1
|
Galià-Camps C, Pegueroles C, Turon X, Carreras C, Pascual M. Genome composition and GC content influence loci distribution in reduced representation genomic studies. BMC Genomics 2024; 25:410. [PMID: 38664648 PMCID: PMC11046876 DOI: 10.1186/s12864-024-10312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Genomic architecture is a key evolutionary trait for living organisms. Due to multiple complex adaptive and neutral forces which impose evolutionary pressures on genomes, there is a huge variability of genomic features. However, their variability and the extent to which genomic content determines the distribution of recovered loci in reduced representation sequencing studies is largely unexplored. RESULTS Here, by using 80 genome assemblies, we observed that whereas plants primarily increase their genome size by expanding their intergenic regions, animals expand both intergenic and intronic regions, although the expansion patterns differ between deuterostomes and protostomes. Loci mapping in introns, exons, and intergenic categories obtained by in silico digestion using 2b-enzymes are positively correlated with the percentage of these regions in the corresponding genomes, suggesting that loci distribution mostly mirrors genomic architecture of the selected taxon. However, exonic regions showed a significant enrichment of loci in all groups regardless of the used enzyme. Moreover, when using selective adaptors to obtain a secondarily reduced loci dataset, the percentage and distribution of retained loci also varied. Adaptors with G/C terminals recovered a lower percentage of selected loci, with a further enrichment of exonic regions, while adaptors with A/T terminals retained a higher percentage of loci and slightly selected more intronic regions than expected. CONCLUSIONS Our results highlight how genome composition, genome GC content, RAD enzyme choice and use of base-selective adaptors influence reduced genome representation techniques. This is important to acknowledge in population and conservation genomic studies, as it determines the abundance and distribution of loci.
Collapse
Affiliation(s)
- Carles Galià-Camps
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, 08028, Spain.
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain.
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, Blanes, 17300, Spain.
| | - Cinta Pegueroles
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Xavier Turon
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, Blanes, 17300, Spain
| | - Carlos Carreras
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
2
|
O'Malley L, Wang J, Nikzad M, Sheng H, St Leger R. Genetic variation in disease resistance in Drosophila spp. is mitigated in Drosophila sechellia by specialization to a toxic host. Sci Rep 2023; 13:7793. [PMID: 37179396 PMCID: PMC10183017 DOI: 10.1038/s41598-023-34976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
We found that Drosophila species vary in their susceptibility to the broad-spectrum entomopathogen, Metarhizium anisopliae (strain Ma549). Generalist species were generally more resistant than dietary specialists, with the cactophilic Drosophila buzzatii and Drosophila sechellia, a specialist of the Morinda citrifolia (Morinda) fruit, being most susceptible. Morinda fruit is reported to be toxic to most herbivores because it contains Octanoic Acid (OA). We confirmed that OA is toxic to Drosophila spp., other than D. sechellia, and we also found that OA is highly toxic to entomopathogenic fungi including Ma549 and Beauveria bassiana. Drosophila sechellia fed a diet containing OA, even at levels much less than found in Morinda fruit, had greatly reduced susceptibility to Ma549. This suggests that specializing to Morinda may have provided an enemy-free space, reducing adaptive prioritization on a strong immune response. Our results demonstrate that M. anisopliae and Drosophila species with divergent lifestyles provide a versatile model system for understanding the mechanisms of host-pathogen interactions at different scales and in environmental context.
Collapse
Affiliation(s)
- Liam O'Malley
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Jonathan Wang
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Matthew Nikzad
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Huiyu Sheng
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Raymond St Leger
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
3
|
Kim H, Kim Y, Roh GH, Kim YH. Comparison of Preference for Chemicals Associated with Fruit Fermentation between Drosophila melanogaster and Drosophila suzukii and between Virgin and Mated D. melanogaster. INSECTS 2023; 14:382. [PMID: 37103197 PMCID: PMC10145260 DOI: 10.3390/insects14040382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Two taxonomically similar Drosophila species, Drosophila melanogaster and Drosophila suzukii, are known to have distinct habitats: D. melanogaster is mostly found near overripe and fermented fruits, whereas D. suzukii is attracted to fresh fruits. Since chemical concentrations are typically higher in overripe and fermented fruits than in fresh fruits, D. melanogaster is hypothesized to be attracted to higher concentrations of volatiles than D. suzukii. Therefore, the chemical preferences of the two flies were compared via Y-tube olfactometer assays and electroantennogram (EAG) experiments using various concentrations of 2-phenylethanol, ethanol, and acetic acid. D. melanogaster exhibited a higher preference for high concentrations of all the chemicals than that of D. suzukii. In particular, since acetic acid is mostly produced at the late stage of fruit fermentation, the EAG signal distance to acetic acid between the two flies was higher than those to 2-phenylethanol and ethanol. This supports the hypothesis that D. melanogaster prefers fermented fruits compared to D. suzukii. When comparing virgin and mated female D. melanogaster, mated females showed a higher preference for high concentrations of chemicals than that of virgin females. In conclusion, high concentrations of volatiles are important attraction factors for mated females seeking appropriate sites for oviposition.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Ecological Science, Kyungpook National University, Sangju-si 37224, Gyeongsangbuk-do, Republic of Korea
| | - YeongHo Kim
- Department of Ecological Science, Kyungpook National University, Sangju-si 37224, Gyeongsangbuk-do, Republic of Korea
| | - Gwang Hyun Roh
- Department of Plant Medicine and Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju-si 52828, Gyeongsangnam-do, Republic of Korea
| | - Young Ho Kim
- Department of Ecological Science, Kyungpook National University, Sangju-si 37224, Gyeongsangbuk-do, Republic of Korea
- Research Institute of Invertebrate Vector, Kyungpook National University, Sangju-si 37224, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
4
|
Jedlička P, Tokan V, Kejnovská I, Hobza R, Kejnovský E. Telomeric retrotransposons show propensity to form G-quadruplexes in various eukaryotic species. Mob DNA 2023; 14:3. [PMID: 37038191 PMCID: PMC10088271 DOI: 10.1186/s13100-023-00291-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Canonical telomeres (telomerase-synthetised) are readily forming G-quadruplexes (G4) on the G-rich strand. However, there are examples of non-canonical telomeres among eukaryotes where telomeric tandem repeats are invaded by specific retrotransposons. Drosophila melanogaster represents an extreme example with telomeres composed solely by three retrotransposons-Het-A, TAHRE and TART (HTT). Even though non-canonical telomeres often show strand biased G-distribution, the evidence for the G4-forming potential is limited. RESULTS Using circular dichroism spectroscopy and UV absorption melting assay we have verified in vitro G4-formation in the HTT elements of D. melanogaster. Namely 3 in Het-A, 8 in TART and 2 in TAHRE. All the G4s are asymmetrically distributed as in canonical telomeres. Bioinformatic analysis showed that asymmetric distribution of potential quadruplex sequences (PQS) is common in telomeric retrotransposons in other Drosophila species. Most of the PQS are located in the gag gene where PQS density correlates with higher DNA sequence conservation and codon selection favoring G4-forming potential. The importance of G4s in non-canonical telomeres is further supported by analysis of telomere-associated retrotransposons from various eukaryotic species including green algae, Diplomonadida, fungi, insects and vertebrates. Virtually all analyzed telomere-associated retrotransposons contained PQS, frequently with asymmetric strand distribution. Comparison with non-telomeric elements showed independent selection of PQS-rich elements from four distinct LINE clades. CONCLUSION Our findings of strand-biased G4-forming motifs in telomere-associated retrotransposons from various eukaryotic species support the G4-formation as one of the prerequisites for the recruitment of specific retrotransposons to chromosome ends and call for further experimental studies.
Collapse
Affiliation(s)
- Pavel Jedlička
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Viktor Tokan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic.
| | - Iva Kejnovská
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic
| | - Eduard Kejnovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200, Brno, Czech Republic.
| |
Collapse
|
5
|
Chambers EA, Tarvin RD, Santos JC, Ron SR, Betancourth‐Cundar M, Hillis DM, Matz MV, Cannatella DC. 2b or not 2b? 2bRAD is an effective alternative to ddRAD for phylogenomics. Ecol Evol 2023; 13:e9842. [PMID: 36911313 PMCID: PMC9994478 DOI: 10.1002/ece3.9842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/10/2023] Open
Abstract
Restriction-site-associated DNA sequencing (RADseq) has become an accessible way to obtain genome-wide data in the form of single-nucleotide polymorphisms (SNPs) for phylogenetic inference. Nonetheless, how differences in RADseq methods influence phylogenetic estimation is poorly understood because most comparisons have largely relied on conceptual predictions rather than empirical tests. We examine how differences in ddRAD and 2bRAD data influence phylogenetic estimation in two non-model frog groups. We compare the impact of method choice on phylogenetic information, missing data, and allelic dropout, considering different sequencing depths. Given that researchers must balance input (funding, time) with output (amount and quality of data), we also provide comparisons of laboratory effort, computational time, monetary costs, and the repeatability of library preparation and sequencing. Both 2bRAD and ddRAD methods estimated well-supported trees, even at low sequencing depths, and had comparable amounts of missing data, patterns of allelic dropout, and phylogenetic signal. Compared to ddRAD, 2bRAD produced more repeatable datasets, had simpler laboratory protocols, and had an overall faster bioinformatics assembly. However, many fewer parsimony-informative sites per SNP were obtained from 2bRAD data when using native pipelines, highlighting a need for further investigation into the effects of each pipeline on resulting datasets. Our study underscores the importance of comparing RADseq methods, such as expected results and theoretical performance using empirical datasets, before undertaking costly experiments.
