1
|
Varsani A, Hopkins A, Lund MC, Krupovic M. 2024 taxonomic update for the families Naryaviridae, Nenyaviridae, and Vilyaviridae. Arch Virol 2024; 170:18. [PMID: 39671105 DOI: 10.1007/s00705-024-06186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The families Naryaviridae (order Rivendellvirales), Nenyaviridae (order Rohanvirales), and Vilyaviridae (order Cirlivirales), all within the class Arfiviricetes of the phylum Cressdnaviricota, include single-stranded DNA viruses associated with protozoan parasites of the genera Entamoeba and Giardia as well as viruses found in various environmental samples, also likely infecting protozoans. Here, we provide a taxonomic update for these three families, which were recently expanded with multiple new members. In particular, we established seven new genera and nine new species in the family Naryaviridae, one new genus with one new species in the family Nenyaviridae, and three new genera and nine new species in the family Vilyaviridae. We also summarize the genomic properties and protein characteristics, including conserved motifs of the rolling-circle replication initiation proteins, of the viruses in the three families. Notably, the high GC content of vilyavirids (51-61%) and considerably lower GC content of naryavirids and nenyavirids (33-44%) appear to represent an adaptation to their hosts, Giardia and Entamoeba species, respectively.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa.
| | - Andrew Hopkins
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Michael C Lund
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
| |
Collapse
|
2
|
Peng L, Yang F, Shi J, Liu Y, Pan L, Mao D, Luo Y. Insights into the panorama of multiple DNA viruses in municipal wastewater and recycled sludge in Tianjin, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124215. [PMID: 38797349 DOI: 10.1016/j.envpol.2024.124215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Environmental viruses in wastewater and sludge are widely recognized for their roles in waterborne diseases. However, previous studies mainly focused on RNA viruses, and little is known about the diversity of DNA viral communities and their driving factors in municipal wastewater treatment environments. Herein, we conducted a pilot study to explore DNA virus profiles in municipal wastewater and recycled sludge by metagenomics method, and track their temporal changes in northern China. Results showed that 467 viral species were co-shared among all the samples. We identified six families of human viruses with a prevalence of 0.1%, which were rare but relatively stable in wastewater and sludge for six months. Adenoviridae, Parvoviridae, and Herpersviridae were the most dominant human viral families in municipal wastewater and recycled sludge. A time series of samples revealed that the dynamic changes of human DNA viruses were stable based on qPCR results, particularly for high-risk fecal-oral transmission viruses of adenovirus, bocavirus, polyomavirus, human gamma herpesvirus, human papillomavirus, and hepatitis B virus. Concentrations of Adenovirus (5.39-7.48 log10 copies/L) and bocavirus (4.36-7.48 log10 copies/L) were observed to be the highest in these samples compared to other viruses. Our findings demonstrated the DNA viruses' high prevalence and persistence in municipal wastewater treatment environments, highlighting the value of enhancing public health responses based on wastewater-based epidemiology.
Collapse
Affiliation(s)
- Liang Peng
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jingliang Shi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China
| | - YiXin Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Liuzhu Pan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
3
|
Paietta EN, Kraberger S, Lund MC, Vargas KL, Custer JM, Ehmke E, Yoder AD, Varsani A. Diverse Circular DNA Viral Communities in Blood, Oral, and Fecal Samples of Captive Lemurs. Viruses 2024; 16:1099. [PMID: 39066262 PMCID: PMC11281440 DOI: 10.3390/v16071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Few studies have addressed viral diversity in lemurs despite their unique evolutionary history on the island of Madagascar and high risk of extinction. Further, while a large number of studies on animal viromes focus on fecal samples, understanding viral diversity across multiple sample types and seasons can reveal complex viral community structures within and across species. Groups of captive lemurs at the Duke Lemur Center (Durham, NC, USA), a conservation and research center, provide an opportunity to build foundational knowledge on lemur-associated viromes. We sampled individuals from seven lemur species, i.e., collared lemur (Eulemur collaris), crowned lemur (Eulemur coronatus), blue-eyed black lemur (Eulemur flavifrons), ring-tailed lemur (Lemur catta), Coquerel's sifaka (Propithecus coquereli), black-and-white ruffed lemur (Varecia variegata variegata), and red ruffed lemur (Varecia rubra), across two lemur families (Lemuridae, Indriidae). Fecal, blood, and saliva samples were collected from Coquerel's sifaka and black-and-white ruffed lemur individuals across two sampling seasons to diversify virome biogeography and temporal sampling. Using viral metagenomic workflows, the complete genomes of anelloviruses (n = 4), cressdnaviruses (n = 47), caudoviruses (n = 15), inoviruses (n = 34), and microviruses (n = 537) were determined from lemur blood, feces, and saliva. Many virus genomes, especially bacteriophages, identified in this study were present across multiple lemur species. Overall, the work presented here uses a viral metagenomics approach to investigate viral communities inhabiting the blood, oral cavity, and feces of healthy captive lemurs.
