1
|
Amankwah JF, Jin W, Ma X, Xu P, Wen H, Amuneke KE, Munganga BP, Li K, Liu J, Li H. Salinity Tolerance in Freshwater Drum ( Aplodinotus grunniens): Investigating Biochemical, Antioxidant, Digestive Enzyme, and Gene Expression Responses to Acute Salinity Stress. Animals (Basel) 2025; 15:1015. [PMID: 40218412 PMCID: PMC11988114 DOI: 10.3390/ani15071015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 04/14/2025] Open
Abstract
Variations in salinity levels in aquaculture significantly influence fish physiology, impacting population dynamics and industry viability. This study aimed to examine the physiological response of the freshwater drum (Aplodinotus grunniens) to differing salinity conditions, assessing its potential for cultivation in brackish water environments. Fish averaging 45 ± 0.1 g were subjected to acute salinity tests across three groups: a control group at 0‱ and experimental groups at 7.5‱ and 15‱ over four days. The initial findings indicated that A. grunniens could tolerate salinity levels up to 15‱ without adverse effects. Key biochemical markers, such as aspartate aminotransferase and alanine aminotransferase, exhibited significant fluctuations but decreased over time. Antioxidant enzyme activity increased relative to the control, while malondialdehyde levels declined, indicating effective oxidative stress management. Additionally, digestive enzymes like amylase and lipase demonstrated adaptability to changing salinity. The expression of heat shock proteins 70 and 90 in the gills and livers varied initially but showed no sustained changes. Overall, the results suggest that A. grunniens possesses notable resilience to salinity variations, indicating its suitability for brackish water aquaculture and highlighting the optimal salinity ranges for promoting growth.
Collapse
Affiliation(s)
- Justice Frimpong Amankwah
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (X.M.); (P.X.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- China-ASEAN “The Belt and Road” Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; (K.L.); (J.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
| | - Wu Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (X.M.); (P.X.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Xueyan Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (X.M.); (P.X.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (X.M.); (P.X.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haibo Wen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (X.M.); (P.X.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Kennedy Emeka Amuneke
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- Department of Fisheries and Aquaculture, Nnamdi Azikiwe University, Awka 422001, Nigeria
| | | | - Kang Li
- China-ASEAN “The Belt and Road” Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; (K.L.); (J.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jingwei Liu
- China-ASEAN “The Belt and Road” Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; (K.L.); (J.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Hongxia Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (X.M.); (P.X.); (H.L.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
2
|
Ferrão L, Blanes-García M, Pérez L, Asturiano JF, Morini M. Superoxidase dismutases (SODs) in the European eel: Gene characterization, expression response to temperature combined with hormonal maturation and possible migratory implications. Comp Biochem Physiol A Mol Integr Physiol 2024; 290:111590. [PMID: 38281705 DOI: 10.1016/j.cbpa.2024.111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Superoxide dismutases (SODs) are antioxidant enzymes that protect cells from oxidation. Three SODs have been identified in mammals, but there is limited information in teleosts. This study investigates SODs in the European eel and their expression patterns during testis maturation. Phylogenetic and synteny analyses revealed SODs paralogs and their evolution in vertebrates. The eel possesses one SOD1 and two SOD2/3 (a and b), indicating SOD2 and SOD3 duplication in elopomorphs. SODs expression were then evaluated in various male and female tissues. SOD1 is more expressed in females, while SOD2a and SOD2b dominate brain-pituitary-gonad tissues in both sexes. SOD3a showed predominant expression in the ovary and the male livers, whereas SOD3b was found in the pituitary and brain of both sexes. The effects of different maturation protocols (standard hormonal treatment vs. same protocol preceded with cold seawater pre-treatment) on SODs expression during testis maturation were evaluated. Salinity increase at the onset of standard treatment at 20 °C, simulating early migration, upregulated SOD1, SOD2a, and SOD2b, coinciding with spermatogonia type A differentiated cells dominance. Thereafter, SOD2a and SOD3a decreased, while SOD2b increased during hormonal treatment-induced spermatogenesis. Pre-treatment with seawater at 10 °C, mimicking the conditions at the beginning of the seawater migration, downregulated SOD1 but increased SOD3a expression. Finally, the standard hormonal treatment, replicating spawning at higher temperatures, downregulated SOD1 in eels without any pre-treatment while SOD2a expression increased in pre-treated eels. This study revealed tissue-specific, sex-dependent, and maturation-related SOD expression patterns, predicting SODs dynamic expression profiles during their reproductive migration.