Collapse
Affiliation(s)
- E. Anne Chambers
- Department of Integrative Biology and Biodiversity CenterUniversity of Texas at AustinAustinTexasUSA
- Department of Environmental Science, Policy, and Management and Museum of Vertebrate ZoologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Rebecca D. Tarvin
- Department of Integrative Biology and Biodiversity CenterUniversity of Texas at AustinAustinTexasUSA
- Department of Integrative Biology and Museum of Vertebrate ZoologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Juan C. Santos
- Department of Biological SciencesSt John's UniversityNew YorkNew YorkUSA
| | - Santiago R. Ron
- Museo de Zoología, Escuela de Ciencias BiológicasPontificia Universidad Católica del EcuadorQuitoEcuador
| | | | - David M. Hillis
- Department of Integrative Biology and Biodiversity CenterUniversity of Texas at AustinAustinTexasUSA
| | - Mikhail V. Matz
- Department of Integrative Biology and Biodiversity CenterUniversity of Texas at AustinAustinTexasUSA
| | - David C. Cannatella
- Department of Integrative Biology and Biodiversity CenterUniversity of Texas at AustinAustinTexasUSA
| |
Collapse
|
6
|
Kim Y, Goh G, Kim YH. Expression of antimicrobial peptides associated with different susceptibilities to environmental chemicals in Drosophila suzukii and Drosophila melanogaster. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105210. [PMID: 36127054 DOI: 10.1016/j.pestbp.2022.105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Drosophila suzukii is a serious agricultural pest. The evolved morphology of the female D. suzukii assists in penetrating the surface of fresh fruit and spawns eggs with its unique ovipositor. Conversely, Drosophila melanogaster, a taxonomically close species with D. suzukii, largely inhabits decaying and fermenting fruits and is consistently exposed to extensive environmental chemicals, such as 2-phenylethanol, ethanol, and acetic acid, produced by microorganisms. Considering the distinct habitats of the two flies, D. suzukii is thought to be more susceptible to environmental chemicals than D. melanogaster. We investigated the significantly higher survival rate of D. melanogaster following exposure to 2-phenylethanol, ethanol, and acetic acid. A comparison of the expression of antimicrobial peptides (AMPs) between the two flies treated with chemicals established that AMPs were generally more abundantly induced in D. melanogaster than in D. suzukii, particularly in the gut and fat body. Among the AMPs, the induction of genes (Diptericin A, Diptericin B, and Metchnikowin), which are regulated by the immune deficiency (IMD) pathway, was significantly higher than that of Drosomycin, which belongs to the Toll pathway in chemical-treated D. melanogaster. A transgenic RNAi fly (D. melanogaster) with silenced expression of AMPs and Relish, a transcription factor of the IMD pathway, exhibited significantly reduced survival rates than the control fly. Our results suggest that AMPs regulated by the IMD pathway play an important role in the chemical tolerance of D. melanogaster, and these flies are adapted to their habitats by physiological response.
Collapse
Affiliation(s)
- YeongHo Kim
- Department of Ecological Science, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Gyuhyeong Goh
- Department of Statistics, Kansas State University, Manhattan KS66506, USA
| | - Young Ho Kim
- Department of Ecological Science, Kyungpook National University, Sangju 37224, Republic of Korea; Department of Vector Entomology, Kyungpook National University, Sangju 37224, Republic of Korea.
| |
Collapse
|
7
|
Li F, Rane RV, Luria V, Xiong Z, Chen J, Li Z, Catullo RA, Griffin PC, Schiffer M, Pearce S, Lee SF, McElroy K, Stocker A, Shirriffs J, Cockerell F, Coppin C, Sgrò CM, Karger A, Cain JW, Weber JA, Santpere G, Kirschner MW, Hoffmann AA, Oakeshott JG, Zhang G. Phylogenomic analyses of the genus Drosophila reveals genomic signals of climate adaptation. Mol Ecol Resour 2022; 22:1559-1581. [PMID: 34839580 PMCID: PMC9299920 DOI: 10.1111/1755-0998.13561] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/10/2021] [Indexed: 01/13/2023]
Abstract
Many Drosophila species differ widely in their distributions and climate niches, making them excellent subjects for evolutionary genomic studies. Here, we have developed a database of high-quality assemblies for 46 Drosophila species and one closely related Zaprionus. Fifteen of the genomes were newly sequenced, and 20 were improved with additional sequencing. New or improved annotations were generated for all 47 species, assisted by new transcriptomes for 19. Phylogenomic analyses of these data resolved several previously ambiguous relationships, especially in the melanogaster species group. However, it also revealed significant phylogenetic incongruence among genes, mainly in the form of incomplete lineage sorting in the subgenus Sophophora but also including asymmetric introgression in the subgenus Drosophila. Using the phylogeny as a framework and taking into account these incongruences, we then screened the data for genome-wide signals of adaptation to different climatic niches. First, phylostratigraphy revealed relatively high rates of recent novel gene gain in three temperate pseudoobscura and five desert-adapted cactophilic mulleri subgroup species. Second, we found differing ratios of nonsynonymous to synonymous substitutions in several hundred orthologues between climate generalists and specialists, with trends for significantly higher ratios for those in tropical and lower ratios for those in temperate-continental specialists respectively than those in the climate generalists. Finally, resequencing natural populations of 13 species revealed tropics-restricted species generally had smaller population sizes, lower genome diversity and more deleterious mutations than the more widespread species. We conclude that adaptation to different climates in the genus Drosophila has been associated with large-scale and multifaceted genomic changes.
Collapse
Affiliation(s)
- Fang Li
- BGI‐ShenzhenShenzhenChina
- Section for Ecology and EvolutionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Rahul V. Rane
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
| | - Victor Luria
- Department of Systems BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Zijun Xiong
- BGI‐ShenzhenShenzhenChina
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of Sciences (CAS)KunmingYunnanChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | | | | | - Renee A. Catullo
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
- Division of Ecology and EvolutionCentre for Biodiversity AnalysisThe Australian National UniversityActonACTAustralia
| | - Philippa C. Griffin
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
| | - Michele Schiffer
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
- Daintree Rainforest ObservatoryJames Cook UniversityCape TribulationQldAustralia
| | - Stephen Pearce
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
| | - Siu Fai Lee
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
- Applied BioSciencesMacquarie UniversityNorth RydeNSWAustralia
| | - Kerensa McElroy
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
| | - Ann Stocker
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
| | - Jennifer Shirriffs
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
| | - Fiona Cockerell
- School of Biological SciencesMonash UniversityClaytonVic.Australia
| | - Chris Coppin
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
| | - Carla M. Sgrò
- School of Biological SciencesMonash UniversityClaytonVic.Australia
| | - Amir Karger
- IT ‐ Research ComputingHarvard Medical SchoolBostonMassachusettsUSA
| | - John W. Cain
- Department of MathematicsHarvard UniversityCambridgeMassachusettsUSA
| | - Jessica A. Weber
- Department of GeneticsHarvard Medical SchoolBostonMassachusettsUSA
| | - Gabriel Santpere
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB)Department of Experimental and Health Sciences (DCEXS)Hospital del Mar Medical Research Institute (IMIM)Universitat Pompeu FabraBarcelonaCataloniaSpain
| | - Marc W. Kirschner
- Department of Systems BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Ary A. Hoffmann
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
| | - John G. Oakeshott
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
- Applied BioSciencesMacquarie UniversityNorth RydeNSWAustralia
| | - Guojie Zhang
- BGI‐ShenzhenShenzhenChina
- Section for Ecology and EvolutionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of Sciences (CAS)KunmingYunnanChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| |
Collapse
|
8
|
Insights into the Divergence of Chinese Ips Bark Beetles during Evolutionary Adaptation. BIOLOGY 2022; 11:biology11030384. [PMID: 35336758 PMCID: PMC8945085 DOI: 10.3390/biology11030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Bark beetle species of the genus Ips are among the major pests of Chinese conifer forests. Based on mitochondrial genome and SNP, we investigated the phylogenetic relationships and evolutionary trends of 19 populations of six Ips species that had serious outbreaks in recent years. Our results demonstrated the relationships between Ips evolution and host plants, pheromones, and altitudinal differences, and provided new insights into the mechanism of adaptive evolution of Ips bark beetles. Abstract Many bark beetles of the genus Ips are economically important insect pests that cause severe damage to conifer forests worldwide. In this study, sequencing the mitochondrial genome and restriction site-associated DNA of Ips bark beetles helps us understand their phylogenetic relationships, biogeographic history, and evolution of ecological traits (e.g., pheromones and host plants). Our results show that the same topology in phylogenetic trees constructed in different ways (ML/MP/BI) and with different data (mtDNA/SNP) helps us to clarify the phylogenetic relationships between Chinese Ips bark beetle populations and Euramerican species and their higher order clades; Ips bark beetles are polyphyletic. The structure of the mitochondrial genome of Ips bark beetles is similar and conserved to some extent, especially in the sibling species Ips typographus and Ips nitidus. Genetic differences among Ips species are mainly related to their geographic distribution and different hosts. The evolutionary pattern of aggregation pheromones of Ips species reflects their adaptations to the environment and differences among hosts in their evolutionary process. The evolution of Ips species is closely related to the uplift of the Qinghai-Tibet Plateau and host switching. Our study addresses the evolutionary trend and phylogenetic relationships of Ips bark beetles in China, and also provides a new perspective on the evolution of bark beetles and their relationships with host plants and pheromones.