Collapse
Affiliation(s)
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Michael C. Lund
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Karla L. Vargas
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joy M. Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Erin Ehmke
- Duke Lemur Center, Duke University, Durham, NC 27708, USA
| | - Anne D. Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
4
|
Olivo D, Khalifeh A, Custer JM, Kraberger S, Varsani A. Diverse Small Circular DNA Viruses Identified in an American Wigeon Fecal Sample. Microorganisms 2024; 12:196. [PMID: 38258021 PMCID: PMC10821283 DOI: 10.3390/microorganisms12010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
American wigeons (Mareca americana) are waterfowls that are widely distributed throughout North America. Research of viruses associated with American wigeons has been limited to orthomyxoviruses, coronaviruses, and circoviruses. To address this poor knowledge of viruses associated with American wigeons, we undertook a pilot study to identify small circular DNA viruses in a fecal sample collected in January 2021 in the city of Tempe, Arizona (USA). We identified 64 diverse circular DNA viral genomes using a viral metagenomic workflow biased towards circular DNA viruses. Of these, 45 belong to the phylum Cressdnaviricota based on their replication-associated protein sequence, with 3 from the Genomoviridae family and the remaining 42 which currently cannot be assigned to any established virus group. It is most likely that these 45 viruses infect various organisms that are associated with their diet or environment. The remaining 19 virus genomes are part of the Microviridae family and likely associated with the gut enterobacteria of American wigeons.
Collapse
Affiliation(s)
- Diego Olivo
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85042, USA; (D.O.)
| | - Anthony Khalifeh
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85042, USA; (D.O.)
| | - Joy M. Custer
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85042, USA; (D.O.)
| | - Simona Kraberger
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85042, USA; (D.O.)
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85042, USA; (D.O.)
- Structural Biology Research Unit, Department of Integrative, Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
5
|
Hess SC, Weiss KCB, Custer JM, Lewis JS, Kraberger S, Varsani A. Identification of small circular DNA viruses in coyote fecal samples from Arizona (USA). Arch Virol 2023; 169:12. [PMID: 38151635 DOI: 10.1007/s00705-023-05937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
Coyotes (Canis latrans) have a broad geographic distribution across North and Central America. Despite their widespread presence in urban environments in the USA, there is limited information regarding viruses associated with coyotes in the USA and in particular the state of Arizona. To explore viruses associated with coyotes, particularly small DNA viruses, 44 scat samples were collected (April-June 2021 and November 2021-January 2022) along the Salt River near Phoenix, Arizona (USA), along 43 transects (500 m). From these samples, we identified 11 viral genomes: two novel circoviruses, six unclassified cressdnaviruses, and two anelloviruses. One of the circoviruses is most closely related to a circovirus sequence identified from an aerosolized dust sample in Arizona, USA. The second circovirus is most closely related to a rodent-associated circovirus and canine circovirus. Of the unclassified cressdnaviruses, three encode replication-associated proteins that are similar to those found in protists (Histomonas meleagridis and Monocercomonoides exilis), implying an evolutionary relationship with or a connection to similar unidentified protist hosts. The two anelloviruses are most closely related to those found in rodents, and this suggests a diet-related identification.
Collapse
Affiliation(s)
- Savage C Hess
- The School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Katherine C B Weiss
- The School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287, USA
| | - Jesse S Lewis
- College of Integrative Sciences and Arts, Arizona State University, Polytechnic Campus, 6073 South Backus Mall, Mesa, AZ, 85212, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287, USA
| | - Arvind Varsani
- The School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA.
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287, USA.
- Center of Evolution and Medicine, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa.
| |
Collapse
|
6
|
Paietta EN, Kraberger S, Custer JM, Vargas KL, Espy C, Ehmke E, Yoder AD, Varsani A. Characterization of Diverse Anelloviruses, Cressdnaviruses, and Bacteriophages in the Human Oral DNA Virome from North Carolina (USA). Viruses 2023; 15:1821. [PMID: 37766228 PMCID: PMC10537320 DOI: 10.3390/v15091821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The diversity of viruses identified from the various niches of the human oral cavity-from saliva to dental plaques to the surface of the tongue-has accelerated in the age of metagenomics. This rapid expansion demonstrates that our understanding of oral viral diversity is incomplete, with only a few studies utilizing passive drool collection in conjunction with metagenomic sequencing methods. For this pilot study, we obtained 14 samples from healthy staff members working at the Duke Lemur Center (Durham, NC, USA) to determine the viral diversity that can be identified in passive drool samples from humans. The complete genomes of 3 anelloviruses, 9 cressdnaviruses, 4 Caudoviricetes large bacteriophages, 29 microviruses, and 19 inoviruses were identified in this study using high-throughput sequencing and viral metagenomic workflows. The results presented here expand our understanding of the vertebrate-infecting and microbe-infecting viral diversity of the human oral virome in North Carolina (USA).