Collapse
Affiliation(s)
- L Ferrão
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - M Blanes-García
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - L Pérez
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - J F Asturiano
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - M Morini
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
3
|
Marbade P, Shanmugam SA, Suresh E, Rathipriya A, Rather MA, Agarwal D. Gene expression profiling and physiological adaptations of pearl spot (Etroplus suratensis) under varying salinity conditions. Int J Biol Macromol 2023; 253:127569. [PMID: 37865362 DOI: 10.1016/j.ijbiomac.2023.127569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Eutroplus suratensis (Pearl spot) is naturally found in estuarine environments and has been noted to have a high salinity tolerance. By examining the impact of various salinity levels on the growth and survival of pearl spot, the present study aims to enhance aquaculture profitability by assessing their adaptability and physiological adjustments to changes in salinity and determining their potential to acclimate to a broad range of salinity regimes. Results revealed no mortality in the control group (0 ppt), and in 15, 25 and 35 ppt treatment groups. However, the remaining groups (45, 60, and 75 ppt) showed differing levels of mortality with 44 % mortality observed in the 45 ppt group and 100 % mortality in both the 60 and 75 ppt groups. The expression analysis showed that liver IGF-1 mRNA expression increased by 2.6-fold at 15 ppt, and HSP70 mRNA expression in the liver also showed a significant increase with rising salinity levels. In addition, OSTF1 expression exhibited an increase at 15 ppt, whereas SOD and CAT expression reached their highest levels at 25 ppt. At 15 ppt, the expression of NKA mRNA increased significantly by 2.8-fold. The study's overall findings suggested that utilizing a salinity level of 15 ppt for pearl spot production could be viable for profitable aquaculture.
Collapse
Affiliation(s)
- Pranali Marbade
- TNJFU Institute of Fisheries Post Graduate Studies, OMR Campus, Chennai, India
| | - S A Shanmugam
- TNJFU Institute of Fisheries Post Graduate Studies, OMR Campus, Chennai, India
| | - E Suresh
- TNJFU Institute of Fisheries Post Graduate Studies, OMR Campus, Chennai, India
| | - A Rathipriya
- TNJFU Institute of Fisheries Post Graduate Studies, OMR Campus, Chennai, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil Ganderbal- SKUAST-Kashmir, India
| | - Deepak Agarwal
- TNJFU Institute of Fisheries Post Graduate Studies, OMR Campus, Chennai, India.
| |
Collapse
|
4
|
Shang X, Xu W, Zhang Y, Sun Q, Li Z, Geng L, Teng X. Transcriptome analysis revealed the mechanism of Luciobarbus capito (L. capito) adapting high salinity: Antioxidant capacity, heat shock proteins, immunity. MARINE POLLUTION BULLETIN 2023; 192:115017. [PMID: 37172343 DOI: 10.1016/j.marpolbul.2023.115017] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/14/2023]
Abstract
Salinity has a significant influence on the physiology of freshwater aquatic organisms. However, there are few studies on the hematology and immunology of freshwater fish under high salinity. In the current study, we aimed to analyze the adaptive effect of salt stress on L. capito spleen immune function and hematology using transcriptomic analysis. We replicated a L. capito acute salinity stress model, and collected blood and spleens from freshwater and saltwater fish. It was found that salinity affected significantly the numbers of leukocytes, lymphocytes, neutrophils, and red blood cells, as well as the content of haemoglobin. Salt treatment resulted in a significant increase in the expression of HSP70, HSP90, CAT, SOD, and GPX1 genes in L. capito spleens. Transcriptomic analysis revealed a total of 546 differentially expressed genes (DEGs) in spleens, including 224 up-regulated DEGs and 322 down-regulated DEGs. In addition, GO enrichment analysis revealed immune system process, multicellular organismal process, and biological regulation of genes with the most differences in biological processes. KEGG enrichment analysis showed that the regulation of lipolysis in adipocyte, FoxO signaling pathway, Hematopoietic cell lineage signaling pathway, and HIF-1 signaling pathway were significantly enriched. L. capito adapted oxidative to high salinity through FoxO signaling pathway and immune to high salinity through Hematopoietic cell lineage signaling pathway. At the same time, we selected 10 DEGs for qRT-PCR detection, and the results showed that the qRT-PCR results were consistent with our RNA-Seq results, indicating that transcriptome sequencing was accurate and reliable. In conclusion, our results demonstrated that the improvement of antioxidant capacity, heat shock protein and immunity are involved in the molecular mechanism of L. capito adapting to high salinity. Our findings provided a rationale for further study on high salinity adaptation and related enrichment pathways.