Collapse
|
9
|
Genetic Linkage and Physical Mapping for an Oyster Mushroom ( Pleurotus cornucopiae) and Quantitative Trait Locus Analysis for Cap Color. Appl Environ Microbiol 2021; 87:e0095321. [PMID: 34406836 DOI: 10.1128/aem.00953-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oyster mushrooms are grown commercially worldwide, especially in many developing countries, for their easy cultivation and high biological efficiency. Pleurotus cornucopiae is one of the main oyster mushroom species because of its gastronomic value and nutraceutical properties. Cap color is an important trait, since consumers prefer dark mushrooms, which are now represented by only a small portion of the commercial varieties. Breeding efforts are required to improve quality-related traits to satisfy various demands of consumers. Here, we present a saturated genetic linkage map of P. cornucopiae constructed by using a segregating population of 122 monokaryons and 3,449 single nucleotide polymorphism (SNP) markers generated by the 2b-RAD approach. The map contains 11 linkage groups covering 961.6 centimorgans (cM), with an average marker spacing of 0.27 cM. The genome of P. cornucopiae was de novo sequenced, resulting in 425 scaffolds (>1,000 bp) with a total genome size of 35.1 Mb. The scaffolds were assembled to the pseudochromosome level with the assistance of the genetic linkage map. A total of 97% SNP markers (3,357) were physically localized on 140 scaffolds that were assigned to 11 pseudochromosomes, with a total of 32.5 Mb, representing 92.5% of the whole genome. Six quantitative trait loci (QTL) controlling cap color of P. cornucopiae were detected, accounting for a total phenotypic variation of 65.6%, with the highest value for the QTL on pseudochromosome 5 (18%). The results of our study provide a solid base for marker-assisted breeding for agronomic traits and especially for studies on biological mechanisms controlling cap color in oyster mushrooms. IMPORTANCE Oyster mushrooms are produced and consumed all over the world. Pleurotus cornucopiae is one of the main oyster mushroom species. Dark-cap oyster mushrooms are becoming more and more popular with consumers, but dark varieties are rare on the market. Prerequisites for efficient breeding programs are the availability of high-quality whole genomes and genetic linkage maps. Genetic studies to fulfill some of these prerequisites have hardly been done for P. cornucopiae. In this study, we de novo sequenced the genome and constructed a saturated genetic linkage map for P. cornucopiae. The genetic linkage map was effectively used to assist the genome assembly and identify QTL that genetically control the trait cap color. As well, the genome characteristics of P. cornucopiae were compared to the closely related species Pleurotus ostreatus. The results provided a basis for understanding the genetic background and marker-assisted breeding of this economically important mushroom species.
Collapse
|
10
|
Hernández DG, Rivera C, Cande J, Zhou B, Stern DL, Berman GJ. A framework for studying behavioral evolution by reconstructing ancestral repertoires. eLife 2021; 10:e61806. [PMID: 34473052 PMCID: PMC8445618 DOI: 10.7554/elife.61806] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Although different animal species often exhibit extensive variation in many behaviors, typically scientists examine one or a small number of behaviors in any single study. Here, we propose a new framework to simultaneously study the evolution of many behaviors. We measured the behavioral repertoire of individuals from six species of fruit flies using unsupervised techniques and identified all stereotyped movements exhibited by each species. We then fit a Generalized Linear Mixed Model to estimate the intra- and inter-species behavioral covariances, and, by using the known phylogenetic relationships among species, we estimated the (unobserved) behaviors exhibited by ancestral species. We found that much of intra-specific behavioral variation has a similar covariance structure to previously described long-time scale variation in an individual's behavior, suggesting that much of the measured variation between individuals of a single species in our assay reflects differences in the status of neural networks, rather than genetic or developmental differences between individuals. We then propose a method to identify groups of behaviors that appear to have evolved in a correlated manner, illustrating how sets of behaviors, rather than individual behaviors, likely evolved. Our approach provides a new framework for identifying co-evolving behaviors and may provide new opportunities to study the mechanistic basis of behavioral evolution.
Collapse
Affiliation(s)
- Damián G Hernández
- Department of Physics, Emory UniversityAtlantaUnited States
- Department of Medical Physics, Centro Atómico Bariloche and Instituto BalseiroBarilocheArgentina
| | | | - Jessica Cande
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Baohua Zhou
- Department of Physics, Emory UniversityAtlantaUnited States
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gordon J Berman
- Department of Physics, Emory UniversityAtlantaUnited States
- Department of Biology, Emory UniversityAtlantaUnited States
| |
Collapse
|
11
|
Sturm S, Dowle A, Audsley N, Isaac RE. Mass spectrometric characterisation of the major peptides of the male ejaculatory duct, including a glycopeptide with an unusual zwitterionic glycosylation. J Proteomics 2021; 246:104307. [PMID: 34174476 DOI: 10.1016/j.jprot.2021.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022]
Abstract
Peptides present in the seminal fluid of Drosophila melanogaster can function as antimicrobial agents, enzyme inhibitors and as pheromones that elicit physiological and behavioural responses in the post-mated female. Understanding the molecular interactions by which these peptides influence reproduction requires detailed knowledge of their molecular structures. However, this information is often lacking and cannot be gleaned from just gene sequences and standard proteomic data. We now report the native structures of four seminal fluid peptides (andropin, CG42782, Met75C and Acp54A1) from the ejaculatory duct of male D. melanogaster. The mature CG42782, Met75C and Acp54A1 peptides each have a cyclic structure formed by a disulfide bond, which will reduce conformational freedom and enhance metabolic stability. In addition, the presence of a penultimate Pro in CG42782 and Met75C will help prevent degradation by carboxypeptidases. Met75C has undergone more extensive post-translational modifications with the formation of an N-terminal pyroglutamyl residue and the attachment of a mucin-like O-glycan to the side chain of Thr4. Both of these modifications are expected to further enhance the stability of the secreted peptide. The glycan has a rare zwitterionic structure comprising an O-linked N-acetyl hexosamine, a hexose and, unusually, phosphoethanolamine. A survey of various genomes showed that andropin, CG42782, and Acp54A1 are relatively recent genes and are restricted to the melanogaster subgroup. Met75C, however, was also found in members of the obscura species groups and in Scaptodrosophila lebanonensis. Andropin is related to the cecropin gene family and probably arose by tandem gene duplication, whereas CG42782, Met75C and Acp54A1 possibly emerged de novo. We speculate that the post-translational modifications that we report for these gene products will be important not only for a biological function, but also for metabolic stability and might also facilitate transport across tissue barriers, such as the blood-brain barrier of the female insect. BIOLOGICAL SIGNIFICANCE: Seminal fluid peptides of D. melanogaster function as antimicrobials, enzyme inhibitors and as pheromones, eliciting physiological and behavioural responses in the post-mated female. A fuller understanding of how these peptides influence reproduction requires knowledge not only of their primary structure, but also of their post-translational modification. However, this information is often lacking and difficult to glean from standard proteomic data. The reported modifications, including the unusual glycosylation, adds much to our knowledge of this important class of peptides in this model organism, par excellence.
Collapse
Affiliation(s)
| | - Adam Dowle
- Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| | - Neil Audsley
- Institute for Agri-Food Research and Innovation, Newcastle University, Newcastle Upon-Tyne NE1 7RU, UK.
| | - R Elwyn Isaac
- School of Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
12
|
Ahn SJ, Marygold SJ. The UDP-Glycosyltransferase Family in Drosophila melanogaster: Nomenclature Update, Gene Expression and Phylogenetic Analysis. Front Physiol 2021; 12:648481. [PMID: 33815151 PMCID: PMC8010143 DOI: 10.3389/fphys.2021.648481] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
UDP-glycosyltransferases (UGTs) are important conjugation enzymes found in all kingdoms of life, catalyzing a sugar conjugation with small lipophilic compounds and playing a crucial role in detoxification and homeostasis. The UGT gene family is defined by a signature motif in the C-terminal domain where the uridine diphosphate (UDP)-sugar donor binds. UGTs have been identified in a number of insect genomes over the last decade and much progress has been achieved in characterizing their expression patterns and molecular functions. Here, we present an update of the complete repertoire of UGT genes in Drosophila melanogaster and provide a brief overview of the latest research in this model insect. A total of 35 UGT genes are found in the D. melanogaster genome, localized to chromosomes 2 and 3 with a high degree of gene duplications on the chromosome arm 3R. All D. melanogaster UGT genes have now been named in FlyBase according to the unified UGT nomenclature guidelines. A phylogenetic analysis of UGT genes shows lineage-specific gene duplications. Analysis of anatomical and induced gene expression patterns demonstrate that some UGT genes are differentially expressed in various tissues or after environmental treatments. Extended searches of UGT orthologs from 18 additional Drosophila species reveal a diversity of UGT gene numbers and composition. The roles of Drosophila UGTs identified to date are briefly reviewed, and include xenobiotic metabolism, nicotine resistance, olfaction, cold tolerance, sclerotization, pigmentation, and immunity. Together, the updated genomic information and research overview provided herein will aid further research in this developing field.
Collapse
Affiliation(s)
- Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Steven J Marygold
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Conservation of gene architecture and domains amidst sequence divergence in the hsrω lncRNA gene across the Drosophila genus: an in silico analysis. J Genet 2020. [DOI: 10.1007/s12041-020-01218-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Seong KM, Kim Y, Kim D, Pittendrigh BR, Kim YH. Identification of transcriptional responsive genes to acetic acid, ethanol, and 2-phenylethanol exposure in Drosophila melanogaster. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104552. [PMID: 32359537 DOI: 10.1016/j.pestbp.2020.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/15/2020] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
The fruit fly, Drosophila melanogaster, is predominantly found in overripe, rotten, fermenting, or decaying fruits and is constantly exposed to chemical stressors such as acetic acid, ethanol, and 2-phenylethanol. D. melanogaster has been employed as a model system for studying the molecular bases of various types of chemical-induced tolerance. Expression profiling using Illumina sequencing has been performed for identifying changes in gene expression that may be associated with evolutionary adaptation to exposure of acetic acid, ethanol, and 2-phenylethanol. We identified a total of 457 differentially expressed genes that may affect sensitivity or tolerance to three chemicals in the chemical treatment group as opposed to the control group. Gene-set enrichment analysis revealed that the genes involved in metabolism, multicellular organism reproduction, olfaction, regulation of signal transduction, and stress tolerance were over-represented in response to chemical exposure. Furthermore, we also detected a coordinated upregulation of genes in the Toll- and Imd-signaling pathways after the chemical exposure. Quantitative reverse transcription PCR analysis revealed that the expression levels of nine genes within the set of genes identified by RNA sequencing were up- or downregulated owing to chemical exposure. Taken together, our data suggest that such differentially expressed genes are coordinately affected by chemical exposure. Transcriptional analyses after exposure of D. melanogaster with three chemicals provide unique insights into subsequent functional studies on the mechanisms underlying the evolutionary adaptation of insect species to environmental chemical stressors.
