadripartite circle molecules and are highly conserved in size and gene content. Three pseudogenes are identified, of which ycf15 is totally absent from five taxa. Noncoding and large single copy region (LSC) exhibit higher levels of nucleotide diversity (Pi) than other regions. A total of ten hotspot fragments and 796 chloroplast simple sequence repeats (SSR) loci are found across all cp genomes. The results of phylogenetic analysis support the notion that the monophyletic Myrsinaceae s.str. clade has two subclades. Non-synonymous substitution rates (dN) are higher in housekeeping (HK) genes than photosynthetic (PS) genes, but both groups have a nearly identical synonymous substitution rate (dS). The results indicate that the PS genes are under stronger functional constraints compared with the HK genes. Overall, the study provides hypervariable molecular markers for phylogenetic reconstruction and contributes to a better understanding of plastid gene evolution in Myrsinaceae s.str. clade.
Collapse
|
18
|
Schelkunov MI, Nuraliev MS, Logacheva MD. Rhopalocnemis phalloides has one of the most reduced and mutated plastid genomes known. PeerJ 2019; 7:e7500. [PMID: 31565552 PMCID: PMC6745192 DOI: 10.7717/peerj.7500] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/16/2019] [Indexed: 11/20/2022] Open
Abstract
Although most plant species are photosynthetic, several hundred species have lost the ability to photosynthesize and instead obtain nutrients via various types of heterotrophic feeding. Their plastid genomes markedly differ from the plastid genomes of photosynthetic plants. In this work, we describe the sequenced plastid genome of the heterotrophic plant Rhopalocnemis phalloides, which belongs to the family Balanophoraceae and feeds by parasitizing other plants. The genome is highly reduced (18,622 base pairs vs. approximately 150 kbp in autotrophic plants) and possesses an extraordinarily high AT content, 86.8%, which is inferior only to AT contents of plastid genomes of Balanophora, a genus from the same family. The gene content of this genome is quite typical of heterotrophic plants, with all of the genes related to photosynthesis having been lost. The remaining genes are notably distorted by a high mutation rate and the aforementioned AT content. The high AT content has led to sequence convergence between some of the remaining genes and their homologs from AT-rich plastid genomes of protists. Overall, the plastid genome of R. phalloides is one of the most unusual plastid genomes known.
Collapse
Affiliation(s)
- Mikhail I. Schelkunov
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute for Information Transmission Problems, Moscow, Russia
| | - Maxim S. Nuraliev
- Faculty of Biology, Moscow State University, Moscow, Russia
- Joint Russian–Vietnamese Tropical Scientific and Technological Center, Cau Giay, Hanoi, Vietnam
| | - Maria D. Logacheva
- Skolkovo Institute of Science and Technology, Moscow, Russia
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| |
Collapse
|
19
|
Sun HY, Zhong L, Gan QL, Zhang T, Wu ZK. The complete chloroplast genome of an endangered endemic herb species in China, Primula filchnerae (Primulaceae). Mitochondrial DNA B Resour 2019; 4:2746-2747. [PMID: 33365711 PMCID: PMC7706512 DOI: 10.1080/23802359.2019.1644221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Primula filchnerae (Primulaceae) is an endangered endemic herb species in China. In this study, we characterized the complete chloroplast genome of P. filchnerae based on next generation sequencing (NGS). The chloroplast genome of P. filchnerae was 151,547 bp in size, containing a large single-copy (LSC) region of 82, 662 bp and a small single-copy (SSC) region of 17,749 bp. These two regions were separated by a pair of inverted repeat regions (IRs), each of 25,568 bp. A total of 130 functional genes were encoded, consisted of 86 protein-coding genes, 36 tRNA genes, and eight rRNA genes.