Collapse
Affiliation(s)
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joy M. Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Karla L. Vargas
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Claudia Espy
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Erin Ehmke
- Duke Lemur Center, Duke University, Durham, NC 27705, USA;
| | - Anne D. Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
7
|
Lund MC, Larsen BB, Rowsey DM, Otto HW, Gryseels S, Kraberger S, Custer JM, Steger L, Yule KM, Harris RE, Worobey M, Van Doorslaer K, Upham NS, Varsani A. Using archived and biocollection samples towards deciphering the DNA virus diversity associated with rodent species in the families cricetidae and heteromyidae. Virology 2023; 585:42-60. [PMID: 37276766 DOI: 10.1016/j.virol.2023.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Abstract
Rodentia is the most speciose order of mammals, and they are known to harbor a wide range of viruses. Although there has been significant research on zoonotic viruses in rodents, research on the diversity of other viruses has been limited, especially for rodents in the families Cricetidae and Heteromyidae. In fecal and liver samples of nine species of rodents, we identify 346 distinct circular DNA viral genomes. Of these, a large portion are circular, single-stranded DNA viruses in the families Anelloviridae (n = 3), Circoviridae (n = 5), Genomoviridae (n = 7), Microviridae (n = 297), Naryaviridae (n = 4), Vilyaviridae (n = 15) and in the phylum Cressdnaviricota (n = 13) that cannot be assigned established families. We also identified two large bacteriophages of 36 and 50 kb that are part of the class Caudoviricetes. Some of these viruses are clearly those that infect rodents, however, most of these likely infect various organisms associated with rodents, their environment or their diet.
Collapse
Affiliation(s)
- Michael C Lund
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Brendan B Larsen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98102, USA
| | - Dakota M Rowsey
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Hans W Otto
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Sophie Gryseels
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000, Leuven, Belgium; Department of Biology, University of Antwerp, 2000, Antwerp, Belgium; OD Taxonomy and Phylogeny, Royal Belgian Museum of Natural Sciences, 1000, Brussels, Belgium
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Laura Steger
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Kelsey M Yule
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Robin E Harris
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, The BIO5 Institute, Department of Immunobiology, Cancer Biology Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, AZ, 85724, USA
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Arvind Varsani
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7701, South Africa.
| |
Collapse
|
8
|
Andrianjakarivony FH, Bettarel Y, Desnues C. Searching for a Reliable Viral Indicator of Faecal Pollution in Aquatic Environments. J Microbiol 2023:10.1007/s12275-023-00052-6. [PMID: 37261715 DOI: 10.1007/s12275-023-00052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
The disposal of sewage in significant quantities poses a health hazard to aquatic ecosystems. These effluents can contain a wide range of pathogens, making faecal contamination a leading source of waterborne diseases around the world. Yet monitoring bacteria or viruses in aquatic environments is time consuming and expensive. The standard indicators of faecal pollution all have limitations, including difficulty in determining the source due to lack of host specificity, poor connection with the presence of non-bacterial pathogens, or low environmental persistence. Innovative monitoring techniques are sorely needed to provide more accurate and targeted solutions. Viruses are a promising alternative to faecal indicator bacteria for monitoring, as they are more persistent in ambient water, more abundant in faeces, and are extremely host-specific. Given the range of viruses found in diverse contexts, it is not easy to find one "ideal" viral indicator of faecal pollution; however, several are of interest. In parallel, the ongoing development of molecular techniques coupled with metagenomics and bioinformatics should enable improved ways to detect faecal contamination using viruses. This review examines the evolution of faecal contamination monitoring with the following aims (i) to identify the characteristics of the main viral indicators of faecal contamination, including human enteric viruses, bacteriophages, CRESS and plant viruses, (ii) to assess how these have been used to monitor water pollution in recent years, (iii) to evaluate the reliability of recent detection methods of such viruses, and (iv) to tentatively determine which viruses may be most effective as markers of faecal pollution.
Collapse
Affiliation(s)
- Felana Harilanto Andrianjakarivony
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, 13005, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), 13009, Marseille, France
| | - Yvan Bettarel
- MARBEC, Marine Biodiversity, Exploitation and Conservation, University of Montpellier, CNRS, Ifremer, IRD, 34090, Montpellier, France.
| | - Christelle Desnues
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, 13005, Marseille, France
| |
Collapse
|
9
|
Krupovic M, Varsani A. Naryaviridae, Nenyaviridae, and Vilyaviridae: three new families of single-stranded DNA viruses in the phylum Cressdnaviricota. Arch Virol 2022; 167:2907-2921. [PMID: 36098801 DOI: 10.1007/s00705-022-05557-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022]
Abstract
The phylum Cressdnaviricota includes viruses with circular single-stranded DNA (ssDNA) genomes and icosahedral capsids. These viruses display global environmental distribution and infect diverse eukaryotic hosts, including animals, plants, and fungi. Here, we report on the formal creation of two new orders, Rivendellvirales and Rohanvirales, and three new families, Naryaviridae, Nenyaviridae, and Vilyaviridae, of ssDNA viruses associated with protozoan parasites belonging to the genera Entamoeba and Giardia. We describe a sequence-based taxonomic framework, which was used to classify 60 ssDNA viruses into 12 genera (with 18 species) within the family Vilyaviridae; four genera (with five species) within the family Naryaviridae; and five genera (with six species) within the family Nenyaviridae. We also highlight the challenges associated with the classification of chimeric virus genomes, such as those in the families Naryaviridae and Nenyaviridae, where the replication initiation and capsid protein genes have undergone several independent non-orthologous replacements. The described taxonomic changes have been ratified by the International Committee on Taxonomy of Viruses (ICTV) and expand the phylum Cressdnaviricota to eight orders and 11 families.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, F-75015, Paris, France.