Collapse
Affiliation(s)
- Xinchi Shang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China
| | - Wei Xu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China
| | - Ying Zhang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China
| | - Qingsong Sun
- Jilin Agricultural Science and Technology University, Key Lab of Preventive Veterinary Medicine in Jilin Province, 77 Hanlin Road, Jilin 132101,China
| | - Zhengwei Li
- D Heilongjiang Province Aquatic Animal Resources Conservation Center, China
| | - Longwu Geng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Su H, Ma D, Fan J, Zhong Z, Li Y, Zhu H. Metabolism response mechanism in the gill of Oreochromis mossambicus under salinity, alkalinity and saline-alkalinity stresses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114523. [PMID: 36638565 DOI: 10.1016/j.ecoenv.2023.114523] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Saline-alkalinity is one of the important ecological parameter that has an impact function on the physiological metabolism, osmoregulation, survival, growth, development and distribution of teleost fish. Oreochromis mossambicus, a species of euryhaline that can withstand a wide variety of salinities, may be used as a research model animal in environmental studies. In order to detect the metabolism responses and mechanisms of different osmotic stresses tolerance in the gills of O. mossambicus, in present study, the metabolic responses of O. mossambicus subjected to salinity (25 g/L, S_S), alkalinity (4 g/L, A_S) and saline-alkalinity stress (salinity: 25 g/L, alkalinity: 4 g/L; SA_S) with the control environment (freshwater, C_S) were investigated by LC-MS/MS-based metabolomics. The metabolism results indicated that numerous metabolites were identified between the stress groups and the control group. In addition, under three osmotic stresses, the amino acid and carbohydrate metabolism, levels of amino acids, osmolytes and energy substances, such as L-lysine, arachidonic acid, docosahexaenoic acids, creatine and taurine, were significantly affected and changed in the metabolism of the gills of O. mossambicus. The metabolism data indicated that signal transduction and regulation pathways, including FoxO signaling pathway, mTOR signaling pathway and prolactin signaling pathway, were enriched in the gill during adaptation to high salinity, alkalinity and saline-alkalinity stress. The results of this study provide more comprehensive and reliable data for the osmotic pressure regulation mechanism and biological response of euryhaline teleost, and provide reliable scientific basis for the breeding and research of high salinity tolerance population, and further promote the development and utilization of saline-alkalinity water resources.
Collapse
Affiliation(s)
- Huanhuan Su
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Shanghai Ocean University, College of Fisheries and Life Science, Shanghai 201306, China
| | - Dongmei Ma
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| | - Jiajia Fan
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| | - Zaixuan Zhong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Yaya Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Shanghai Ocean University, College of Fisheries and Life Science, Shanghai 201306, China
| | - Huaping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China.
| |
Collapse
|
6
|
The Effect of Salinity Stress on Enzyme Activities, Histology, and Transcriptome of Silver Carp ( Hypophthalmichthys molitrix). BIOLOGY 2022; 11:biology11111580. [PMID: 36358281 PMCID: PMC9687411 DOI: 10.3390/biology11111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 01/25/2023]
Abstract
A 56-day study was performed to examine the effect of freshwater (FW) and brackish water (BW 6‱ salinity) on the antioxidant ability, Na+/K+-ATPase (NKA) activities, histology, and transcriptome of the gill and kidney tissue in juvenile silver carp (Hypophthalmichthys molitrix). The results show that when juvenile silver carp were exposed to 6‱ salinity, the activities of superoxide dismutase (SOD) and catalase (CAT) were shown to be substantially increased (p < 0.05), while glutathione peroxidase (GSH-PX) activities in gill were not significantly affected (p < 0.05). In kidney tissue, SOD, CAT, and GSH-PX, enzyme activities peaked at 24, 8, and 4 h, respectively, but were not significantly different compared with the control group (p < 0.05). In addition, significant effects of salinity were observed for the NKA level in both the gills and kidney tissues (p < 0.05). The gill filaments of juvenile silver carp under the BW group all underwent adverse changes within 72 h, such as cracks and ruptures in the main part of the gill filaments, bending of the gill lamellae and enlargement of the gaps, and an increase in the number of mucus and chloride-secreting cells. Transcriptome sequencing showed 171 and 261 genes in the gill and kidney tissues of juvenile silver carp compared to the BW group, respectively. Based on their gene ontology annotations, transcripts were sorted into four functional gene groups, each of which may play a role in salt tolerance. Systems involved in these processes include metabolism, signal transduction, immunoinflammatory response, and ion transport. The above findings indicate that the regulation processes in juvenile silver carp under brackish water conditions are complex and multifaceted. These processes and mechanisms shed light on the regulatory mechanism of silver carp osmolarity and provide a theoretical foundation for future research into silver carp growth in brackish water aquaculture area.