Collapse
Affiliation(s)
- Hua-Ying Sun
- Yunnan Key Laboratory for Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, China
| | - Li Zhong
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Qi-Liang Gan
- Zhuxi Qiliang Institute of Biology, Zhuxi, China
| | - Ting Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhi-Kun Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
20
|
Zhang C, Liu T, Yuan X, Huang H, Yao G, Mo X, Xue X, Yan H. The plastid genome and its implications in barcoding specific-chemotypes of the medicinal herb Pogostemon cablin in China. PLoS One 2019; 14:e0215512. [PMID: 30986249 PMCID: PMC6464210 DOI: 10.1371/journal.pone.0215512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/03/2019] [Indexed: 12/04/2022] Open
Abstract
Pogostemon cablin (Blanco) Benth. (Patchouli) is not only an important essential oil plant, but also a valuable medicinal plant in China. P. cablin in China can be divided into three cultivars (Shipai, Gaoyao, and Hainan) and two chemotypes (pogostone-type and patchoulol-type). The pogostone-type and patchoulol-type are, respectively, used for medicinals and perfumes. In this study, we sequenced and characterized the plastid genomes for all three Chinese cultivars and aimed to develop a chemotype-specific barcode for future quality control. The plastid genomes of P. cablin cultivars ranged from 152,461 to 152,462 bp in length and comprise 114 genes including 80 protein coding genes, 30 tRNA genes, and four rRNA genes. Phylogenetic analyses suggested that P. cablin cultivars clustered with the other two Pogostemon species with strong support. Although extremely conserved in P. cablin plastid genomes, 58 cpSSRs were filtered out among the three cultivars. One single variable locus, cpSSR, was discovered. The cpSSR genotypes successfully matched the chemotypes of Chinese patchouli, which was further supported by PCR-based Sanger sequences in more Chinese patchouli samples. The barcode developed in this study is thought to be a simple and reliable quality control method for Chinese P. cablin on the market.
Collapse
Affiliation(s)
- Caiyun Zhang
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Tongjian Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xun Yuan
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Huirun Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Gang Yao
- South China Limestone Plants Research Centre, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaolu Mo
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Xue Xue
- Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Haifei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
21
|
Su HJ, Barkman TJ, Hao W, Jones SS, Naumann J, Skippington E, Wafula EK, Hu JM, Palmer JD, dePamphilis CW. Novel genetic code and record-setting AT-richness in the highly reduced plastid genome of the holoparasitic plant Balanophora. Proc Natl Acad Sci U S A 2019; 116:934-943. [PMID: 30598433 PMCID: PMC6338844 DOI: 10.1073/pnas.1816822116] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plastid genomes (plastomes) vary enormously in size and gene content among the many lineages of nonphotosynthetic plants, but key lineages remain unexplored. We therefore investigated plastome sequence and expression in the holoparasitic and morphologically bizarre Balanophoraceae. The two Balanophora plastomes examined are remarkable, exhibiting features rarely if ever seen before in plastomes or in any other genomes. At 15.5 kb in size and with only 19 genes, they are among the most reduced plastomes known. They have no tRNA genes for protein synthesis, a trait found in only three other plastid lineages, and thus Balanophora plastids must import all tRNAs needed for translation. Balanophora plastomes are exceptionally compact, with numerous overlapping genes, highly reduced spacers, loss of all cis-spliced introns, and shrunken protein genes. With A+T contents of 87.8% and 88.4%, the Balanophora genomes are the most AT-rich genomes known save for a single mitochondrial genome that is merely bloated with AT-rich spacer DNA. Most plastid protein genes in Balanophora consist of ≥90% AT, with several between 95% and 98% AT, resulting in the most biased codon usage in any genome described to date. A potential consequence of its radical compositional evolution is the novel genetic code used by Balanophora plastids, in which TAG has been reassigned from stop to tryptophan. Despite its many exceptional properties, the Balanophora plastome must be functional because all examined genes are transcribed, its only intron is correctly trans-spliced, and its protein genes, although highly divergent, are evolving under various degrees of selective constraint.