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA. .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
10
|
Diverse single-stranded DNA viruses identified in New Zealand (Aotearoa) South Island robin (Petroica australis) fecal samples. Virology 2021; 565:38-51. [PMID: 34715607 DOI: 10.1016/j.virol.2021.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
The South Island robin (Petroica australis) is a small passerine bird endemic to New Zealand (Aotearoa). Although its population has declined recently and it is considered 'at risk,' little research has been done to identify viruses in this species. This study aimed to survey the diversity of single-stranded DNA viruses associated with South Island robins in a small, isolated population on Nukuwaiata Island. In total, 108 DNA viruses were identified from pooled fecal samples collected from 38 individual robins sampled. These viruses belong to the Circoviridae (n = 10), Genomoviridae (n = 12), and Microviridae (n = 73) families. A number of genomes that belong to the phylum Cressdnaviricota but are otherwise unclassified (n = 13) were also identified. These results greatly expand the known viral diversity associated with South Island robins, and we identify a novel group of viruses most closely related genomoviruses.
Collapse
|
11
|
Rolling Circle Amplification as an Efficient Analytical Tool for Rapid Detection of Contaminants in Aqueous Environments. BIOSENSORS-BASEL 2021; 11:bios11100352. [PMID: 34677308 PMCID: PMC8533700 DOI: 10.3390/bios11100352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
Environmental contaminants are a global concern, and an effective strategy for remediation is to develop a rapid, on-site, and affordable monitoring method. However, this remains challenging, especially with regard to the detection of various contaminants in complex water environments. The application of molecular methods has recently attracted increasing attention; for example, rolling circle amplification (RCA) is an isothermal enzymatic process in which a short nucleic acid primer is amplified to form a long single-stranded nucleic acid using a circular template and special nucleic acid polymerases. Furthermore, this approach can be further engineered into a device for point-of-need monitoring of environmental pollutants. In this paper, we describe the fundamental principles of RCA and the advantages and disadvantages of RCA assays. Then, we discuss the recently developed RCA-based tools for environmental analysis to determine various targets, including heavy metals, organic small molecules, nucleic acids, peptides, proteins, and even microorganisms in aqueous environments. Finally, we summarize the challenges and outline strategies for the advancement of this technique for application in contaminant monitoring.
Collapse
|
12
|
Abstract
The family Genomoviridae (phylum Cressdnaviricota, class Repensiviricetes, order Geplafuvirales) includes viruses with circular single-stranded DNA genomes encoding two proteins, the capsid protein and the rolling-circle replication initiation protein. The genomes of the vast majority of members in this family have been sequenced directly from diverse environmental or animal- and plant-associated samples, but two genomoviruses have been identified infecting fungi. Since the last taxonomic update of the Genomoviridae, a number of new members of this family have been sequenced. Here, we report on the most recent taxonomic update, including the creation of one new genus, Gemytripvirus, and classification of ~420 new genomoviruses into 164 new species. We also announce the adoption of the "Genus + freeform epithet" binomial system for the naming of all 236 officially recognized species in the family Genomoviridae. The updated taxonomy presented in this article has been accepted by the International Committee on Taxonomy of Viruses (ICTV).
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France.
| |
Collapse
|
13
|
Genome Sequences of Microviruses Identified in a Sample from a Sewage Treatment Oxidation Pond. Microbiol Resour Announc 2021; 10:10/19/e00373-21. [PMID: 33986100 PMCID: PMC8142586 DOI: 10.1128/mra.00373-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oxidation ponds are often used in the treatment of sewage as an aeration step prior to discharge. We identified 99 microvirus genomes from a sample from a sewage oxidation pond. This diverse group of microviruses expands our knowledge of bacteriophages associated with sewage oxidation pond ecosystems. Oxidation ponds are often used in the treatment of sewage as an aeration step prior to discharge. We identified 99 microvirus genomes from a sample from a sewage oxidation pond. This diverse group of microviruses expands our knowledge of bacteriophages associated with sewage oxidation pond ecosystems.
Collapse
|
14
|
Tisza MJ, Belford AK, Domínguez-Huerta G, Bolduc B, Buck CB. Cenote-Taker 2 democratizes virus discovery and sequence annotation. Virus Evol 2021; 7:veaa100. [PMID: 33505708 PMCID: PMC7816666 DOI: 10.1093/ve/veaa100] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viruses, despite their great abundance and significance in biological systems, remain largely mysterious. Indeed, the vast majority of the perhaps hundreds of millions of viral species on the planet remain undiscovered. Additionally, many viruses deposited in central databases like GenBank and RefSeq are littered with genes annotated as 'hypothetical protein' or the equivalent. Cenote-Taker 2, a virus discovery and annotation tool available on command line and with a graphical user interface with free high-performance computation access, utilizes highly sensitive models of hallmark virus genes to discover familiar or divergent viral sequences from user-input contigs. Additionally, Cenote-Taker 2 uses a flexible set of modules to automatically annotate the sequence features of contigs, providing more gene information than comparable tools. The outputs include readable and interactive genome maps, virome summary tables, and files that can be directly submitted to GenBank. We expect Cenote-Taker 2 to facilitate virus discovery, annotation, and expansion of the known virome.
