1
|
Stefanelli R, Beccia MR, Faure AL, Solari PL, Pagnotta S, Jeanson A, Vernier F, Moulin C, Monfort M, Aupiais J, Den Auwer C. Contamination of Bivalve Mytilus galloprovincialis, the Case of Radiocobalt in a Context of Environmental Release. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5726-5735. [PMID: 40066843 DOI: 10.1021/acs.est.4c11743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Since the end of nuclear weapon testing, anthropogenic metallic radionuclides have originated from nuclear accidents such as Chernobyl and Fukushima and controlled releases from the nuclear industry. 60Co is an activation product found in the effluents of nuclear power plants, mobile nuclear reactors, and fuel reprocessing facilities. In this paper, we are addressing the question of (radio)cobalt speciation upon bioaccumulation in the sentinel organism Mytilus galloprovincialis after in vivo contamination in a pseudo-natural system. For this study, inductively coupled plasma mass spectrometry and gamma spectroscopy were used to quantify the cobalt distribution in the various organs: hepatopancreas, gills, visceral mass, mantle, foot, and byssus, as well as in subcellular compartments. Two X-ray spectroscopic techniques were used to decipher cobalt speciation and localization, bulk X-ray absorption spectroscopy (XAS with EXAFS and XANES regimes), and micro X-ray fluorescence imaging (μ-XRF). Lastly, secondary ion mass spectrometry images provided information on cobalt distribution at a subcellular scale. The accumulation of cobalt exhibits significant differences depending on the origin of the individuals, with higher concentration factor values for mussels from the Toulon Naval Base (considered as polluted) compared to Villefranche sur Mer, France (considered as unpolluted). However, concentration in organs always follows the same order: byssus ≫ hepatopancreas ≫ other organs. In terms of spatial distribution, cobalt has been visualized in the hepatopancreas, revealing the presence of preferred zones within some digestive cells and this could be linked to detoxification mechanisms. Finally, the determination of speciation data using XAS suggested the presence of a Co(II)-metallothionein complex in the hepatopancreas and a potential Co(II)-mfp-1 complex in the byssus. While they can be challenging, accumulation and speciation studies in radioecology are essential steps for a comprehensive approach to the impact of trace metallic radionuclides on the marine biota.
Collapse
Affiliation(s)
- Romain Stefanelli
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, 06108 Nice, France
- CEA, DAM, DIF, Arpajon F-91297, France
| | - Maria Rosa Beccia
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, 06108 Nice, France
| | | | - Pier Lorenzo Solari
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Sophie Pagnotta
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée, 06108 Nice, France
| | - Aurélie Jeanson
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, 06108 Nice, France
| | | | | | | | | | | |
Collapse
|
2
|
Theodorakis CW, Meyer MA, Okay O, Yakan SD, Schramm KW. Contamination acts as a genotype-dependent barrier to gene flow, causing genetic erosion and fine-grained population subdivision in Mussels from the Strait of Istanbul. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:47-65. [PMID: 38182932 DOI: 10.1007/s10646-023-02725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/07/2024]
Abstract
This study provides evidence of fine-grained genetic structuring in Mediterranean mussels (Mytilus galloprovincialis) from the Strait of Istanbul, caused by barriers to gene flow via contaminant-mediated selection. In this study, mitochondrial D-loop sequences were analyzed in mussels from 8 localities, all less than 30 kilometers apart, with differing contaminant loads. The results were: 1) Intra-population genetic differentiation (ΦST) between sites with high and low contaminant loads was high (up to 0.459), even at distances of only a few kilometers. 2) Genetic diversity was negatively correlated with the contaminant load ("genetic erosion"). 3) There was evidence of selection, based on haplotype frequencies and neutrality tests (Tajima's D), with purifying selection at the most contaminated site and balancing selection at the least contaminated. 4) Genetic distance was not correlated with geographic distance (no isolation-by-distance), but was correlated with contaminant load at each site. 5) Population dendrograms and Bayesian estimators of migration indicated that gene flow between sites was affected by contamination. For the dendrograms of the sampling sites, the clades clustered according to contaminant load more than geographic distance. Overall, these results suggest that 1) contamination may serve as a genotype-dependent dispersal barrier (i.e., contamination may not affect total number of migrants, just the relative proportions of the haplotypes in the established immigrants), leading strong population differentiation over short distances, and 2) genetic erosion may occur by a combination of selection and altered patterns of haplotype-specific gene flow. These effects may be more pronounced in the Strait of Istanbul than in other locations because of the riverine nature and strong, uni-directional current of the strait.
Collapse
Affiliation(s)
- Christopher W Theodorakis
- Department of Environmental Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026-1099, USA.
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026-1651, USA.
| | - Mary-Ann Meyer
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026-1651, USA
| | - Oya Okay
- Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Maslak, Sarıyer, 34469, Istanbul, Turkey
| | - Sevil Deniz Yakan
- Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Maslak, Sarıyer, 34469, Istanbul, Turkey
| | - Karl-Werner Schramm
- Molecular EXposomics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department für Biowissenschaften, TUM, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Weihenstephaner Steig 23, 85350, Freising, Germany
| |
Collapse
|
3
|
Matoo OB, Neiman M. Bringing Disciplines and People Together to Characterize the Plastic and Genetic Responses of Molluscs to Environmental Change. Integr Comp Biol 2021; 61:1689-1698. [PMID: 34435639 PMCID: PMC8699093 DOI: 10.1093/icb/icab186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Molluscs are remarkably diverse and are found across nearly all ecosystems, meaning that members of this ancient animal phylum provide a powerful means to study genomic-phenotype connections in a climate change framework. Recent advances in genomic sequencing technologies and genome assembly approaches finally allow the relatively cheap and tractable assembly of high-quality mollusc genome resources. After a brief review of these issues and advances, we use a case-study approach to provide some concrete examples of phenotypic plasticity and genomic adaptation in molluscs in response to environmental factors expected to be influenced by climate change. Our goal is to use molluscs as a "common currency" to demonstrate how organismal and evolutionary biologists can use natural systems to make phenotype-genotype connections in the context of changing environments. In parallel, we emphasize the critical need to collaborate and integrate findings across taxa and disciplines in order to use new data and information to advance our understanding of mollusc biology in the context of global environmental change. We end with a brief synthetic summary of the papers inspired by the 2021 SICB Symposium "Genomic Perspectives in Comparative Physiology of Molluscs: Integration across Disciplines".