Collapse
|
7
|
Huang M, Yang X, Zhou Y, Ge J, Davis DA, Dong Y, Gao Q, Dong S. Growth, serum biochemical parameters, salinity tolerance and antioxidant enzyme activity of rainbow trout ( Oncorhynchus mykiss) in response to dietary taurine levels. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:449-462. [PMID: 37073267 PMCID: PMC10077281 DOI: 10.1007/s42995-020-00088-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/04/2020] [Indexed: 05/03/2023]
Abstract
This study evaluated the effect of dietary taurine levels on growth, serum biochemical parameters, salinity adaptability, and antioxidant activity of rainbow trout (Oncorhynchus mykiss). Four diets were formulated with taurine supplements at 0, 0.5, 1, and 2% w/v (abbreviated as T0, T0.5, T1, and T2, respectively). Rainbow trouts (initial weight of 80.09 ± 4.72 g) were stocked in tanks (180 L capacity), and were fed these diets for six weeks and subsequently underwent salinity acclimation. Physiological indicators were determined before salinity acclimation at 1, 4, 7, and 14 days afterwards. Results showed that there were no significant differences in growth performance (final mean weight ranged from 182.35 g to 198.48 g; percent weight gain was between 127.68% and 147.92%) of rainbow trout in freshwater stage, but dietary taurine supplement significantly increased serum-free taurine content. After entering seawater, the Na+-K+-ATPase activity of T2 group returned to its freshwater levels, and the serum cortisol content was significantly higher than T0 and T0.5 groups. At the end of this experiment, the liver superoxide dismutase activity in the T0 and T0.5 groups was significantly lower than in the T1 and T2 groups, and the liver catalase in the T0 group was the lowest whereas that in the T2 group was the highest. Muscle malondialdehyde content was the highest in the T0 group, and the lowest in the T2 group. Based on the results of this study, supplement of dietary taurine (0.5-2%) enhanced the salinity tolerance in rainbow trout, which increased with the higher taurine concentration.
Collapse
Affiliation(s)
- Ming Huang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Xiaogang Yang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Yangen Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Jian Ge
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - D. Allen Davis
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849-54119 USA
| | - Yunwei Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
| | - Qinfeng Gao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology
, Qingdao, 266235 China
| | - Shuanglin Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003 China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology
, Qingdao, 266235 China
| |
Collapse
|
8
|
Tian R, Geng Y, Guo H, Yang C, Seim I, Yang G. Comparative analysis of the superoxide dismutase gene family in Cetartiodactyla. J Evol Biol 2021; 34:1046-1060. [PMID: 33896059 DOI: 10.1111/jeb.13792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 12/18/2022]
Abstract
Cetacea, whales, dolphins and porpoises form an order of mammals adapted to aquatic life. Their transition to an aquatic habitat resulted in exceptional protection against cellular insults, including oxidative and osmotic stress. Here, we considered the structure and molecular evolution of the superoxide dismutase (SOD) gene family, which encodes essential enzymes in the mammalian antioxidant system, in the superorder Cetartiodactyla. To this end, we juxtaposed cetaceans and their closest extant relatives (order Artiodactyla). We identified 94 genes in 23 species, of which 70 are bona fide intact genes. Although the SOD gene family is conserved in Cetartiodactyla, lineage-specific gene duplications and deletions were observed. Phylogenetic analyses show that the SOD2 subfamily diverged from a clade containing SOD1 and SOD3, suggesting that cytoplasmic, extracellular and mitochondrial SODs have started down independent evolutionary paths. Specific-amino acid changes (e.g. K130N in SOD2) that may enhance ROS elimination were identified in cetaceans. In silico analysis suggests that the core transcription factor repertoire of cetartiodactyl SOD genes may include Sp1, NF-κB, Nrf2 and AHR. Putative transcription factors binding sites responding to hypoxia were (e.g. Suppressor of Hairless; Su(H)) found in the cetacean SOD1 gene. We found significant evidence for positive selection in cetaceans using codon models. Cetaceans with different diving abilities also show divergent evolution of SOD1 and SOD2. Our genome-wide analysis of SOD genes helps clarify their relationship and evolutionary trajectory and identify putative functional changes in cetaceans.
