1
|
Scrosati RA, Ellrich JA. Massive barnacle recruitment on the Gulf of St. Lawrence coast of Nova Scotia (Canada) in 2024 linked to increased sea surface temperature. PeerJ 2024; 12:e18208. [PMID: 39346071 PMCID: PMC11439378 DOI: 10.7717/peerj.18208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
With the ongoing climate and oceanographic change, an increasing number of studies are reporting dramatic population losses caused by thermal extremes in intertidal habitats. Under moderate warming, however, populations can fare better in places where species normally experienced suboptimal temperatures. This article reports the massive recruitment of the barnacle Semibalanus balanoides on the Gulf of St. Lawrence coast of Nova Scotia (Canada) in 2024. As recruits appear mostly during May in this region, coastal sea surface temperature (SST) in April is critical for the ecological performance of larvae, as they are pelagic and live in the water column for weeks before intertidal settlement. Thus, a study that spanned 12 years (2005 to 2016) on this coast found that annual barnacle recruitment was positively correlated to April SST. In April 2024, coastal SST was 116% higher than for the same month averaged over those 12 years (4.1 vs. 1.9 °C). This SST spike was followed by an elevated recruitment that was 111% higher than the average for those 12 years (1,278 vs. 607 recruits dm-2). Overall for the studied years, the amount of variation in annual barnacle recruitment statistically explained by April SST was 51%. While the southern distribution limit of S. balanoides has moved northwards in recent decades due to lethal warming, our results support the notion of improving reproductive success with seawater warming on colder northern shores.
Collapse
Affiliation(s)
- Ricardo A Scrosati
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Julius A Ellrich
- Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Helgoland, Germany
| |
Collapse
|
2
|
de Azevedo Mazzuco AC, Fraga Bernardino A. Reef larval recruitment in response to seascape dynamics in the SW Atlantic. Sci Rep 2022; 12:7750. [PMID: 35546605 PMCID: PMC9095688 DOI: 10.1038/s41598-022-11809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/11/2022] [Indexed: 11/08/2022] Open
Abstract
Advances in satellite observation have improved our capacity to track changes in the ocean with numerous ecological and conservation applications, which are yet under-explored for coastal ecology. In this study, we assessed the spatio-temporal dynamics in invertebrate larval recruitment and the Seascape Pelagic Habitat Classification, a satellite remote-sensing product developed by the Marine Biodiversity Observation Network (MBON) and delivered by the US National Oceanic and Atmospheric Administration to monitor biodiversity globally. Our ultimate goal was to identify and predict changes in coastal benthic assemblages at tropical reefs in the SW Atlantic based on integrated pelagic conditions, testing the use of MBON Seascape categorization. Our results revealed that the pelagic Seascapes correlated with monthly and seasonal variations in recruitment rates and assemblage composition. Recruitment was strongly influenced by subtropical Seascapes and was reduced by the presence of warm waters with high-nutrient contents and phytoplankton blooms, which are likely to affect reef communities in the long term. Recruitment modeling indicates that Seascapes may be more efficient than sea surface temperature in predicting benthic larval dynamics. Based on historical Seascape patterns, we identified seven events that may have impacted benthic recruitment in this region during the last decades. These findings provide new insights into the application of novel satellite remote-sensing Seascape categorizations in benthic ecology and evidence how reef larval supply in the SW Atlantic could be impacted by recent and future ocean changes.
Collapse
Affiliation(s)
- Ana Carolina de Azevedo Mazzuco
- Benthic Ecology Group, Department of Oceanography and Ecology, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Vitória, ES, 29075-910, Brazil.
| | - Angelo Fraga Bernardino
- Benthic Ecology Group, Department of Oceanography and Ecology, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Vitória, ES, 29075-910, Brazil.