Collapse
Affiliation(s)
- Huei-Jiun Su
- Department of Earth and Life Sciences, University of Taipei, 100 Taipei, Taiwan
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802
| | - Todd J Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Weilong Hao
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202
| | - Samuel S Jones
- Graduate Program in Plant Biology, Pennsylvania State University, University Park, PA 16802
| | - Julia Naumann
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802
| | | | - Eric K Wafula
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802
| | - Jer-Ming Hu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, 106 Taipei, Taiwan
| | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, IN 47405;
| | - Claude W dePamphilis
- Department of Biology, Pennsylvania State University, University Park, PA 16802;
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802
- Graduate Program in Plant Biology, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
22
|
Gao C, Deng Y, Wang J. The Complete Chloroplast Genomes of Echinacanthus Species (Acanthaceae): Phylogenetic Relationships, Adaptive Evolution, and Screening of Molecular Markers. FRONTIERS IN PLANT SCIENCE 2019; 9:1989. [PMID: 30687376 PMCID: PMC6335349 DOI: 10.3389/fpls.2018.01989] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/20/2018] [Indexed: 05/28/2023]
Abstract
Among the four species of Echinacanthus (Acanthaceae), one distributed in the West Himalayan region and three restricted to the Sino-Vietnamese karst region. Because of its ecological significance, molecular markers are necessary for proper assessment of its genetic diversity and phylogenetic relationships. Herein, the complete chloroplast genomes of four Echinacanthus species were determined for the first time. The results indicated that all the chloroplast genomes were mapped as a circular structure and each genomes included 113 unique genes, of which 80 were protein-coding, 29 were tRNAs, and 4 were rRNAs. However, the four cp genomes ranged from 151,333 to 152,672 bp in length. Comparison of the four cp genomes showed that the divergence level was greater between geographic groups. We also analyzed IR expansion or contraction in the four cp genomes and the fifth type of the large single copy/inverted repeat region in Lamiales was suggested. Furthermore, based on the analyses of comparison and nucleotide variability, six most divergent sequences (rrn16, ycf1, ndhA, rps16-trnQ-UUG, trnS-GCU-trnG-UCC, and psaA-ycf3) were identified. A total of 37-45 simple sequence repeats were discovered in the four species and 22 SSRs were identified as candidate effective molecular markers for detecting interspecies polymorphisms. These SSRs and hotspot regions could be used as potential molecular markers for future study. Phylogenetic analysis based on Bayesian and parsimony methods did not support the monophyly of Echinacanthus. The phylogenetic relationships among the four species were clearly resolved and the results supported the recognition of the Sino-Vietnamese Echinacanthus species as a new genus. Based on the protein sequence evolution analysis, 12 genes (rpl14, rpl16, rps4, rps15, rps18, rps19, psbK, psbN, ndhC, ndhJ, rpoB, and infA) were detected under positive selection in branch of Sino-Vietnamese Echinacanthus species. These genes will lead to understanding the adaptation of Echinacanthus species to karst environment. The study will help to resolve the phylogenetic relationship and understand the adaptive evolution of Echinacanthus. It will also provide genomic resources and potential markers suitable for future species identification and speciation studies of the genus.
Collapse
Affiliation(s)
- Chunming Gao
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
- Shandong Provincial Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Yunfei Deng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Myanmar
| | - Jun Wang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
- Shandong Provincial Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| |
Collapse
|
23
|
Ren T, Yang Y, Zhou T, Liu ZL. Comparative Plastid Genomes of Primula Species: Sequence Divergence and Phylogenetic Relationships. Int J Mol Sci 2018; 19:ijms19041050. [PMID: 29614787 PMCID: PMC5979308 DOI: 10.3390/ijms19041050] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 01/07/2023] Open
Abstract
Compared to traditional DNA markers, genome-scale datasets can provide mass information to effectively address historically difficult phylogenies. Primula is the largest genus in the family Primulaceae, with members distributed mainly throughout temperate and arctic areas of the Northern Hemisphere. The phylogenetic relationships among Primula taxa still maintain unresolved, mainly due to intra- and interspecific morphological variation, which was caused by frequent hybridization and introgression. In this study, we sequenced and assembled four complete plastid genomes (Primula handeliana, Primula woodwardii, Primula knuthiana, and Androsace laxa) by Illumina paired-end sequencing. A total of 10 Primula species (including 7 published plastid genomes) were analyzed to investigate the plastid genome sequence divergence and their inferences for the phylogeny of Primula. The 10 Primula plastid genomes were similar in terms of their gene content and order, GC content, and codon usage, but slightly different in the number of the repeat. Moderate sequence divergence was observed among Primula plastid genomes. Phylogenetic analysis strongly supported that Primula was monophyletic and more closely related to Androsace in the Primulaceae family. The phylogenetic relationships among the 10 Primula species showed that the placement of P. knuthiana–P. veris clade was uncertain in the phylogenetic tree. This study indicated that plastid genome data were highly effective to investigate the phylogeny.