Collapse
Affiliation(s)
- Michael J Tisza
- Lab of Cellular Oncology, NCI, NIH, Bethesda, MD 20892-4263, USA
| | - Anna K Belford
- Lab of Cellular Oncology, NCI, NIH, Bethesda, MD 20892-4263, USA
| | | | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
15
|
Identification and Distribution of Novel Cressdnaviruses and Circular molecules in Four Penguin Species in South Georgia and the Antarctic Peninsula. Viruses 2020; 12:v12091029. [PMID: 32947826 PMCID: PMC7551938 DOI: 10.3390/v12091029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022] Open
Abstract
There is growing interest in uncovering the viral diversity present in wild animal species. The remote Antarctic region is home to a wealth of uncovered microbial diversity, some of which is associated with its megafauna, including penguin species, the dominant avian biota. Penguins interface with a number of other biota in their roles as marine mesopredators and several species overlap in their ranges and habitats. To characterize the circular single-stranded viruses related to those in the phylum Cressdnaviricota from these environmental sentinel species, cloacal swabs (n = 95) were obtained from King Penguins in South Georgia, and congeneric Adélie Penguins, Chinstrap Penguins, and Gentoo Penguins across the South Shetland Islands and Antarctic Peninsula. Using a combination of high-throughput sequencing, abutting primers-based PCR recovery of circular genomic elements, cloning, and Sanger sequencing, we detected 97 novel sequences comprising 40 ssDNA viral genomes and 57 viral-like circular molecules from 45 individual penguins. We present their detection patterns, with Chinstrap Penguins harboring the highest number of new sequences. The novel Antarctic viruses identified appear to be host-specific, while one circular molecule was shared between sympatric Chinstrap and Gentoo Penguins. We also report viral genotype sharing between three adult-chick pairs, one in each Pygoscelid species. Sequence similarity network approaches coupled with Maximum likelihood phylogenies of the clusters indicate the 40 novel viral genomes do not fall within any known viral families and likely fall within the recently established phylum Cressdnaviricota based on their replication-associated protein sequences. Similarly, 83 capsid protein sequences encoded by the viruses or viral-like circular molecules identified in this study do not cluster with any of those encoded by classified viral groups. Further research is warranted to expand knowledge of the Antarctic virome and would help elucidate the importance of viral-like molecules in vertebrate host evolution.
Collapse
|
16
|
Kinsella CM, Bart A, Deijs M, Broekhuizen P, Kaczorowska J, Jebbink MF, van Gool T, Cotten M, van der Hoek L. Entamoeba and Giardia parasites implicated as hosts of CRESS viruses. Nat Commun 2020; 11:4620. [PMID: 32934242 PMCID: PMC7493932 DOI: 10.1038/s41467-020-18474-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Metagenomic techniques have enabled genome sequencing of unknown viruses without isolation in cell culture, but information on the virus host is often lacking, preventing viral characterisation. High-throughput methods capable of identifying virus hosts based on genomic data alone would aid evaluation of their medical or biological relevance. Here, we address this by linking metagenomic discovery of three virus families in human stool samples with determination of probable hosts. Recombination between viruses provides evidence of a shared host, in which genetic exchange occurs. We utilise networks of viral recombination to delimit virus-host clusters, which are then anchored to specific hosts using (1) statistical association to a host organism in clinical samples, (2) endogenous viral elements in host genomes, and (3) evidence of host small RNA responses to these elements. This analysis suggests two CRESS virus families (Naryaviridae and Nenyaviridae) infect Entamoeba parasites, while a third (Vilyaviridae) infects Giardia duodenalis. The trio supplements five CRESS virus families already known to infect eukaryotes, extending the CRESS virus host range to protozoa. Phylogenetic analysis implies CRESS viruses infecting multicellular life have evolved independently on at least three occasions.
Collapse
Affiliation(s)
- Cormac M Kinsella
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Aldert Bart
- Laboratory of Clinical Parasitology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Martin Deijs
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Patricia Broekhuizen
- Laboratory of Clinical Parasitology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Joanna Kaczorowska
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Maarten F Jebbink
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Tom van Gool
- Laboratory of Clinical Parasitology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Matthew Cotten
- MRC/UVRI & LSHTM Uganda Research Unit, 3FC6+Q3, Entebbe, Uganda
- MRC-University of Glasgow Centre for Virus Research, G61 1QH, Glasgow, UK
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Orton JP, Morales M, Fontenele RS, Schmidlin K, Kraberger S, Leavitt DJ, Webster TH, Wilson MA, Kusumi K, Dolby GA, Varsani A. Virus Discovery in Desert Tortoise Fecal Samples: Novel Circular Single-Stranded DNA Viruses. Viruses 2020; 12:v12020143. [PMID: 31991902 PMCID: PMC7077246 DOI: 10.3390/v12020143] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/25/2022] Open
Abstract
The Sonoran Desert tortoise Gopherus morafkai is adapted to the desert, and plays an important ecological role in this environment. There is limited information on the viral diversity associated with tortoises (family Testudinidae), and to date no DNA virus has been identified associated with these animals. This study aimed to assess the diversity of DNA viruses associated with the Sonoran Desert tortoise by sampling their fecal matter. A viral metagenomics approach was used to identify the DNA viruses in fecal samples from wild Sonoran Desert tortoises in Arizona, USA. In total, 156 novel single-stranded DNA viruses were identified from 40 fecal samples. Those belonged to two known viral families, the Genomoviridae (n = 27) and Microviridae (n = 119). In addition, 10 genomes were recovered that belong to the unclassified group of circular-replication associated protein encoding single-stranded (CRESS) DNA virus and five circular molecules encoding viral-like proteins.