| |
Collapse
|
3
|
Navarrete SA, Barahona M, Weidberg N, Broitman BR. Climate change in the coastal ocean: shifts in pelagic productivity and regionally diverging dynamics of coastal ecosystems. Proc Biol Sci 2022; 289:20212772. [PMID: 35259989 PMCID: PMC8914614 DOI: 10.1098/rspb.2021.2772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Climate change has led to intensification and poleward migration of the Southeastern Pacific Anticyclone, forcing diverging regions of increasing, equatorward and decreasing, poleward coastal phytoplankton productivity along the Humboldt Upwelling Ecosystem, and a transition zone around 31° S. Using a 20-year dataset of barnacle larval recruitment and adult abundances, we show that striking increases in larval arrival have occurred since 1999 in the region of higher productivity, while slower but significantly negative trends dominate poleward of 30° S, where years of recruitment failure are now common. Rapid increases in benthic adults result from fast recruitment-stock feedbacks following increased recruitment. Slower population declines in the decreased productivity region may result from aging but still reproducing adults that provide temporary insurance against population collapses. Thus, in this region of the ocean where surface waters have been cooling down, climate change is transforming coastal pelagic and benthic ecosystems through altering primary productivity, which seems to propagate up the food web at rates modulated by stock-recruitment feedbacks and storage effects. Slower effects of downward productivity warn us that poleward stocks may be closer to collapse than current abundances may suggest.
Collapse
Affiliation(s)
- Sergio A Navarrete
- Estación Costera de Investigaciones Marinas, Las Cruces, Center for Applied Ecology and Sustainability (CAPES), and Millennium Nucleus for Ecology and Conservation of Temperate Mesophotic Reefs (NUTME), Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute for Coastal Socio-Ecology (SECOS), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Barahona
- Estación Costera de Investigaciones Marinas, Las Cruces, Center for Applied Ecology and Sustainability (CAPES), and Millennium Nucleus for Ecology and Conservation of Temperate Mesophotic Reefs (NUTME), Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias, Facultad de Artes Liberales, Nucleo Milenio UPWELL, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile
| | - Nicolas Weidberg
- Estación Costera de Investigaciones Marinas, Las Cruces, Center for Applied Ecology and Sustainability (CAPES), and Millennium Nucleus for Ecology and Conservation of Temperate Mesophotic Reefs (NUTME), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,Facultad de Ciencias del Mar, Universidad de Vigo, Vigo, Galicia, Spain
| | - Bernardo R Broitman
- Millennium Institute for Coastal Socio-Ecology (SECOS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias, Facultad de Artes Liberales, Nucleo Milenio UPWELL, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile
| |
Collapse
|
4
|
Pardal A, Cordeiro CAMM, Ciotti ÁM, Jenkins SR, Giménez L, Burrows MT, Christofoletti RA. Influence of environmental variables over multiple spatial scales on the population structure of a key marine invertebrate. MARINE ENVIRONMENTAL RESEARCH 2021; 170:105410. [PMID: 34271484 DOI: 10.1016/j.marenvres.2021.105410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Quantifying scale-dependent patterns and linking ecological to environmental variation is required to understand mechanisms regulating biodiversity. We conducted a large-scale survey in rocky shores along the SE Brazilian coast to examine spatial variability in body size and density of an intertidal barnacle (Chthamalus bisinuatus) and its relationships with benthic and oceanographic predictors. Both the size and density of barnacles showed most variation at the smallest spatial scales. On average, barnacle body size was larger on shores located in areas characterised by higher chlorophyll levels, colder waters, low wave action and low influence of freshwater. Barnacles were more abundant at wave-exposed shores. We identified critical scales of spatial variation of an important species and linked population patterns to essential environmental predictors. Our results show that populations of this barnacle are coupled to scale-dependent oceanographic variation. This study offers insights into the mechanisms regulating coastal populations along a little studied coastline.
Collapse
Affiliation(s)
- André Pardal
- Center of Natural and Human Sciences, Federal University of ABC (CCNH/UFABC), Rua Santa Adélia, 166, Santo André, SP, 09210-170, Brazil; Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Rua Dr Carvalho de Mendonça 144, Santos, SP, 11070-100, Brazil.