Collapse
Affiliation(s)
- Keon Mook Seong
- Department of Entomology, Michigan State University, East Lansing, MI, USA; Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | - YeongHo Kim
- Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | - Donghun Kim
- Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | | | - Young Ho Kim
- Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea.
| |
Collapse
|
15
|
Su S, Raouf B, He X, Cai N, Li X, Yu J, Li J, Yu F, Wang M, Tang Y. Genome Wide Analysis for Growth at Two Growth Stages in A New Fast-Growing Common Carp Strain (Cyprinus carpio L.). Sci Rep 2020; 10:7259. [PMID: 32350307 PMCID: PMC7190712 DOI: 10.1038/s41598-020-64037-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 04/08/2020] [Indexed: 12/30/2022] Open
Abstract
In order to identify candidate genes or loci associated with growth performance of the newly established common carp strain, Xinlong, we conducted a genome-wide association analysis using 2b-RAD technology on 123 individuals. We constructed two sets of libraries associated with growth-related parameters (weight, length, width and depth) measured at two different grow-out stages. Among the 413,059 SNPs identified using SOAP SNP calling, 147,131 were tested for GWAS after quality filtering. Finally, 39 overlapping SNPs, assigned to four genomic locations, were associated with growth traits in two stages. These loci were assigned to functional classes related to immune response, response to stress, neurogenesis, cholesterol metabolism and development, and proliferation and differentiation of cells. By overlapping results of Plink and EMMAX analyses, we identified three genes: TOX, PLK2 and CD163 (both methods P < 0.05). Our study results could be used for marker-assisted selection to further improve the growth of the Xinlong strain, and illustrate that largely different sets of genes drive the growth of carp in the early and late grow-out stages.
Collapse
Affiliation(s)
- Shengyan Su
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China. .,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China.
| | - Bouzoualegh Raouf
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Xinjin He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China.,College of Animal science, Shanxi Agricultural University, Taigu, PR China
| | - Nana Cai
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China
| | - Xinyuan Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Juhua Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - JianLin Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Fan Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Meiyao Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Yongkai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China. .,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, PR China.
| |
Collapse
|
16
|
Barbanti A, Torrado H, Macpherson E, Bargelloni L, Franch R, Carreras C, Pascual M. Helping decision making for reliable and cost-effective 2b-RAD sequencing and genotyping analyses in non-model species. Mol Ecol Resour 2020; 20. [PMID: 32061018 DOI: 10.1111/1755-0998.13144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022]
Abstract
High-throughput sequencing has revolutionized population and conservation genetics. RAD sequencing methods, such as 2b-RAD, can be used on species lacking a reference genome. However, transferring protocols across taxa can potentially lead to poor results. We tested two different IIB enzymes (AlfI and CspCI) on two species with different genome sizes (the loggerhead turtle Caretta caretta and the sharpsnout seabream Diplodus puntazzo) to build a set of guidelines to improve 2b-RAD protocols on non-model organisms while optimising costs. Good results were obtained even with degraded samples, showing the value of 2b-RAD in studies with poor DNA quality. However, library quality was found to be a critical parameter on the number of reads and loci obtained for genotyping. Resampling analyses with different number of reads per individual showed a trade-off between number of loci and number of reads per sample. The resulting accumulation curves can be used as a tool to calculate the number of sequences per individual needed to reach a mean depth ≥20 reads to acquire good genotyping results. Finally, we demonstrated that selective-base ligation does not affect genomic differentiation between individuals, indicating that this technique can be used in species with large genome sizes to adjust the number of loci to the study scope, to reduce sequencing costs and to maintain suitable sequencing depth for a reliable genotyping without compromising the results. Here, we provide a set of guidelines to improve 2b-RAD protocols on non-model organisms with different genome sizes, helping decision-making for a reliable and cost-effective genotyping.
Collapse
Affiliation(s)
- Anna Barbanti
- Department of Genetics, Microbiology and Statistics and IRBio, University of Barcelona, Barcelona, Spain
| | - Hector Torrado
- Department of Genetics, Microbiology and Statistics and IRBio, University of Barcelona, Barcelona, Spain.,Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Girona, Spain
| | - Enrique Macpherson
- Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, Girona, Spain
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Rafaella Franch
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Carlos Carreras
- Department of Genetics, Microbiology and Statistics and IRBio, University of Barcelona, Barcelona, Spain
| | - Marta Pascual
- Department of Genetics, Microbiology and Statistics and IRBio, University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Rane RV, Clarke DF, Pearce SL, Zhang G, Hoffmann AA, Oakeshott JG. Detoxification Genes Differ Between Cactus-, Fruit-, and Flower-Feeding Drosophila. J Hered 2020; 110:80-91. [PMID: 30445496 DOI: 10.1093/jhered/esy058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
We use annotated genomes of 14 Drosophila species covering diverse host use phenotypes to test whether 4 gene families that often have detoxification functions are associated with host shifts among species. Bark, slime flux, flower, and generalist necrotic fruit-feeding species all have similar numbers of carboxyl/cholinesterase, glutathione S-transferase, cytochrome P450, and UDP-glucuronosyltransferase genes. However, species feeding on toxic Morinda citrifolia fruit and the fresh fruit-feeding Drosophila suzukii have about 30 and 60 more, respectively. ABC transporters show a different pattern, with the flower-feeding D. elegans and the generalist necrotic fruit and cactus feeder D. hydei having about 20 and >100 more than the other species, respectively. Surprisingly, despite the complex secondary chemistry we find that 3 cactophilic specialists in the mojavensis species cluster have variably fewer genes than any of the other species across all 4 families. We also find 82 positive selection events across the 4 families, with the terminal D. suzukii and M. citrifolia-feeding D. sechellia branches again having the highest number of such events in proportion to their respective branch lengths. Many of the genes involved in these host-use-specific gene number differences or positive selection events lie in specific clades of the gene families that have been recurrently associated with detoxification. Several genes are also found to be involved in multiple duplication and/or positive selection events across the species studied regardless of their host use phenotypes; the most frequently involved are the ABC transporter CG1718, which is not in a specific clade associated with detoxification, and the α-esterase gene cluster, which is.
Collapse
Affiliation(s)
- Rahul V Rane
- CSIRO, Acton, ACT, Australia.,School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - David F Clarke
- CSIRO, Acton, ACT, Australia.,School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China.,Centre for Social Evolution, Department of Biology, University of Copenhagen, København, Denmark
| | - Ary A Hoffmann
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
18
|
McGeary MK, Findlay GD. Molecular evolution of the sex peptide network in Drosophila. J Evol Biol 2020; 33:629-641. [PMID: 31991034 DOI: 10.1111/jeb.13597] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/07/2020] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
Successful reproduction depends on interactions between numerous proteins beyond those involved directly in gamete fusion. Although such reproductive proteins evolve in response to sexual selection pressures, how networks of interacting proteins arise and evolve as reproductive phenotypes change remains an open question. Here, we investigated the molecular evolution of the 'sex peptide network' of Drosophila melanogaster, a functionally well-characterized reproductive protein network. In this species, the peptide hormone sex peptide (SP) and its interacting proteins cause major changes in female physiology and behaviour after mating. In contrast, females of more distantly related Drosophila species do not respond to SP. In spite of these phenotypic differences, we detected orthologs of all network proteins across 22 diverse Drosophila species and found evidence that most orthologs likely function in reproduction throughout the genus. Within SP-responsive species, we detected the recurrent, adaptive evolution of several network proteins, consistent with sexual selection acting to continually refine network function. We also found some evidence for adaptive evolution of several proteins along two specific phylogenetic lineages that correspond with increased expression of the SP receptor in female reproductive tracts or increased sperm length, respectively. Finally, we used gene expression profiling to examine the likely degree of functional conservation of the paralogs of an SP network protein that arose via gene duplication. Our results suggest a dynamic history for the SP network in which network members arose before the onset of robust SP-mediated responses and then were shaped by both purifying and positive selection.
Collapse
Affiliation(s)
- Meaghan K McGeary
- Department of Biology, College of the Holy Cross, Worcester, Massachusetts.,Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Geoffrey D Findlay
- Department of Biology, College of the Holy Cross, Worcester, Massachusetts
| |
Collapse
|
19
|
Moschetti R, Palazzo A, Lorusso P, Viggiano L, Massimiliano Marsano R. "What You Need, Baby, I Got It": Transposable Elements as Suppliers of Cis-Operating Sequences in Drosophila. BIOLOGY 2020; 9:E25. [PMID: 32028630 PMCID: PMC7168160 DOI: 10.3390/biology9020025] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has been widely assessed over the past years in a variety of model and non-model organisms. Drosophila is undoubtedly among the most powerful model organisms used for the purpose of studying the role of transposons and their effects on the stability and evolution of genes and genomes. Besides their most intuitive role as insertional mutagens, TEs can modify the transcriptional pattern of host genes by juxtaposing new cis-regulatory sequences. A key element of TE biology is that they carry transcriptional control elements that fine-tune the transcription of their own genes, but that can also perturb the transcriptional activity of neighboring host genes. From this perspective, the transposition-mediated modulation of gene expression is an important issue for the short-term adaptation of physiological functions to the environmental changes, and for long-term evolutionary changes. Here, we review the current literature concerning the regulatory and structural elements operating in cis provided by TEs in Drosophila. Furthermore, we highlight that, besides their influence on both TEs and host genes expression, they can affect the chromatin structure and epigenetic status as well as both the chromosome's structure and stability. It emerges that Drosophila is a good model organism to study the effect of TE-linked regulatory sequences, and it could help future studies on TE-host interactions in any complex eukaryotic genome.