Collapse
Affiliation(s)
- Joseph P. Orton
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (J.P.O.); (M.M.); (R.S.F.); (K.S.); (M.A.W.); (K.K.)
| | - Matheo Morales
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (J.P.O.); (M.M.); (R.S.F.); (K.S.); (M.A.W.); (K.K.)
| | - Rafaela S. Fontenele
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (J.P.O.); (M.M.); (R.S.F.); (K.S.); (M.A.W.); (K.K.)
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA;
| | - Kara Schmidlin
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (J.P.O.); (M.M.); (R.S.F.); (K.S.); (M.A.W.); (K.K.)
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA;
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA;
| | - Daniel J. Leavitt
- Natural Resources Program, Naval Facilities Engineering Command-Navy Region Southwest, San Diego, CA 92101, USA, USA;
| | - Timothy H. Webster
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (J.P.O.); (M.M.); (R.S.F.); (K.S.); (M.A.W.); (K.K.)
- Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (J.P.O.); (M.M.); (R.S.F.); (K.S.); (M.A.W.); (K.K.)
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (J.P.O.); (M.M.); (R.S.F.); (K.S.); (M.A.W.); (K.K.)
| | - Greer A. Dolby
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (J.P.O.); (M.M.); (R.S.F.); (K.S.); (M.A.W.); (K.K.)
- Correspondence: (G.A.D.); (A.V.); Tel.: +1-480-965-7456 (G.A.D.); +1-480-727-2093 (A.V.)
| | - Arvind Varsani
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (J.P.O.); (M.M.); (R.S.F.); (K.S.); (M.A.W.); (K.K.)
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA;
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town 7925, South Africa
- Correspondence: (G.A.D.); (A.V.); Tel.: +1-480-965-7456 (G.A.D.); +1-480-727-2093 (A.V.)
| |
Collapse
|
18
|
Fontenele RS, Lacorte C, Lamas NS, Schmidlin K, Varsani A, Ribeiro SG. Single Stranded DNA Viruses Associated with Capybara Faeces Sampled in Brazil. Viruses 2019; 11:E710. [PMID: 31382446 PMCID: PMC6723397 DOI: 10.3390/v11080710] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/27/2022] Open
Abstract
Capybaras (Hydrochoerus hydrochaeris), the world's largest rodents, are distributed throughout South America. These wild herbivores are commonly found near water bodies and are well adapted to rural and urban areas. There is limited information on the viruses circulating through capybaras. This study aimed to expand the knowledge on the viral diversity associated with capybaras by sampling their faeces. Using a viral metagenomics approach, we identified diverse single-stranded DNA viruses in the capybara faeces sampled in the Distrito Federal, Brazil. A total of 148 complete genomes of viruses in the Microviridae family were identified. In addition, 14 genomoviruses (family Genomoviridae), a novel cyclovirus (family Circoviridae), and a smacovirus (family Smacoviridae) were identified. Also, 37 diverse viruses that cannot be assigned to known families and more broadly referred to as unclassified circular replication associated protein encoding single-stranded (CRESS) DNA viruses were identified. This study provides a snapshot of the viral diversity associated with capybaras that may be infectious to these animals or associated with their microbiota or diet.
Collapse
Affiliation(s)
- Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF 70770-017, Brazil
| | - Cristiano Lacorte
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF 70770-017, Brazil
| | - Natalia S Lamas
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF 70770-017, Brazil
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa.
| | - Simone G Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF 70770-017, Brazil.
| |
Collapse
|
19
|
Kraberger S, Schmidlin K, Fontenele RS, Walters M, Varsani A. Unravelling the Single-Stranded DNA Virome of the New Zealand Blackfly. Viruses 2019; 11:E532. [PMID: 31181730 PMCID: PMC6630596 DOI: 10.3390/v11060532] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 01/23/2023] Open
Abstract
Over the last decade, arthropods have been shown to harbour a rich diversity of viruses. Through viral metagenomics a large diversity of single-stranded (ss) DNA viruses have been identified. Here we examine the ssDNA virome of the hematophagous New Zealand blackfly using viral metagenomics. Our investigation reveals a plethora of novel ssDNA viral genomes, some of which cluster in the viral families Genomoviridae (n = 9), Circoviridae (n = 1), and Microviridae (n = 108), others in putative families that, at present, remain unclassified (n = 20) and one DNA molecule that only encodes a replication associated protein. Among these novel viruses, two putative multi-component virus genomes were recovered, and these are most closely related to a Tongan flying fox faeces-associated multi-component virus. Given that the only other known multi-component circular replication-associated (Rep) protein encoding single-stranded (CRESS) DNA viruses infecting plants are in the families Geminiviridae (members of the genus Begomovirus) and Nanoviridae, it appears these are likely a new multi-component virus group which may be associated with animals. This study reiterates the diversity of ssDNA viruses in nature and in particular with the New Zealand blackflies.
Collapse
Affiliation(s)
- Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.
| | - Matthew Walters
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA.