| | - César A M M Cordeiro
- Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Rua Dr Carvalho de Mendonça 144, Santos, SP, 11070-100, Brazil; Marine Biology Department, Federal Fluminense University (LECAR/UFF), Outeiro de São João Batista, s/n, Niterói, RJ, 24020-141, Brazil
| | - Áurea M Ciotti
- Center for Marine Biology, University of São Paulo (CEBIMar/USP), Rod. Manoel Hipólito do Rego, km 131.5, São Sebastião, SP, 1160-000, Brazil
| | - Stuart R Jenkins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Luis Giménez
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Michael T Burrows
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, UK
| | - Ronaldo A Christofoletti
- Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Rua Dr Carvalho de Mendonça 144, Santos, SP, 11070-100, Brazil
| |
Collapse
|
5
|
Manríquez K, Quijón PA, Manríquez PH, Miranda C, Pulgar J, Quintanilla-Ahumada D, Duarte C. Artificial Light at Night (ALAN) negatively affects the settlement success of two prominent intertidal barnacles in the southeast Pacific. MARINE POLLUTION BULLETIN 2021; 168:112416. [PMID: 33957496 DOI: 10.1016/j.marpolbul.2021.112416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Many coastal processes are regulated by day/night cycles and are expected to be altered by Artificial Light at Night (ALAN). The goal of this study was to assess the influence of ALAN on the settlement rates of intertidal barnacles. A newly designed settlement plate equipped with a small central LED light source was used to quantify settlement rates in presence/absence of ALAN conditions. "ALAN plates" as well as regular settlement plates were deployed in the mid rocky intertidal zone. Both ALAN and control plates collected early and late settlers of the barnacles Notochthamalus scabrosus and Jehlius cirratus. Early settlers (pre-metamorphosis cyprids) were not affected by ALAN. By contrast, the density of late settlers (post-metamorphosis spats) was significantly lower in ALAN than in control plates for both species, suggesting detrimental ALAN impacts on the settlement process. The new ALAN plates represent an attractive and alternative methodology to study ALAN effects.
Collapse
Affiliation(s)
- Karen Manríquez
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pedro A Quijón
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Cristian Miranda
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | | | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
| |
Collapse
|
6
|
Scrosati RA. Nonconsumptive Predator Effects on Prey Demography: Recent Advances Using Intertidal Invertebrates. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.626869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Predators influence prey demography through consumption, but the mere presence of predators may trigger behavioural changes in prey that, if persistent or intense, may also influence prey demography. A tractable system to study such nonconsumptive effects (NCEs) of predators involves intertidal invertebrates. This mini review summarises recent research using barnacles and mussels as prey and dogwhelks as predators. The field manipulation of dogwhelk density revealed that pelagic barnacle larvae avoid benthic settlement near dogwhelks, which limits barnacle recruitment, a relevant outcome because recruitment is the only source of population replenishment for barnacles, as they are sessile. This avoidance behaviour is likely triggered by waterborne dogwhelk cues and may have evolved to limit future predation risk. Increasing densities of barnacle recruits and adults can prevent such NCEs from occurring, seemingly because benthic barnacles attract conspecific larvae through chemical cues. Barnacle recruit density increased with the abundance of coastal phytoplankton (food for barnacle larvae and recruits), so barnacle food supply seems to indirectly limit dogwhelk NCEs. By inhibiting barnacle feeding, dogwhelk cues also limited barnacle growth and reproductive output. Wave action weakens dogwhelk NCEs likely through hydrodynamic influences. Dogwhelk cues also limit mussel recruitment, as mussel larvae also exhibit predator avoidance behaviour. The NCEs on recruitment are weaker for mussels than for barnacles, possibly because mussel larvae can detach themselves after initial settlement, an ability that barnacle larvae lack. Overall, these field experiments provide evidence of predator NCEs on prey demography for coastal marine systems.