Collapse
Affiliation(s)
- Ran Tian
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuepan Geng
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Han Guo
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chen Yang
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China.,School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
9
|
Kim CH, Kim EJ, Nam YK. Superoxide Dismutase Multigene Family from a Primitive Chondrostean Sturgeon, Acipenser baerii: Molecular Characterization, Evolution, and Antioxidant Defense during Development and Pathogen Infection. Antioxidants (Basel) 2021; 10:232. [PMID: 33546486 PMCID: PMC7913737 DOI: 10.3390/antiox10020232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Three distinct superoxide dismutases (SODs)-copper/zinc-SOD (SOD1), manganese-SOD (SOD2), and extracellular copper/zinc-SOD (SOD3)-were identified from a primitive chondrostean fish, Acipenser baerii, enabling the comparison of their transcriptional regulation patterns during development, prelarval ontogeny, and immune stimulation. Each A. baerii SOD isoform (AbSOD) shared conserved structural features with its vertebrate orthologs; however, phylogenetic analyses hypothesized a different evolutionary history for AbSOD3 relative to AbSOD1 and AbSOD2 in the vertebrate lineage. The AbSOD isoforms showed different tissue distribution patterns; AbSOD1 was predominantly expressed in most tissues. The expression of the AbSOD isoforms showed isoform-dependent dynamic modulation according to embryonic development and prelarval ontogenic behaviors. Prelarval microinjections revealed that lipopolysaccharide only induced AbSOD3 expression, while Aeromonas hydrophila induced the expression of AbSOD2 and AbSOD3. In fingerlings, the transcriptional response of each AbSOD isoform to bacterial infection was highly tissue-specific, and the three isoforms exhibited different response patterns within a given tissue type; AbSOD3 was induced the most sensitively, and its induction was the most pronounced in the kidneys and skin. Collectively, these findings suggest isoform-dependent roles for the multigene SOD family in antioxidant defenses against the oxidative stress associated with development and immune responses in these endangered sturgeon fish.
Collapse
Affiliation(s)
| | | | - Yoon Kwon Nam
- Department of Marine Bio-Materials and Aquaculture, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Korea; (C.-H.K.); (E.J.K.)
| |
Collapse
|
10
|
Dumbo JC, Gilbert BM, Avenant-Oldewage A. Oxidative stress biomarkers in the African sharptooth catfish, Clarias gariepinus, associated with infections by adult digeneans and water quality. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 12:232-241. [PMID: 32714829 PMCID: PMC7369607 DOI: 10.1016/j.ijppaw.2020.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
Abstract
Parasites and environmental features could synergistically act as stressors to the health of their hosts. The objectives of this study were to evaluate the effect of: (i) water quality, host sex, size and body condition on adult digenean parasite infections; (ii) digenean infections and host sex and size on the oxidative stress biomarkers and body condition of hosts; and (iii) water quality on the oxidative stress biomarkers and body condition in Clarias gariepinus. Water quality variables were measured and C. gariepinus were collected each month for a year for examination of two intestinal digeneans, Masenia nkomatiensis and Glossidium pedatum, and determination of body condition and measurement of biomarkers in the host. The results indicated that the intensity of M. nkomatiensis was positively correlated with electrical conductivity and total dissolved solids. Prevalence of G. pedatum was negatively correlated with electrical conductivity, salinity and total dissolved solids. High summer water temperature was strongly associated with high digenean infections. There was no host body condition, sex or size bias for any of the parasite infection variables. Differences in the biomarker levels and body condition between uninfected fish and those infected with M. nkomatiensis or G. pedatum were insignificant indicating a low effect of the digenean parasites on oxidative stress biomarkers and body condition in the fish. However, total protein levels were positively associated with host size, and lipid peroxidation was negatively related to host body condition; total protein levels were also positively correlated with temperature and negatively correlated with dissolved oxygen. Host body condition was only negatively correlated with dissolved oxygen. Overall the trends observed in the data showed that the parasites have a negligible effect on oxidative stress in host fish and the trends observed for all variables (water quality, stress biomarkers, body condition and parasite infections) showed a strong seasonal pattern.