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, Cape Town 7700, South Africa.
| |
Collapse
|
20
|
Kraberger S, Cook CN, Schmidlin K, Fontenele RS, Bautista J, Smith B, Varsani A. Diverse single-stranded DNA viruses associated with honey bees (Apis mellifera). INFECTION GENETICS AND EVOLUTION 2019; 71:179-188. [PMID: 30928605 DOI: 10.1016/j.meegid.2019.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/28/2019] [Accepted: 03/25/2019] [Indexed: 11/26/2022]
Abstract
Honey bees (Apis mellifera) research has increased in light of their progressive global decline over the last decade and the important role they play in pollination. One expanding area of honey bee research is analysis of their microbial community including viruses. Several RNA viruses have been characterized but little is known about DNA viruses associated with bees. Here, using a metagenomics based approach, we reveal the presence of a broad range of novel single-stranded DNA viruses from the hemolymph and brain of nurse and forager (worker divisions of labour) bees belonging to two honey bees subspecies, Italian (Apis mellifera linguistica) and New World Carniolan (Apis mellifera carnica). Genomes of 100 diverse viruses were identified, designated into three groupings; genomoviruses (family Genomoviridae) (n = 4), unclassified replication associated protein encoding single-stranded DNA viruses (n = 28), and microviruses (family Microviridae; subfamily Gokushovirinae) (n = 70). Amongst the viruses identified, it appears that nurses harbour a higher diversity of these viruses comparative to the foragers. Between subspecies, the most striking outcome was the extremely high number of diverse microviruses identified in the Italian bees comparative to the New World Carniolan, likely indicating an association to the diversity of the bacterial community associated with these subspecies.
Collapse
Affiliation(s)
- Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA.
| | - Chelsea N Cook
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joshua Bautista
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA
| | - Brian Smith
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA; Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, 7925 Cape Town, South Africa.
| |
Collapse
|
21
|
Zhao L, Rosario K, Breitbart M, Duffy S. Eukaryotic Circular Rep-Encoding Single-Stranded DNA (CRESS DNA) Viruses: Ubiquitous Viruses With Small Genomes and a Diverse Host Range. Adv Virus Res 2018; 103:71-133. [PMID: 30635078 DOI: 10.1016/bs.aivir.2018.10.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
While single-stranded DNA (ssDNA) was once thought to be a relatively rare genomic architecture for viruses, modern metagenomics sequencing has revealed circular ssDNA viruses in most environments and in association with diverse hosts. In particular, circular ssDNA viruses encoding a homologous replication-associated protein (Rep) have been identified in the majority of eukaryotic supergroups, generating interest in the ecological effects and evolutionary history of circular Rep-encoding ssDNA viruses (CRESS DNA) viruses. This review surveys the explosion of sequence diversity and expansion of eukaryotic CRESS DNA taxonomic groups over the last decade, highlights similarities between the well-studied geminiviruses and circoviruses with newly identified groups known only through their genome sequences, discusses the ecology and evolution of eukaryotic CRESS DNA viruses, and speculates on future research horizons.
Collapse
Affiliation(s)
- Lele Zhao
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, United States
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, New Brunswick, NJ, United States.
| |
Collapse
|
22
|
Jeske H. Barcoding of Plant Viruses with Circular Single-Stranded DNA Based on Rolling Circle Amplification. Viruses 2018; 10:E469. [PMID: 30200312 PMCID: PMC6164888 DOI: 10.3390/v10090469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/10/2023] Open
Abstract
The experience with a diagnostic technology based on rolling circle amplification (RCA), restriction fragment length polymorphism (RFLP) analyses, and direct or deep sequencing (Circomics) over the past 15 years is surveyed for the plant infecting geminiviruses, nanoviruses and associated satellite DNAs, which have had increasing impact on agricultural and horticultural losses due to global transportation and recombination-aided diversification. Current state methods for quarantine measures are described to identify individual DNA components with great accuracy and to recognize the crucial role of the molecular viral population structure as an important factor for sustainable plant protection.
Collapse
Affiliation(s)
- Holger Jeske
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany.
| |
Collapse
|
23
|
Creasy A, Rosario K, Leigh BA, Dishaw LJ, Breitbart M. Unprecedented Diversity of ssDNA Phages from the Family Microviridae Detected within the Gut of a Protochordate Model Organism ( Ciona robusta). Viruses 2018; 10:v10080404. [PMID: 30065169 PMCID: PMC6116155 DOI: 10.3390/v10080404] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Phages (viruses that infect bacteria) play important roles in the gut ecosystem through infection of bacterial hosts, yet the gut virome remains poorly characterized. Mammalian gut viromes are dominated by double-stranded DNA (dsDNA) phages belonging to the order Caudovirales and single-stranded DNA (ssDNA) phages belonging to the family Microviridae. Since the relative proportion of each of these phage groups appears to correlate with age and health status in humans, it is critical to understand both ssDNA and dsDNA phages in the gut. Building upon prior research describing dsDNA viruses in the gut of Ciona robusta, a marine invertebrate model system used to study gut microbial interactions, this study investigated ssDNA phages found in the Ciona gut. We identified 258 Microviridae genomes, which were dominated by novel members of the Gokushovirinae subfamily, but also represented several proposed phylogenetic groups (Alpavirinae, Aravirinae, Group D, Parabacteroides prophages, and Pequeñovirus) and a novel group. Comparative analyses between Ciona specimens with full and cleared guts, as well as the surrounding water, indicated that Ciona retains a distinct and highly diverse community of ssDNA phages. This study significantly expands the known diversity within the Microviridae family and demonstrates the promise of Ciona as a model system for investigating their role in animal health.