Collapse
|
7
|
Lynn KD, Tummon Flynn P, Manríquez K, Manríquez PH, Pulgar J, Duarte C, Quijón PA. Artificial light at night alters the settlement of acorn barnacles on a man-made habitat in Atlantic Canada. MARINE POLLUTION BULLETIN 2021; 163:111928. [PMID: 33418341 DOI: 10.1016/j.marpolbul.2020.111928] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Human growth has caused an unprecedented increase in artificial light at night (ALAN). In coastal habitats, many species rely on day/night cycles to regulate various aspects of their life history and these cycles can be altered by this stressor. This study assessed the influence of ALAN on the early (cyprid) and late (spat) settlement stages of the acorn barnacle Semibalanus balanoides, a species widely distributed in natural and man-made coastal habitats of the North Atlantic. A newly designed settlement plate, originally for studies in rocky intertidal habitats in the southeast Pacific, was adapted to measure settlement rates on man-made habitats -wharf seawalls- located in Atlantic Canada. Plates equipped with a small LED diode powered by an internal battery (ALAN plates) were used to quantify settlement rates in comparison to plates lacking a light source (controls). These plates were deployed for 6 d in the mid-intertidal levels, where adult barnacles were readily visible. ALAN and control plates collected large number of settlers and showed to be suitable for this type of man-made habitats. The number of early settlers (cyprids) did not differ between plates but the number of late settlers (spat) was significantly lower in ALAN plates than in controls. These results suggest that light pollution has little influence on the early stages of the acorn barnacle settlement but is clearly detrimental to its late stages. As barnacles dominate in many natural and man-made hard substrates, it is likely that ALAN also has indirect effects on community structure.
Collapse
Affiliation(s)
- K Devon Lynn
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Paula Tummon Flynn
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Karen Manríquez
- Departamento de Ecología y Biodiversidad, Universidad Andres Bello, Santiago, Chile; Programa de Doctorado en Medicina de la Conservación, Universidad Andres Bello, Santiago, Chile
| | - Patricio H Manríquez
- Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile; Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Universidad Andres Bello, Santiago, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Universidad Andres Bello, Santiago, Chile; Centro de Investigación Marina Quintay, CIMARQ, Universidad Andrés Bello, Santiago, Chile
| | - Pedro A Quijón
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada.
| |
Collapse
|
8
|
Scrosati RA, Ellrich JA. A 5-year study (2014-2018) of the relationship between coastal phytoplankton abundance and intertidal barnacle size along the Atlantic Canadian coast. PeerJ 2019; 7:e6892. [PMID: 31106077 PMCID: PMC6500718 DOI: 10.7717/peerj.6892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/01/2019] [Indexed: 11/20/2022] Open
Abstract
Benthic-pelagic coupling refers to the ecological relationships between benthic and pelagic environments. Studying such links is particularly useful to understand biological variation in intertidal organisms along marine coasts. Filter-feeding invertebrates are ecologically important on marine rocky shores, so they have often been used to investigate benthic-pelagic coupling. Most studies, however, have been conducted on eastern ocean boundaries. To evaluate benthic-pelagic coupling on a western ocean boundary, we conducted a 5-year study spanning 415 km of the Atlantic coast of Nova Scotia (Canada). We hypothesized that the summer size of intertidal barnacles (Semibalanus balanoides) recruited in the preceding spring would be positively related to the nearshore abundance (biomass) of phytoplankton, as phytoplankton constitutes food for the nauplius larvae and benthic stages of barnacles. Every year between 2014 and 2018, we measured summer barnacle size in clearings created before spring recruitment on the rocky substrate at eight wave-exposed locations along this coast. We then examined the annual relationships between barnacle size and chlorophyll-a concentration (Chl-a), a proxy for phytoplankton biomass. For every year and location, we used satellite data to calculate Chl-a averages for a period ranging from the early spring (when most barnacle larvae were in the water) to the summer (when barnacle size was measured after weeks of growth following spring benthic recruitment). The relationships were always positive, Chl-a explaining nearly half, or more, of the variation in barnacle size in four of the five studied years. These are remarkable results because they were based on a relatively limited number of locations (which often curtails statistical power) and point to the relevance of pelagic food supply to explain variation in intertidal barnacle size along this western ocean boundary coast.