Collapse
Affiliation(s)
- Ting Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Yanci Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Zhan-Lin Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
24
|
Plastid phylogenomics resolves infrafamilial relationships of the Styracaceae and sheds light on the backbone relationships of the Ericales. Mol Phylogenet Evol 2018; 121:198-211. [PMID: 29360618 DOI: 10.1016/j.ympev.2018.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 01/05/2023]
Abstract
Relationships among the genera of the small, woody family Styracaceae and among families of the large, diverse order Ericales have resisted complete resolution with sequences from one or a few genes. We used plastome sequencing to attempt to resolve the backbone relationships of Styracaceae and Ericales and to explore plastome structural evolution. Complete plastomes for 23 species are newly reported here, including 18 taxa of Styracaceae and five of Ericales (including species of Sapotaceae, Clethraceae, Symplocaceae, and Diapensiaceae). Combined with publicly available complete plastome data, this resulted in a data set of 60 plastomes, including 11 of the 12 genera of Styracaceae and 12 of 22 families of Ericales. Styracaceae plastomes were found to possess the quadripartite structure typical of angiosperms, with sizes ranging from 155 to 159 kb. Most of the plastomes were found to possess the full complement of typical angiosperm plastome genes. Unusual structural features were detected in plastomes of Alniphyllum and Bruinsmia, including the presence of a large 20-kb inversion (14 genes) in the Large Single-Copy region, the loss or pseudogenization of the clpP and accD genes in Bruinsmia, and the loss of the first exon of rps16 in B. styracoides. Likewise, the second intron from clpP was found to be lost in Alniphyllum and Huodendron. Phylogenomic analyses including all 79 plastid protein-coding genes provided improved resolution for relationships among the genera of Styracaceae and families of Ericales. Styracaceae was strongly supported as monophyletic, with Styrax, Huodendron, and a clade of Alniphyllum + Bruinsmia successively sister to the remainder of the family, all with strong support. All genera of Styracaceae were recovered as monophyletic, except for Halesia and Pterostyrax, which were each recovered as polyphyletic with strong support. Within Ericales, all families were recovered as monophyletic with strong support, with Balsaminaceae sister to remaining Ericales. Most relationships recovered in plastome analyses are congruent with previous analyses based on smaller data sets. Our results demonstrate the power of plastid phylogenomics to improve phylogenetic hypotheses among genera and families, and provide new insight into plastome evolution across Ericales.
Collapse
|
25
|
Characterization of the complete chloroplast genome of the Cortusa matthioli subsp. pekinensis (Primulaceae). CONSERV GENET RESOUR 2017. [DOI: 10.1007/s12686-017-0734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Complete Chloroplast Genome Sequence of Decaisnea insignis: Genome Organization, Genomic Resources and Comparative Analysis. Sci Rep 2017; 7:10073. [PMID: 28855603 PMCID: PMC5577308 DOI: 10.1038/s41598-017-10409-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/08/2017] [Indexed: 11/09/2022] Open
Abstract
Decaisnea insignis is a wild resource plant and is used as an ornamental, medicinal, and fruit plant. High-throughput sequencing of chloroplast genomes has provided insight into the overall evolutionary dynamics of chloroplast genomes and has enhanced our understanding of the evolutionary relationships within plant families. In the present study, we sequenced the complete chloroplast genome of D. insignis and used the data to assess its genomic resources. The D. insignis chloroplast genome is 158,683 bp in length and includes a pair of inverted repeats of 26,167 bp that are separated by small and large single copy regions of 19,162 bp and 87,187 bp, respectively. We identified 83 simple sequence repeats and 18 pairs of large repeats. Most simple-sequence repeats were located in the noncoding sections of the large single-copy/small single-copy region and exhibited a high A/T content. The D. insignis chloroplast genome bias was skewed towards A/T on the basis of codon usage. A phylogenetic tree based on 82 protein-coding genes of 33 angiosperms showed that D. insignis was clustered with Akebia in Lardizabalaceae. Overall, the results of this study will contribute to better understanding the evolution, molecular biology and genetic improvement of D. insignis.
Collapse
|
27
|
Kang JS, Lee BY, Kwak M. The complete chloroplast genome sequences of Lychnis wilfordii and Silene capitata and comparative analyses with other Caryophyllaceae genomes. PLoS One 2017; 12:e0172924. [PMID: 28241056 PMCID: PMC5328339 DOI: 10.1371/journal.pone.0172924] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/10/2017] [Indexed: 11/18/2022] Open
Abstract
The complete chloroplast genomes of Lychnis wilfordii and Silene capitata were determined and compared with ten previously reported Caryophyllaceae chloroplast genomes. The chloroplast genome sequences of L. wilfordii and S. capitata contain 152,320 bp and 150,224 bp, respectively. The gene contents and orders among 12 Caryophyllaceae species are consistent, but several microstructural changes have occurred. Expansion of the inverted repeat (IR) regions at the large single copy (LSC)/IRb and small single copy (SSC)/IR boundaries led to partial or entire gene duplications. Additionally, rearrangements of the LSC region were caused by gene inversions and/or transpositions. The 18 kb inversions, which occurred three times in different lineages of tribe Sileneae, were thought to be facilitated by the intermolecular duplicated sequences. Sequence analyses of the L. wilfordii and S. capitata genomes revealed 39 and 43 repeats, respectively, including forward, palindromic, and reverse repeats. In addition, a total of 67 and 56 simple sequence repeats were discovered in the L. wilfordii and S. capitata chloroplast genomes, respectively. Finally, we constructed phylogenetic trees of the 12 Caryophyllaceae species and two Amaranthaceae species based on 73 protein-coding genes using both maximum parsimony and likelihood methods.