Collapse
Affiliation(s)
- Alexandria Creasy
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA.
- Department of Pediatrics, Children's Research Institute, University of South Florida, St. Petersburg, FL 33701, USA.
| | - Karyna Rosario
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA.
| | - Brittany A Leigh
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA.
- Department of Pediatrics, Children's Research Institute, University of South Florida, St. Petersburg, FL 33701, USA.
| | - Larry J Dishaw
- Department of Pediatrics, Children's Research Institute, University of South Florida, St. Petersburg, FL 33701, USA.
| | - Mya Breitbart
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA.
| |
Collapse
|
24
|
Zheng Q, Chen Q, Xu Y, Suttle CA, Jiao N. A Virus Infecting Marine Photoheterotrophic Alphaproteobacteria ( Citromicrobium spp.) Defines a New Lineage of ssDNA Viruses. Front Microbiol 2018; 9:1418. [PMID: 29997609 PMCID: PMC6030365 DOI: 10.3389/fmicb.2018.01418] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/08/2018] [Indexed: 12/02/2022] Open
Abstract
In recent metagenomic studies, single-stranded DNA (ssDNA) viruses that infect bacteria have been shown to be diverse and prevalent in the ocean; however, there are few isolates of marine ssDNA phages. Here, we report on a cultivated ssDNA phage (vB_Cib_ssDNA_P1) that infects Citromicrobium bathyomarinum RCC1878 (family Sphingomonadaceae), and other members of the genus. This is the first ssDNA phage reported to infect marine alphaproteobacteria, and represents a newly recognized lineage of the Microviridae infecting members of Sphingomonadaceae, the Amoyvirinae. The ∼26 nm diameter polyhedral capsid contains a 4,360 bp genome with 6 open reading frames (ORFs) and a 59.3% G+C content. ORF1 encodes the capsid protein and ORF3 encodes the replication initiator protein. The replication cycle is ∼5 h, followed by a burst releasing about 180 infectious particles. The closest relative of vB_Cib_ssDNA_P1 is a prophage within the genome of Novosphingobium tardaugens strain NBRC16725. Phylogenetic analysis indicates that the vB_Cib_ssDNA_P1 phage and two related prophages, as well as an environmental sequence, form a novel group within the Microviridae. Our results indicate that this is a previously unknown lineage of ssDNA viruses which also supplies a new model system for studying interactions between ssDNA phages and marine bacteria.
Collapse
Affiliation(s)
- Qiang Zheng
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qi Chen
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yongle Xu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Institute of Marine Science and Technology, Shandong University, Jinan, China
| | - Curtis A. Suttle
- Departments of Earth, Ocean and Atmospheric Sciences, Microbiology and Immunology, Botany, The Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC, Canada
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
25
|
Bistolas KSI, Besemer RM, Rudstam LG, Hewson I. Distribution and Inferred Evolutionary Characteristics of a Chimeric ssDNA Virus Associated with Intertidal Marine Isopods. Viruses 2017; 9:v9120361. [PMID: 29186875 PMCID: PMC5744136 DOI: 10.3390/v9120361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/30/2022] Open
Abstract
Aquatic invertebrates are common reservoirs of a rapidly expanding group of circular Rep-encoding ssDNA (CRESS-DNA) viruses. This study identified and explored the phylogenetic relationship between novel CRESS-DNA viral genotypes associated with Pacific intertidal isopods Idotea wosnesenskii, Idotea resecata, and Gnorimosphaeroma oregonensis. One genotype associated with I. wosnesenskii, IWaV278, shared sequence similarity and genomic features with Tombusviridae (ssRNA) and Circoviridae (ssDNA) genomes and was putatively assigned to the Cruciviridae clade comprising chimeric viruses. The complete genome of IWaV278 (3478 nt) was computationally completed, validated via Sanger sequencing, and exhibited sequence conservation and codon usage patterns analogous to other members of the Cruciviridae. Viral surveillance (qPCR) indicated that this virus was temporally transient (present in 2015, but not 2017), specific to I. wosnesenskii at a single collection site (Washington, DC, USA), more prevalent among male specimens, and frequently detected within exoskeletal structures. 18S rRNA sequences identified two alveolate protists associated with IWaV278-positive tissues and mechanical epibiont removal of ciliated exoskeletal structures eliminated viral detection, suggesting that the putative host of IWaV278 may be an epibiont of I. wosnesenskii. This investigation provides additional phylogenetic evidence to resolve Cruciviridae evolution and offers insight into the biogeography, specificity, and potential host of a crucivirus genotype.
Collapse
Affiliation(s)
| | - Ryan M Besemer
- New Visions Life Sciences, Boards of Cooperative Educational Services of New York State, Ithaca, NY 14850, USA.
- University of North Carolina at Wilmington, Wilmington, NC 28403, USA.
| | - Lars G Rudstam
- Department of Natural Resources and the Cornell Biological Field Station, Cornell University, Bridgeport, NY 14850, USA.
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|