Collapse
Affiliation(s)
- Roberta Moschetti
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| | - Antonio Palazzo
- Laboratory of Translational Nanotechnology, “Istituto Tumori Giovanni Paolo II” I.R.C.C.S, Viale Orazio Flacco 65, 70125 Bari, Italy;
| | - Patrizio Lorusso
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| | - Luigi Viggiano
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| | - René Massimiliano Marsano
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (R.M.); (P.L.); (L.V.)
| |
Collapse
|
20
|
Anholt RRH. Chemosensation and Evolution of Drosophila Host Plant Selection. iScience 2020; 23:100799. [PMID: 31923648 PMCID: PMC6951304 DOI: 10.1016/j.isci.2019.100799] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/01/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
The ability to respond to chemosensory cues is critical for survival of most organisms. Among insects, Drosophila melanogaster has the best characterized olfactory system, and the availability of genome sequences of 30 Drosophila species provides an ideal scenario for studies on evolution of chemosensation. Gene duplications of chemoreceptor genes allow for functional diversification of the rapidly evolving chemoreceptor repertoire. Although some species of the genus Drosophila are generalists for host plant selection, rapid evolution of olfactory receptors, gustatory receptors, odorant-binding proteins, and cytochrome P450s has enabled diverse host specializations of different members of the genus. Here, I review diversification of the chemoreceptor repertoire among members of the genus Drosophila along with co-evolution of detoxification mechanisms that may have enabled occupation of diverse host plant ecological niches.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA.
| |
Collapse
|
21
|
Cordeiro J, Carvalho TL, Valente VLDS, Robe LJ. Evolutionary history and classification of Micropia retroelements in Drosophilidae species. PLoS One 2019; 14:e0220539. [PMID: 31622354 PMCID: PMC6797199 DOI: 10.1371/journal.pone.0220539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022] Open
Abstract
Transposable elements (TEs) have the main role in shaping the evolution of genomes and host species, contributing to the creation of new genes and promoting rearrangements frequently associated with new regulatory networks. Support for these hypotheses frequently results from studies with model species, and Drosophila provides a great model organism to the study of TEs. Micropia belongs to the Ty3/Gypsy group of long terminal repeats (LTR) retroelements and comprises one of the least studied Drosophila transposable elements. In this study, we assessed the evolutionary history of Micropia within Drosophilidae, while trying to assist in the classification of this TE. At first, we performed searches of Micropia presence in the genome of natural populations from several species. Then, based on searches within online genomic databases, we retrieved Micropia-like sequences from the genomes of distinct Drosophilidae species. We expanded the knowledge of Micropia distribution within Drosophila species. The Micropia retroelements we detected consist of an array of divergent sequences, which we subdivided into 20 subfamilies. Even so, a patchy distribution of Micropia sequences within the Drosophilidae phylogeny could be identified, with incongruences between the species phylogeny and the Micropia phylogeny. Comparing the pairwise synonymous distance (dS) values between Micropia and three host nuclear sequences, we found several cases of unexpectedly high levels of similarity between Micropia sequences in divergent species. All these findings provide a hypothesis to the evolution of Micropia within Drosophilidae, which include several events of vertical and horizontal transposon transmission, associated with ancestral polymorphisms and recurrent Micropia sequences diversification.
Collapse
Affiliation(s)
- Juliana Cordeiro
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Tuane Letícia Carvalho
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vera Lúcia da Silva Valente
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre; Rio Grande do Sul; Brazil
| | - Lizandra Jaqueline Robe
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Departamento de Ecologia e Evolução, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
22
|
Khan S, Zhao X, Hou Y, Yuan C, Li Y, Luo X, Liu J, Feng X. Analysis of genome-wide SNPs based on 2b-RAD sequencing of pooled samples reveals signature of selection in different populations of Haemonchus contortus. J Biosci 2019; 44:97. [PMID: 31502575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The parasitic nematode Haemonchus contortus is one of the world's most important parasites of small ruminants that causes significant economic losses to the livestock sector. The population structure and selection in its various strains are poorly understood. No study so far compared its different populations using genome-wide data. Here, we focused on different geographic populations of H. contours from China (Tibet, TB; Hubei, HB; Inner Mongolia, IM; Sichuan, SC), UK and Australia (AS), using genome-wide population-genomic approaches, to explore genetic diversity, population structure and selection. We first performed next-generation high-throughput 2b RAD pool sequencing using Illumina technology, and identified single-nucleotide polymorphisms (SNPs) in all the strains. We identified 75,187 SNPs for TB, 82,271 for HB, 82,420 for IM, 79,803 for SC, 83,504 for AS and 78,747 for UK strain. The SNPs revealed low-nucleotide diversity (pi= 0.0092-0.0133) within each strain, and a significant differentiation level (average Fst = 0.34264) among them. Chinese populations TB and SC, along with the UK strain, were more divergent populations. Chinese populations IM and HB showed affinities to the Australian strain. We then analysed signature of selection and detected 44 (UK) and 03 (AS) private selective sweeps containing 49 and 05 genes, respectively. Finally, we performed the functional annotation of selective sweeps and proposed biological significance to signature of selection. Our data suggest that 2b-RAD pool sequencing can be used to assess the signature of selection in H. contortus.
Collapse
Affiliation(s)
- Sawar Khan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Khan S, Zhao X, Hou Y, Yuan C, Li Y, Luo X, Liu J, Feng X. Analysis of genome-wide SNPs based on 2b-RAD sequencing of pooled samples reveals signature of selection in different populations of Haemonchus contortus. J Biosci 2019. [DOI: 10.1007/s12038-019-9917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Kurshakova MM, Nabirochkina EN, Georgieva SG, Kopytova DV. TRF4, the novel TBP-related protein of Drosophila melanogaster, is concentrated at the endoplasmic reticulum and copurifies with proteins participating in the processes associated with endoplasmic reticulum. J Cell Biochem 2019; 120:7927-7939. [PMID: 30426565 DOI: 10.1002/jcb.28070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Understanding the functions of TBP-related factors is essential for studying chromatin assembly and transcription regulation in higher eukaryotes. The novel TBP-related protein-coding gene, trf4, was described in Drosophila melanogaster. trf4 is found only in Drosophila and has likely originated in Drosophila common ancestor. TRF4 protein has a distant homology with TBP and TRF2 in the region of TBP-like domain and is evolutionarily conserved among distinct Drosophila species, which indicates its functional significance. TRF4 is widely expressed in D. melanogaster with high levels of its expression being observed in testes. Interestingly enough, TRF4 has become a cytoplasmic protein having lost nuclear localization signal sequence. TRF4 is concentrated at the endoplasmic reticulum (ER) and copurifies with the proteins participating in the ER-associated processes. We suggest that trf4 gene is an example of homolog neofunctionalization by protein subcellular relocalization pathway, where the subcellular relocalization of gene product of duplicated gene leads to the new functions in ER-associated processes.
Collapse
Affiliation(s)
- Maria M Kurshakova
- Department of transcription factors of eukaryotes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena N Nabirochkina
- Department of transcription factors of eukaryotes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sofia G Georgieva
- Department of transcription factors of eukaryotes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daria V Kopytova
- Department of transcription factors of eukaryotes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Kirsch R, Seemann SE, Ruzzo WL, Cohen SM, Stadler PF, Gorodkin J. Identification and characterization of novel conserved RNA structures in Drosophila. BMC Genomics 2018; 19:899. [PMID: 30537930 PMCID: PMC6288889 DOI: 10.1186/s12864-018-5234-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Comparative genomics approaches have facilitated the discovery of many novel non-coding and structured RNAs (ncRNAs). The increasing availability of related genomes now makes it possible to systematically search for compensatory base changes - and thus for conserved secondary structures - even in genomic regions that are poorly alignable in the primary sequence. The wealth of available transcriptome data can add valuable insight into expression and possible function for new ncRNA candidates. Earlier work identifying ncRNAs in Drosophila melanogaster made use of sequence-based alignments and employed a sliding window approach, inevitably biasing identification toward RNAs encoded in the more conserved parts of the genome. RESULTS To search for conserved RNA structures (CRSs) that may not be highly conserved in sequence and to assess the expression of CRSs, we conducted a genome-wide structural alignment screen of 27 insect genomes including D. melanogaster and integrated this with an extensive set of tiling array data. The structural alignment screen revealed ∼30,000 novel candidate CRSs at an estimated false discovery rate of less than 10%. With more than one quarter of all individual CRS motifs showing sequence identities below 60%, the predicted CRSs largely complement the findings of sliding window approaches applied previously. While a sixth of the CRSs were ubiquitously expressed, we found that most were expressed in specific developmental stages or cell lines. Notably, most statistically significant enrichment of CRSs were observed in pupae, mainly in exons of untranslated regions, promotors, enhancers, and long ncRNAs. Interestingly, cell lines were found to express a different set of CRSs than were found in vivo. Only a small fraction of intergenic CRSs were co-expressed with the adjacent protein coding genes, which suggests that most intergenic CRSs are independent genetic units. CONCLUSIONS This study provides a more comprehensive view of the ncRNA transcriptome in fly as well as evidence for differential expression of CRSs during development and in cell lines.
Collapse
Affiliation(s)
- Rebecca Kirsch
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, DK-1870 Denmark
- Department of Veterinary and Animal Science, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, DK-1870 Denmark
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16–18, Leipzig, D-04107 Germany
| | - Stefan E. Seemann
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, DK-1870 Denmark
- Department of Veterinary and Animal Science, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, DK-1870 Denmark
| | - Walter L. Ruzzo
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, DK-1870 Denmark
- School of Computer Science and Engineering, University of Washington, Box 352350, Seattle, 98195-2350 WA USA
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, 98195-5065 WA USA
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, 98109-1024 WA USA
| | - Stephen M. Cohen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen N, DK-2200 Denmark
| | - Peter F. Stadler
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, DK-1870 Denmark
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16–18, Leipzig, D-04107 Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, Leipzig, D-04103 Germany
- Faculdad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Ciudad Universitaria, Bogotá, COL-111321 D.C. Colombia
- Department of Theoretical Chemistry, University of Vienna, Währinger Straße 17, Vienna, A-1090 Austria
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM87501 USA
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, DK-1870 Denmark
- Department of Veterinary and Animal Science, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, DK-1870 Denmark
| |
Collapse
|
26
|
Su S, Li H, Du F, Zhang C, Li X, Jing X, Liu L, Li Z, Yang X, Xu P, Yuan X, Zhu J, Bouzoualegh R. Combined QTL and Genome Scan Analyses With the Help of 2b-RAD Identify Growth-Associated Genetic Markers in a New Fast-Growing Carp Strain. Front Genet 2018; 9:592. [PMID: 30581452 PMCID: PMC6293859 DOI: 10.3389/fgene.2018.00592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/15/2018] [Indexed: 11/17/2022] Open
Abstract
Common carp is one of the oldest and most popular cultured freshwater fish species both globally and in China. In a previous study, we used a carp strain with a long breeding tradition in China, named Huanghe, to create a new fast-growing strain by selection for fast growth for 6 years. The growth performance at 8 months of age has been improved by 20.84%. To achieve this, we combined the best linear unbiased prediction with marker-assisted selection techniques. Recent progress in genome-wide association studies and genomic selection in livestock breeding inspired common carp breeders to consider genome-based breeding approaches. In this study, we developed a 2b-RAD sequence assay as a means of investigating the quantitative trait loci in common carp. A total of 4,953,017,786 clean reads were generated for 250 specimens (average reads/specimen = 19,812,071) with BsaXI Restriction Enzyme. From these, 56,663 SNPs were identified, covering 50 chromosomes and 3,377 scaffolds. Principal component analysis indicated that selection and control groups are relatively clearly distinct. Top 1% of Fst values was selected as the threshold signature of artificial selection. Among the 244 identified loci, genes associated with sex-related factors and nutritional metabolism (especially fat metabolism) were annotated. Eighteen QTL were associated with growth parameters. Body length at 3 months of age and body weight (both at 3 and 8 months) were controlled by polygenic effects, but body size (length, depth, width) at 8 months of age was controlled mainly by several loci with major effects. Importantly, a single shared QTL (IGF2 gene) partially controlled the body length, depth, and width. By merging the above results, we concluded that mainly the genes related to neural pathways, sex and fatty acid metabolism contributed to the improved growth performance of the new Huanghe carp strain. These findings are one of the first investigations into the potential use of genomic selection in the breeding of common carp. Moreover, our results show that combining the Fst, QTL mapping and CRISPR–Cas9 methods can be an effective way to identify important novel candidate molecular markers in economic breeding programs.