Collapse
Affiliation(s)
- Ricardo A Scrosati
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Julius A Ellrich
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| |
Collapse
|
9
|
Quinn BK. Dramatic decline and limited recovery of a green crab ( Carcinus maenas) population in the Minas Basin, Canada after the summer of 2013. PeerJ 2018; 6:e5566. [PMID: 30245928 PMCID: PMC6148414 DOI: 10.7717/peerj.5566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/13/2018] [Indexed: 11/26/2022] Open
Abstract
This paper reports the results of a ten-year monitoring program of an Atlantic Canadian population of green crabs, Carcinus maenas, in the Minas Basin of the Bay of Fundy. Intertidal densities, sex and reproductive ratios, juvenile recruitment, subtidal catch-per-unit-effort (CPUE), and sizes of crabs in this population were recorded from 2008 to 2017. In 2013 intertidal densities, mean crab sizes, subtidal CPUE, and proportions of crabs mature and reproducing all dramatically decreased to all-time lows, and large crabs virtually disappeared from the population. From 2014 to 2017 the population partially recovered but remained in an altered state. Potential causes of interannual changes to this population were investigated by correlating intertidal densities to 257 monthly environmental variables and performing stepwise multiple regression analyses. Crab densities in a given year were best explained by potential settlement during the summer and the maximum sea-surface temperature during March of the same year. However, potential roles of other factors (e.g., autumn winds, summer temperatures, North Atlantic Oscillation index) could not be ruled out. Changes in abundances of other species in the area, particularly predators and prey of green crabs, have also been observed and present possible alternative causative agents that should be investigated. Populations of other marine species in the Gulf of Maine-Bay of Fundy region within which the Minas Basin is situated have also been reported to have undergone dramatic changes in and after 2013, suggesting the occurrence of some oceanographic event or regime shift in the region. Declines to the monitored crab population in this study may have resulted from this same 2013 event. These observations have implications for recruitment to marine populations in this region.
Collapse
Affiliation(s)
- Brady K Quinn
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada
| |
Collapse
|
10
|
Scrosati RA, Ellrich JA. Benthic–pelagic coupling and bottom‐up forcing in rocky intertidal communities along the Atlantic Canadian coast. Ecosphere 2018. [DOI: 10.1002/ecs2.2229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ricardo A. Scrosati
- Department of Biology St. Francis Xavier University Antigonish Nova Scotia B2G 2W5 Canada
| | - Julius A. Ellrich
- Department of Biology St. Francis Xavier University Antigonish Nova Scotia B2G 2W5 Canada
| |
Collapse
|
11
|
Scrosati RA, Ellrich JA. Unimodal relationship between small-scale barnacle recruitment and the density of pre-existing barnacle adults. PeerJ 2017; 5:e3444. [PMID: 28603678 PMCID: PMC5463980 DOI: 10.7717/peerj.3444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/18/2017] [Indexed: 11/30/2022] Open
Abstract
Recruitment is a key demographic process for population persistence. This paper focuses on barnacle (Semibalanus balanoides) recruitment. In rocky intertidal habitats from the Gulf of St. Lawrence coast of Nova Scotia (Canada), ice scour is common during the winter. At the onset of intertidal barnacle recruitment in early May (after sea ice has fully melted), mostly only adult barnacles and bare substrate are visible at high elevations in wave-exposed habitats. We conducted a multiannual study to investigate if small-scale barnacle recruitment could be predicted from the density of pre-existing adult barnacles. In a year that exhibited a wide adult density range (ca. 0–130 individuals dm−2), the relationship between adult density and recruit density (scaled to the available area for recruitment, which excluded adult barnacles) was unimodal. In years that exhibited a lower adult density range (ca. 0–40/50 individuals dm−2), the relationship between adult and recruit density was positive and resembled the lower half of the unimodal relationship. Overall, adult barnacle density was able to explain 26–40% of the observed variation in recruit density. The unimodal adult–recruit relationship is consistent with previously documented intraspecific interactions. Between low and intermediate adult densities, the positive nature of the relationship relates to the previously documented fact that settlement-seeking larvae are chemically and visually attracted to adults, which might be important for local population persistence. Between intermediate and high adult densities, where population persistence may be less compromised and the abundant adults may limit recruit growth and survival, the negative nature of the relationship suggests that adult barnacles at increasingly high densities stimulate larvae to settle elsewhere. The unimodal pattern may be especially common on shores with moderate rates of larval supply to the shore, because high rates of larval supply may swamp the coast with settlers, decoupling recruit density from local adult abundance.
Collapse
Affiliation(s)
- Ricardo A. Scrosati
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Julius A. Ellrich
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| |
Collapse
|