Collapse
Affiliation(s)
- José Chissiua Dumbo
- Department of Zoology, University of Johannesburg, P.O. Box 524 Auckland Park, Johannesburg, 2006, South Africa.,Department of Biological Sciences, Eduardo Mondlane University, P.O. Box 257, Maputo, Mozambique
| | - Beric Michael Gilbert
- Department of Zoology, University of Johannesburg, P.O. Box 524 Auckland Park, Johannesburg, 2006, South Africa.,Spectrum Analytical Facility, University of Johannesburg, P.O. Box 524 Auckland Park, Johannesburg, 2006, South Africa
| | - Annemariè Avenant-Oldewage
- Department of Zoology, University of Johannesburg, P.O. Box 524 Auckland Park, Johannesburg, 2006, South Africa
| |
Collapse
|
11
|
Kong X, Qiao D, Zhao X, Wang L, Zhang J, Liu D, Zhang H. The molecular characterizations of Cu/ZnSOD and MnSOD and its responses of mRNA expression and enzyme activity to Aeromonas hydrophila or lipopolysaccharide challenge in Qihe crucian carp Carassius auratus. FISH & SHELLFISH IMMUNOLOGY 2017; 67:429-440. [PMID: 28606861 DOI: 10.1016/j.fsi.2017.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/16/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
Superoxide dismutases (SODs), as the prime antioxidant enzymes, present the first line of defense against oxidative stress caused by excessive reactive oxygen species (ROS) in organism. In the study, two distinct members of SOD family were cloned and analyzed in Qihe crucian carp Carassius auratus (designated as CaCu/ZnSOD and CaMnSOD, respectively). The full-length cDNA of CaCu/ZnSOD is 759 bp, containing a 5' -untranslated region (UTR) of 39 bp, a ORF (including stop codon, TAG) of 465 bp and a 3'-UTR of 255 bp. The ORF of CaCu/ZnSOD encodes a protein of 154 amino acids (aa), in which, two Cu/ZnSOD signature (45GFHVHAFGDNT55 and 139GNAGGRLACGVI150) and four conserved amino acids for Cu/Zn2+-binding sites (H64, H72, H81 and D84) were observed. The full-length CaMnSOD cDNA (960 bp) consists of a 5'-UTR of 114 bp, a ORF of 675 bp and a 3'-UTR of 231 bp, the ORF of CaMnSOD encodes a 224 aa protein with a 26 aa mitochondrial-targeting sequence (MTS) in the N-terminus, and four conserved amino acids for manganese binding (H52, H100, D185 and H189) were observed. Multiple alignment and the structural analysis revealed two Cu/ZnSOD signature motifs and a MnSOD signature motif as well as the invariant binding sites for Cu2+/Zn2+ in CaCu/ZnSOD and Mn2+ in CaMnSOD. The phylogenetic analysis indicated that CaCu/ZnSOD was homologous to cytosolic Cu/ZnSODs, and CaMnSOD was high similarity with mitochondrial MnSODs from other fish. The tissue distribution analysis demonstrated that CaCu/ZnSOD and CaMnSOD were highly expressed in liver, heart and muscle. The dynamic expressions of CaCu/ZnSOD and CaMnSOD were observed after the challenges with Aeromonas hydrophila or LPS, which generally increased in liver, gill, kidney and spleen, while, the mRNA expressions were down-regulated at some time points in head kidney. The enzyme activities increased after A. hydrophila or LPS challenge, compared to the control. In this study, the molecular structures and functional motifs of CaCu/ZnSOD and CaMnSOD were determined, and it is crucial for us to understand the biological functions of SODs. The highest level in liver showed that the function of liver to remove ROS is much more important. The obvious responses of mRNA expression levels and enzyme activities to pathogens indicate the important roles of CaCu/ZnSOD and CaMnSOD in antioxidant defense in C. auratus.
Collapse
Affiliation(s)
- Xianghui Kong
- College of Fisheries, Henan Normal University, Henan province, PR China; College of Life Science, Henan Normal University, Henan province, PR China.
| | - Dan Qiao
- College of Fisheries, Henan Normal University, Henan province, PR China; College of Life Science, Henan Normal University, Henan province, PR China
| | - Xianliang Zhao
- College of Fisheries, Henan Normal University, Henan province, PR China; College of Life Science, Henan Normal University, Henan province, PR China
| | - Li Wang
- College of Fisheries, Henan Normal University, Henan province, PR China; College of Life Science, Henan Normal University, Henan province, PR China
| | - Jie Zhang
- College of Fisheries, Henan Normal University, Henan province, PR China
| | - Dandan Liu
- College of Life Science, Henan Normal University, Henan province, PR China
| | - Hongxu Zhang
- College of Life Science, Henan Normal University, Henan province, PR China
| |
Collapse
|