Collapse
Affiliation(s)
- Shengyan Su
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Hengde Li
- Ministry of Agriculture Key Laboratory of Aquatic Genomics, CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Center for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Fukuan Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Chengfeng Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Xinyuan Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Xiaojun Jing
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Liyue Liu
- China Zebrafish Resource Center, Wuhan, China
| | - Zhixun Li
- Henan Academy of Fishery Sciences, Zhengzhou, China
| | - Xingli Yang
- Henan Academy of Fishery Sciences, Zhengzhou, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Xinhua Yuan
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jian Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Raouf Bouzoualegh
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| |
Collapse
|
27
|
Díaz F, Luís A. Lima A, Nakamura AM, Fernandes F, Sobrinho I, de Brito RA. Evidence for Introgression Among Three Species of the Anastrepha fraterculus Group, a Radiating Species Complex of Fruit Flies. Front Genet 2018; 9:359. [PMID: 30250479 PMCID: PMC6139333 DOI: 10.3389/fgene.2018.00359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
Introgression should no longer be considered as rare a phenomenon as once thought, since several studies have recently documented gene flow between closely related and radiating species. Here, we investigated evolutionary relationships among three closely related species of fruit flies of the Anastrepha fraterculus group (Anastrepha fraterculus, A. obliqua and A. sororcula). We sequenced a set of 20 genes and implemented a combined populational and phylogenetic inference with a model selection approach by an ABC framework in order to elucidate the demographic history of these species. The phylogenetic histories inferred from most genes showed a great deal of discordance and substantial shared polymorphic variation. The analysis of several population and speciation models reveal that this shared variation is better explained by introgression rather than convergence by parallel mutation or incomplete lineage sorting. Our results consistently showed these species evolving under an isolation with migration model experiencing a continuous and asymmetrical pattern of gene flow involving all species pairs, even though still showed a more closely related relationship between A. fraterculus and A. sororcula when compared with A. obliqua. This suggests that these species have been exchanging genes since they split from their common ancestor ∼2.6 MYA ago. We also found strong evidence for recent population expansion that appears to be consequence of anthropic activities affecting host crops of fruit flies. These findings point that the introgression here found may have been driven by genetic drift and not necessary by selection, which has implications for tracking and managing fruit flies.
Collapse
Affiliation(s)
- Fernando Díaz
- Department of Entomology, University of Arizona, Tucson, AZ, United States
| | - André Luís A. Lima
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Aline M. Nakamura
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Fernanda Fernandes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Iderval Sobrinho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Reinaldo A. de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
28
|
Gao W, Qu J, Zhang J, Sonnenberg A, Chen Q, Zhang Y, Huang C. A genetic linkage map of Pleurotus tuoliensis integrated with physical mapping of the de novo sequenced genome and the mating type loci. BMC Genomics 2018; 19:18. [PMID: 29304732 PMCID: PMC5755439 DOI: 10.1186/s12864-017-4421-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/27/2017] [Indexed: 11/21/2022] Open
Abstract
Background Pleurotus tuoliensis (Bailinggu) is a commercially cultivated mushroom species with an increasing popularity in China and other Asian countries. Commercial profits are now low, mainly due to a low yield, long cultivation period and sensitivity to diseases. Breeding efforts are thus required to improve agronomical important traits. Developing saturated genetic linkage and physical maps is a start for applying genetic and molecular approaches to accelerate the precise breeding programs. Results Here we present a genetic linkage map for P. tuoliensis constructed by using 115 haploid monokaryons derived from a hybrid strain H6. One thousand one hundred and eighty-two SNP markers developed by 2b–RAD (type IIB restriction-site associated DNA) approach were mapped to 12 linkage groups. The map covers 1073 cM with an average marker spacing of 1.0 cM. The genome of P. tuoliensis was de novo sequenced as 40.8 Mb and consisted of 500 scaffolds (>500 bp), which showed a high level of colinearity to the genome of P. eryngii var. eryngii. A total of 97.4% SNP markers (1151) were physically localized on 78 scaffolds, and the physical length of these anchored scaffolds were 33.9 Mb representing 83.1% of the whole genome. Mating type loci A and B were mapped on separate linkage groups and identified physically on the assembled genomes. Five putative pheromone receptors and two putative pheromone precursors were identified for the mating type B locus. Conclusions This study reported a first genetic linkage map integrated with physical mapping of the de novo sequenced genome and the mating type loci of an important cultivated mushroom in China, P. tuoliensis. The de novo sequenced and annotated genome, assembled using a 2b–RAD generated linkage map, provides a basis for marker-assisted breeding of this economic important mushroom species. Electronic supplementary material The online version of this article (10.1186/s12864-017-4421-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Gao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Jibin Qu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Anton Sonnenberg
- Plant Breeding, Wageningen University & Research Centre, 6708, PB, Wageningen, The Netherlands
| | - Qiang Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Yan Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China. .,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China.
| |
Collapse
|
29
|
Heringer P, Dias GB, Kuhn GCS. A Horizontally Transferred Autonomous Helitron Became a Full Polydnavirus Segment in Cotesia vestalis. G3 (BETHESDA, MD.) 2017; 7:3925-3935. [PMID: 29042411 PMCID: PMC5714489 DOI: 10.1534/g3.117.300280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022]
Abstract
Bracoviruses associate symbiotically with thousands of parasitoid wasp species in the family Braconidae, working as virulence gene vectors, and allowing the development of wasp larvae within hosts. These viruses are composed of multiple DNA circles that are packaged into infective particles, and injected together with wasp's eggs during parasitization. One of the viral segments of Cotesia vestalis bracovirus contains a gene that has been previously described as a helicase of unknown origin. Here, we demonstrate that this gene is a Rep/Helicase from an intact Helitron transposable element that covers the viral segment almost entirely. We also provide evidence that this element underwent at least two horizontal transfers, which appear to have occurred consecutively: first from a Drosophila host ancestor to the genome of the parasitoid wasp C. vestalis and its bracovirus, and then from C. vestalis to a lepidopteran host (Bombyx mori). Our results reinforce the idea of parasitoid wasps as frequent agents of horizontal transfers in eukaryotes. Additionally, this Helitron-bracovirus segment is the first example of a transposable element that effectively became a whole viral circle.
Collapse
Affiliation(s)
- Pedro Heringer
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Guilherme B Dias
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Gustavo C S Kuhn
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| |
Collapse
|
30
|
Mu XY, Sun M, Yang PF, Lin QW. Unveiling the Identity of Wenwan Walnuts and Phylogenetic Relationships of Asian Juglans Species Using Restriction Site-Associated DNA-Sequencing. FRONTIERS IN PLANT SCIENCE 2017; 8:1708. [PMID: 29067029 PMCID: PMC5641410 DOI: 10.3389/fpls.2017.01708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Juglans species have considerable ecological and economic value worldwide. In China, Wenwan walnuts have been collected by aristocrats and noblemen for more than 2000 years. As a diversity center of Asian Juglans, five species are widely distributed in China. The most famous of these is Mahetao (J. hopeiensis), which is an uncharacterized species that is mostly cultivated. Wild J. hopeiensis individuals are very rare and are endemic to Hebei Province. Because of the minimal variations in previously used molecular markers and the heterogeneity between chloroplast and nuclear genomes, determining the phylogenetic relationships among the Juglans species has been challenging, and has hindered subsequent evolutionary inferences. In this study, we collected enough materials for both cultivated and wild Mahetao to construct well-resolved phylogenetic trees for Asian Juglans species. We used a high-throughput genome-wide restriction site-associated DNA sequencing method. Consequently, the identity of J. hopeiensis has been clearly resolved. Our results indicate that J. hopeiensis is a hybrid of J. regia and J. mandshurica. However, J. hopeiensis, J. regia and J. sigillata should be considered as a single species from section Juglans. Additionally, J. ailantifolia, J. cathayensis, and J. mandshurica likely represent one species from section Cardiocaryon according to morphological and molecular studies. These results are supported by population structure analysis and morphological comparison. We propose that J. hopeiensis trees growing in the wild should be conserved because of the economic value of their nuts. These trees may be of particular importance to impoverished communities. Furthermore, they may serve as a valuable genetic resource relevant for enhancing the production of edible walnuts. The 2b-RAD method is a viable option for future phylogenetic studies of Juglans species as well as other plant species.