Collapse
Affiliation(s)
- Jong-Soo Kang
- Plant Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Byoung Yoon Lee
- Plant Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Myounghai Kwak
- Plant Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
- * E-mail:
| |
Collapse
|
28
|
Fonseca LHM, Lohmann LG. Plastome Rearrangements in the " Adenocalymma-Neojobertia" Clade (Bignonieae, Bignoniaceae) and Its Phylogenetic Implications. FRONTIERS IN PLANT SCIENCE 2017; 8:1875. [PMID: 29163600 PMCID: PMC5672021 DOI: 10.3389/fpls.2017.01875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/16/2017] [Indexed: 05/02/2023]
Abstract
The chloroplast is one of the most important organelles of plants. This organelle has a circular DNA with approximately 130 genes. The use of plastid genomic data in phylogenetic and evolutionary studies became possible with high-throughput sequencing methods, which allowed us to rapidly obtain complete genomes at a reasonable cost. Here, we use high-throughput sequencing to study the "Adenocalymma-Neojobertia" clade (Bignonieae, Bignoniaceae). More specifically, we use Hi-Seq Illumina technology to sequence 10 complete plastid genomes. Plastomes were assembled using selected plastid reads and de novo approach with SPAdes. The 10 assembled genomes were analyzed in a phylogenetic context using five different partition schemes: (1) 91 protein-coding genes ("coding"); (2) 76 introns and spacers with alignment manually edited ("non-coding edited"); (3) 76 non-coding regions with poorly aligned regions removed using T-Coffee ("non-coding filtered"); (4) 91 coding regions plus 76 non-coding regions edited ("coding + non-coding edited"); and, (5) 91 protein-coding regions plus the 76 filtered non-coding regions ("coding + non-coding filtered"). Fragmented regions were aligned using Mafft. Phylogenetic analyses were conducted using Maximum Likelihood (ML) and Bayesian Criteria (BC). The analyses of the individual plastomes consistently recovered an expansion of the Inverted Repeated (IRs) regions and a compression of the Small Single Copy (SSC) region. Major genomic translocations were observed at the Large Single Copy (LSC) and IRs. ML phylogenetic analyses of the individual datasets led to the same topology, with the exception of the analysis of the "non-coding filtered" dataset. Overall, relationships were strongly supported, with the highest support values obtained through the analysis of the "coding + non-coding edited" dataset. Four regions at the LSC, SSC, and IR were selected for primer development. The "Adenocalymma-Neojobertia" clade shows an unusual pattern of plastid structure variation, including four major genomic translocations. These rearrangements challenge the current view of conserved plastid genome architecture in terms of gene order. It also complicates both genomic assemblies using reference genomes and sequence alignments using whole plastomes. Therefore, strategies that employ de novo assemblies and manual evaluation of sequence alignments are required to prevent assembly and alignment errors.
Collapse
|
29
|
Zhang CY, Liu TJ, Yan HF, Xu Y. The complete chloroplast genome of Primula persimilis (Primulaceae). CONSERV GENET RESOUR 2016. [DOI: 10.1007/s12686-016-0647-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Zhang CY, Liu TJ, Yan HF, Ge XJ, Hao G. The complete chloroplast genome of a rare candelabra primrose Primula stenodonta (Primulaceae). CONSERV GENET RESOUR 2016. [DOI: 10.1007/s12686-016-0637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Characterization of the whole chloroplast genome of an endangered species Primula kwangtungensis (Primulaceae). CONSERV GENET RESOUR 2016. [DOI: 10.1007/s12686-016-0627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Characterization of the complete chloroplast genome sequence of Primula veris (Ericales: Primulaceae). CONSERV GENET RESOUR 2016. [DOI: 10.1007/s12686-016-0595-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|