Collapse
Affiliation(s)
- Xian-Yun Mu
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Miao Sun
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
| | - Pei-Fang Yang
- White Horse Snow Mountain National Nature Reserve Administration, Yunnan, China
| | - Qin-Wen Lin
- Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Mohanty S, Khanna R. Genome-wide comparative analysis of four Indian Drosophila species. Mol Genet Genomics 2017; 292:1197-1208. [DOI: 10.1007/s00438-017-1339-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/19/2017] [Indexed: 11/24/2022]
|
32
|
Pan JW, McLaughlin J, Yang H, Leo C, Rambarat P, Okuwa S, Monroy-Eklund A, Clark S, Jones CD, Volkan PC. Comparative analysis of behavioral and transcriptional variation underlying CO 2 sensory neuron function and development in Drosophila. Fly (Austin) 2017. [PMID: 28644712 DOI: 10.1080/19336934.2017.1344374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Carbon dioxide is an important environmental cue for many insects, regulating many behaviors including some that have direct human impacts. To further improve our understanding of how this system varies among closely related insect species, we examined both the behavioral response to CO2 as well as the transcriptional profile of key developmental regulators of CO2 sensory neurons in the olfactory system across the Drosophila genus. We found that CO2 generally evokes repulsive behavior across most of the Drosophilids we examined, but this behavior has been lost or reduced in several lineages. Comparisons of transcriptional profiles from the developing and adult antennae for subset these species suggest that behavioral differences in some species may be due to differences in the expression of the CO2 co-receptor Gr63a. Furthermore, these differences in Gr63a expression are correlated with changes in the expression of a few genes known to be involved in the development of the CO2 circuit, namely dac, an important regulator of sensilla fate for sensilla that house CO2 ORNs, and mip120, a member of the MMB/dREAM epigenetic regulatory complex that regulates CO2 receptor expression. In contrast, most of the other known structural, molecular, and developmental components of the peripheral Drosophila CO2 olfactory system seem to be well-conserved across all examined lineages. These findings suggest that certain components of CO2 sensory ORN development may be more evolutionarily labile, and may contribute to differences in CO2-evoked behavioral responses across species.
Collapse
Affiliation(s)
- Jia Wern Pan
- a Department of Biology , Duke University , Durham , North Carolina
| | - Joi McLaughlin
- a Department of Biology , Duke University , Durham , North Carolina
| | - Haining Yang
- a Department of Biology , Duke University , Durham , North Carolina
| | - Charles Leo
- a Department of Biology , Duke University , Durham , North Carolina
| | - Paula Rambarat
- a Department of Biology , Duke University , Durham , North Carolina
| | - Sumie Okuwa
- b Pratt School of Engineering , Duke University , Durham , North Carolina
| | - Anaïs Monroy-Eklund
- c Department of Biology , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina
| | - Sabrina Clark
- c Department of Biology , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina
| | - Corbin D Jones
- c Department of Biology , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina
| | | |
Collapse
|
33
|
Luo X, Shi X, Yuan C, Ai M, Ge C, Hu M, Feng X, Yang X. Genome-wide SNP analysis using 2b-RAD sequencing identifies the candidate genes putatively associated with resistance to ivermectin in Haemonchus contortus. Parasit Vectors 2017; 10:31. [PMID: 28095895 PMCID: PMC5240194 DOI: 10.1186/s13071-016-1959-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/27/2016] [Indexed: 01/15/2023] Open
Abstract
Background The excessive and uncontrolled use of anthelmintics, e.g. ivermectin (IVM) for the treatment of livestock parasites has led to widespread resistance in gastrointestinal nematodes, such as Haemonchus contortus. There is an urgent need for better management of drug-use in nematode control and development of novel anthelmintics. Discovery and identification of anthelmintic resistance-associate molecules/markers can provide a basis for rational anthelmintics-use and development of novel drugs. Recent studies have shown that ivermectin resistance in H. contortus is likely to be multi-genic in nature except for several genes coding for IVM target and efflux pump. However, no other IVM resistance-associated genes were characterized by conventional methods or strategies. In the present study we adopted a new strategy, i.e. using genome-wide single nucleotide polymorphism (SNP) analysis based on 2b-RAD sequencing, for discovering SNPs markers across the genomes in both IVM susceptible and resistant isolates of H. contortus and identifying potential IVM resistance-associated genes. Results We discovered 2962 and 2667 SNPs within both susceptible and resistant strains of H. contortus, respectively. A relative lower and similar genetic variations were observed within both resistant and susceptible strains (average π values were equal to 0.1883 and 0.1953, respectively); whereas a high genetic variation was found across both strains (average π value was equal to 0.3899). A significant differentiation across 2b-RAD tags nucleotide sites was also observed between the two strains (average FST value was equal to 0.3076); the larger differences in average FST were observed at SNPs loci between coding and noncoding (including intronic) regions. Comparison between resistant and susceptible strains revealed that 208 SNPs loci exhibited significantly elevated FST values, 24 SNPs of those loci were located in the CDS regions of the nine genes and were likely to have signature of IVM directional selection. Seven of the nine candidate genes were predicted to code for some functional proteins such as potential IVM target and/or efflux pump proteins, component proteins of receptor complex in membrane on neuromuscular cells, and transcriptional regulation proteins. Those genes might be involved in resistance to IVM. Conclusions Our data suggest that candidate genes putatively associated with resistance to IVM in H. contortus may be identified by genome-wide SNP analysis using 2b-RAD sequencing. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1959-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoping Luo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China.,College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010010, Inner Mongolia Nationality Autonomous, People's Republic of China
| | - Xiaona Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China.,College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 250014, People's Republic of China
| | - Chunxiu Yuan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Min Ai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China
| | - Cheng Ge
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China.,College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 250014, People's Republic of China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xingang Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China.
| | - Xiaoye Yang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010010, Inner Mongolia Nationality Autonomous, People's Republic of China.
| |
Collapse
|
34
|
Friedrich M, Jones JW. Gene Ages, Nomenclatures, and Functional Diversification of the Methuselah/Methuselah-Like GPCR Family in Drosophila and Tribolium. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 326:453-463. [PMID: 28074535 DOI: 10.1002/jez.b.22721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/14/2016] [Accepted: 12/02/2016] [Indexed: 12/31/2022]
Abstract
Affecting lifespan regulation and oxidative stress resistance, the G-protein coupled receptor (GPCR) gene methuselah (mth) plays important roles in the life history of Drosophila melanogaster. Substantial progress has been made in elucidating the molecular pathways by which mth affects these traits, yet conflicting ideas exist as to how old these genetic interactions are as well as how old the mth gene itself is. Root to these issues is the complex gene family history of the Mth/Mthl GPCR family, which experienced independent expansions in a variety of animal clades, leading to at least six subfamilies in insects. Within insects, drosophilid flies stand out by possessing up to three times more Mth/Mthl receptors due to the expansion of a single subfamily, the mth superclade subfamily, which contains an even younger subfamily introduced here as the melanogaster subgroup subfamily. As a result, most of the 16 Mth/Mthl receptors of D. melanogaster are characterized by n:1 orthology relationships to singleton mth superclade homologs in nondrosophilid species. This challenge is exacerbated by the inconsistent naming of Mth/Mthl orthologs across species. To consolidate this situation, we review established ortholog relationships among insect Mth/Mthl receptors, clarify the gene nomenclatures in two important satellite model species, the fruit fly relative D. virilis and the red flour beetle Tribolium castaneum, and discuss the genetic and functional evolution of the D. melanogaster Mth GPCR.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, Michigan.,Department of Anatomy and Cell Biology, School of Medicine, Wayne State University, Detroit, Michigan
| | | |
Collapse
|
35
|
Serial sequencing of isolength RAD tags for cost-efficient genome-wide profiling of genetic and epigenetic variations. Nat Protoc 2016; 11:2189-2200. [PMID: 27711051 DOI: 10.1038/nprot.2016.133] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Isolength restriction site-associated DNA (isoRAD) sequencing is a very simple but powerful approach that was originally developed for genome-wide genotyping at minimal labor and cost, and it has recently extended its applicability to allow quantification of DNA methylation levels. The isoRAD method is distinct from other genotyping-by-sequencing (GBS) methods because of its use of special restriction enzymes to produce isolength tags (32-36 bp), and sequencing of these uniform tags can bring many benefits. However, the relatively short tags produced by the original protocol are mostly suited to single-end (SE) sequencing (36-50 bp), and therefore they cannot efficiently match the gradually increased sequencing capacity of next-generation sequencing (NGS) platforms. To address this issue, we describe an advanced protocol that allows the preparation of five concatenated isoRAD tags for Illumina paired-end (PE) sequencing (100-150 bp). The configuration of the five concatenated tags is highly flexible, and can be defined by users to work with a desired combination of samples and/or restriction enzymes to suit specific research purposes. In comparison with the original protocol, the advanced protocol has an additional digestion and ligation step, and library preparation can be completed in ∼8 h.
Collapse
|
36
|
Abstract
Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly's tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions. This primer describes the organism's natural history, the features of sequenced genomes within the genus, the wide range of available genetic tools and online resources, the types of biological questions Drosophila can help address, and historical milestones.
Collapse
|
37
|
Lüpold S, Manier MK, Puniamoorthy N, Schoff C, Starmer WT, Luepold SHB, Belote JM, Pitnick S. How sexual selection can drive the evolution of costly sperm ornamentation. Nature 2016; 533:535-8. [PMID: 27225128 DOI: 10.1038/nature18005] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/13/2016] [Indexed: 01/17/2023]
Abstract
Post-copulatory sexual selection (PSS), fuelled by female promiscuity, is credited with the rapid evolution of sperm quality traits across diverse taxa. Yet, our understanding of the adaptive significance of sperm ornaments and the cryptic female preferences driving their evolution is extremely limited. Here we review the evolutionary allometry of exaggerated sexual traits (for example, antlers, horns, tail feathers, mandibles and dewlaps), show that the giant sperm of some Drosophila species are possibly the most extreme ornaments in all of nature and demonstrate how their existence challenges theories explaining the intensity of sexual selection, mating-system evolution and the fundamental nature of sex differences. We also combine quantitative genetic analyses of interacting sex-specific traits in D. melanogaster with comparative analyses of the condition dependence of male and female reproductive potential across species with varying ornament size to reveal complex dynamics that may underlie sperm-length evolution. Our results suggest that producing few gigantic sperm evolved by (1) Fisherian runaway selection mediated by genetic correlations between sperm length, the female preference for long sperm and female mating frequency, and (2) longer sperm increasing the indirect benefits to females. Our results also suggest that the developmental integration of sperm quality and quantity renders post-copulatory sexual selection on ejaculates unlikely to treat male-male competition and female choice as discrete processes.
Collapse
Affiliation(s)
- Stefan Lüpold
- Center for Reproductive Evolution, Department of Biology, Syracuse University, 107 College Place, Syracuse, New York 13244-1270, USA.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Mollie K Manier
- Center for Reproductive Evolution, Department of Biology, Syracuse University, 107 College Place, Syracuse, New York 13244-1270, USA.,Department of Biological Sciences, The George Washington University, 800 22nd St. NW, Suite 6000, Washington DC 20052, USA
| | - Nalini Puniamoorthy
- Center for Reproductive Evolution, Department of Biology, Syracuse University, 107 College Place, Syracuse, New York 13244-1270, USA.,Department of Biological Sciences, National University of Singapore, 14 Science Drive, SG 117543, Singapore
| | - Christopher Schoff
- Center for Reproductive Evolution, Department of Biology, Syracuse University, 107 College Place, Syracuse, New York 13244-1270, USA
| | - William T Starmer
- Center for Reproductive Evolution, Department of Biology, Syracuse University, 107 College Place, Syracuse, New York 13244-1270, USA
| | - Shannon H Buckley Luepold
- Center for Reproductive Evolution, Department of Biology, Syracuse University, 107 College Place, Syracuse, New York 13244-1270, USA
| | - John M Belote
- Center for Reproductive Evolution, Department of Biology, Syracuse University, 107 College Place, Syracuse, New York 13244-1270, USA
| | - Scott Pitnick
- Center for Reproductive Evolution, Department of Biology, Syracuse University, 107 College Place, Syracuse, New York 13244-1270, USA
| |
Collapse
|
38
|
Drosophila Nnf1 paralogs are partially redundant for somatic and germ line kinetochore function. Chromosoma 2016; 126:145-163. [DOI: 10.1007/s00412-016-0579-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
|
39
|
Unckless RL, Howick VM, Lazzaro BP. Convergent Balancing Selection on an Antimicrobial Peptide in Drosophila. Curr Biol 2016; 26:257-262. [PMID: 26776733 DOI: 10.1016/j.cub.2015.11.063] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/12/2015] [Accepted: 11/24/2015] [Indexed: 02/07/2023]
Abstract
Genes of the immune system often evolve rapidly and adaptively, presumably driven by antagonistic interactions with pathogens [1-4]. Those genes encoding secreted antimicrobial peptides (AMPs), however, have failed to exhibit conventional signatures of strong adaptive evolution, especially in arthropods (e.g., [5, 6]) and often segregate for null alleles and gene deletions [3, 4, 7, 8]. Furthermore, quantitative genetic studies have failed to associate naturally occurring polymorphism in AMP genes with variation in resistance to infection [9-11]. Both the lack of signatures of positive selection in AMPs and lack of association between genotype and immune phenotypes have yielded an interpretation that AMP genes evolve under relaxed evolutionary constraint, with enough functional redundancy that variation in, or even loss of, any particular peptide would have little effect on overall resistance [12, 13]. In stark contrast to the current paradigm, we identified a naturally occurring amino acid polymorphism in the AMP Diptericin that is highly predictive of resistance to bacterial infection in Drosophila melanogaster [13]. The identical amino acid polymorphism arose in parallel in the sister species D. simulans, by independent mutation with equivalent phenotypic effect. Convergent substitutions at the same amino acid residue have evolved at least five times across the Drosophila genus. We hypothesize that the alternative alleles are maintained by balancing selection through context-dependent or fluctuating selection. This pattern of evolution appears to be common in AMPs but is invisible to conventional screens for adaptive evolution that are predicated on elevated rates of amino acid divergence.
Collapse
Affiliation(s)
- Robert L Unckless
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| | | | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
40
|
Dou J, Li X, Fu Q, Jiao W, Li Y, Li T, Wang Y, Hu X, Wang S, Bao Z. Evaluation of the 2b-RAD method for genomic selection in scallop breeding. Sci Rep 2016; 6:19244. [PMID: 26754638 PMCID: PMC4709697 DOI: 10.1038/srep19244] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 12/10/2015] [Indexed: 01/05/2023] Open
Abstract
The recently developed 2b-restriction site-associated DNA (2b-RAD) sequencing method provides a cost-effective and flexible genotyping platform for aquaculture species lacking sufficient genomic resources. Here, we evaluated the performance of this method in the genomic selection (GS) of Yesso scallop (Patinopecten yessoensis) through simulation and real data analyses using six statistical models. Our simulation analysis revealed that the prediction accuracies obtained using the 2b-RAD markers were slightly lower than those obtained using all polymorphic loci in the genome. Furthermore, a small subset of markers obtained from a reduced tag representation (RTR) library presented comparable performance to that obtained using all markers, making RTR be an attractive approach for GS purpose. Six GS models exhibited variable performance in prediction accuracy depending on the scenarios (e.g., heritability, sample size, population structure), but Bayes-alphabet and BLUP-based models generally outperformed other models. Finally, we performed the evaluation using an empirical dataset composed of 349 Yesso scallops that were derived from five families. The prediction accuracy for this empirical dataset could reach 0.4 based on optimal GS models. In summary, the genotyping flexibility and cost-effectiveness make 2b-RAD be an ideal genotyping platform for genomic selection in aquaculture breeding programs.
Collapse
Affiliation(s)
- Jinzhuang Dou
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, China.,Department of Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Xue Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, China
| | - Qiang Fu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, China
| | - Wenqian Jiao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, China
| | - Yangping Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, China
| | - Tianqi Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, China
| | - Yangfan Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, China
| | - Xiaoli Hu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, China.,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, China
| | - Shi Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, China
| | - Zhenmin Bao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, China.,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, China
| |
Collapse
|
41
|
Pauletto M, Carraro L, Babbucci M, Lucchini R, Bargelloni L, Cardazzo B. Extending RAD tag analysis to microbial ecology: a comparison between MultiLocus Sequence Typing and 2b-RAD to investigate Listeria monocytogenes genetic structure. Mol Ecol Resour 2015; 16:823-35. [PMID: 26613186 DOI: 10.1111/1755-0998.12495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/14/2015] [Accepted: 11/23/2015] [Indexed: 12/24/2022]
Abstract
The advent of next-generation sequencing (NGS) has dramatically changed bacterial typing technologies, increasing our ability to differentiate bacterial isolates. Despite it is now possible to sequence a bacterial genome in a few days and at reasonable costs, most genetic analyses do not require whole-genome sequencing, which also remains impractical for large population samples due to the cost of individual library preparation and bioinformatics. More traditional sequencing approaches, however, such as MultiLocus Sequence Typing (mlst) are quite laborious and time-consuming, especially for large-scale analyses. In this study, a genotyping approach based on restriction site-associated (RAD) tag sequencing, 2b-RAD, was applied to characterize Listeria monocytogenes strains. To verify the feasibility of the method, an in silico analysis was performed on 30 available complete genomes. For the same set of strains, in silico mlst analysis was conducted as well. Subsequently, 2b-RAD and mlst analyses were experimentally carried out on 58 isolates collected from food samples or food-processing sites. The obtained results demonstrate that 2b-RAD predicts mlst types and often provides more detailed information on population structure than mlst. Moreover, the majority of variants differentiating identical sequence type isolates mapped against accessory fragments, thus providing additional information to characterize strains. Although mlst still represents a reliable typing method, large-scale studies on molecular epidemiology and public health, as well as bacterial phylogenetics, population genetics and biosafety could benefit of a low cost and fast turnaround time approach such as the 2b-RAD analysis proposed here.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Rosaria Lucchini
- Istituto Zooprofilattico delle Venezie, Viale dell'Università 10, 35020, Legnaro, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| |
Collapse
|
42
|
Maguire CP, Lizé A, Price TAR. Assessment of rival males through the use of multiple sensory cues in the fruitfly Drosophila pseudoobscura. PLoS One 2015; 10:e0123058. [PMID: 25849643 PMCID: PMC4388644 DOI: 10.1371/journal.pone.0123058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/10/2015] [Indexed: 12/01/2022] Open
Abstract
Environments vary stochastically, and animals need to behave in ways that best fit the conditions in which they find themselves. The social environment is particularly variable, and responding appropriately to it can be vital for an animal's success. However, cues of social environment are not always reliable, and animals may need to balance accuracy against the risk of failing to respond if local conditions or interfering signals prevent them detecting a cue. Recent work has shown that many male Drosophila fruit flies respond to the presence of rival males, and that these responses increase their success in acquiring mates and fathering offspring. In Drosophila melanogaster males detect rivals using auditory, tactile and olfactory cues. However, males fail to respond to rivals if any two of these senses are not functioning: a single cue is not enough to produce a response. Here we examined cue use in the detection of rival males in a distantly related Drosophila species, D. pseudoobscura, where auditory, olfactory, tactile and visual cues were manipulated to assess the importance of each sensory cue singly and in combination. In contrast to D. melanogaster, male D. pseudoobscura require intact olfactory and tactile cues to respond to rivals. Visual cues were not important for detecting rival D. pseudoobscura, while results on auditory cues appeared puzzling. This difference in cue use in two species in the same genus suggests that cue use is evolutionarily labile, and may evolve in response to ecological or life history differences between species.
Collapse
Affiliation(s)
- Chris P. Maguire
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Anne Lizé
- UMR 6553 ECOBIO, Université de Rennes 1, Rennes, France
| | - Tom A. R. Price
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
43
|
Dodsworth S, Chase MW, Kelly LJ, Leitch IJ, Macas J, Novák P, Piednoël M, Weiss-Schneeweiss H, Leitch AR. Genomic repeat abundances contain phylogenetic signal. Syst Biol 2015; 64:112-26. [PMID: 25261464 PMCID: PMC4265144 DOI: 10.1093/sysbio/syu080] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution.
Collapse
Affiliation(s)
- Steven Dodsworth
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Mark W Chase
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Ilia J Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Jiří Macas
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Petr Novák
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Mathieu Piednoël
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Hanna Weiss-Schneeweiss
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|