Collapse
Affiliation(s)
- Omera B Matoo
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln 68588, NE, USA
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City 52242, IA, USA.,Department of Gender, Women's, and Sexuality Studies, University of Iowa, Iowa City 52242, IA, USA
| |
Collapse
|
4
|
Elizabeth Alter S, Tariq L, Creed JK, Megafu E. Evolutionary responses of marine organisms to urbanized seascapes. Evol Appl 2021; 14:210-232. [PMID: 33519966 PMCID: PMC7819572 DOI: 10.1111/eva.13048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
Many of the world's major cities are located in coastal zones, resulting in urban and industrial impacts on adjacent marine ecosystems. These pressures, which include pollutants, sewage, runoff and debris, temperature increases, hardened shorelines/structures, and light and acoustic pollution, have resulted in new evolutionary landscapes for coastal marine organisms. Marine environmental changes influenced by urbanization may create new selective regimes or may influence neutral evolution via impacts on gene flow or partitioning of genetic diversity across seascapes. While some urban selective pressures, such as hardened surfaces, are similar to those experienced by terrestrial species, others, such as oxidative stress, are specific to aquatic environments. Moreover, spatial and temporal scales of evolutionary responses may differ in the ocean due to the spatial extent of selective pressures and greater capacity for dispersal/gene flow. Here, we present a conceptual framework and synthesis of current research on evolutionary responses of marine organisms to urban pressures. We review urban impacts on genetic diversity and gene flow and examine evidence that marine species are adapting, or are predicted to adapt, to urbanization over rapid evolutionary time frames. Our findings indicate that in the majority of studies, urban stressors are correlated with reduced genetic diversity. Genetic structure is often increased in urbanized settings, but artificial structures can also act as stepping stones for some hard-surface specialists, promoting range expansion. Most evidence for rapid adaptation to urban stressors comes from studies of heritable tolerance to pollutants in a relatively small number of species; however, the majority of marine ecotoxicology studies do not test directly for heritability. Finally, we highlight current gaps in our understanding of evolutionary processes in marine urban environments and present a framework for future research to address these gaps.
Collapse
Affiliation(s)
- S. Elizabeth Alter
- Department of Biology & ChemistryCalifornia State University, Monterey BayChapman Academic Science CenterSeasideCAUSA
- Department of BiologyYork CollegeCity University of New YorkJamaicaNYUSA
- Department of IchthyologyAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Laraib Tariq
- Department of BiologyYork CollegeCity University of New YorkJamaicaNYUSA
| | - James Keanu Creed
- Department of BiologyYork CollegeCity University of New YorkJamaicaNYUSA
- Department of IchthyologyAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Emmanuel Megafu
- Department of BiologyYork CollegeCity University of New YorkJamaicaNYUSA
| |
Collapse
|
5
|
Simon A, Arbiol C, Nielsen EE, Couteau J, Sussarellu R, Burgeot T, Bernard I, Coolen JWP, Lamy J, Robert S, Skazina M, Strelkov P, Queiroga H, Cancio I, Welch JJ, Viard F, Bierne N. Replicated anthropogenic hybridisations reveal parallel patterns of admixture in marine mussels. Evol Appl 2020; 13:575-599. [PMID: 32431737 PMCID: PMC7045717 DOI: 10.1111/eva.12879] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 12/29/2022] Open
Abstract
Human-mediated transport creates secondary contacts between genetically differentiated lineages, bringing new opportunities for gene exchange. When similar introductions occur in different places, they provide informally replicated experiments for studying hybridisation. We here examined 4,279 Mytilus mussels, sampled in Europe and genotyped with 77 ancestry-informative markers. We identified a type of introduced mussels, called "dock mussels," associated with port habitats and displaying a particular genetic signal of admixture between M. edulis and the Mediterranean lineage of M. galloprovincialis. These mussels exhibit similarities in their ancestry compositions, regardless of the local native genetic backgrounds and the distance separating colonised ports. We observed fine-scale genetic shifts at the port entrance, at scales below natural dispersal distance. Such sharp clines do not fit with migration-selection tension zone models, and instead suggest habitat choice and early-stage adaptation to the port environment, possibly coupled with connectivity barriers. Variations in the spread and admixture patterns of dock mussels seem to be influenced by the local native genetic backgrounds encountered. We next examined departures from the average admixture rate at different loci, and compared human-mediated admixture events, to naturally admixed populations and experimental crosses. When the same M. galloprovincialis background was involved, positive correlations in the departures of loci across locations were found; but when different backgrounds were involved, no or negative correlations were observed. While some observed positive correlations might be best explained by a shared history and saltatory colonisation, others are likely produced by parallel selective events. Altogether, genome-wide effect of admixture seems repeatable and more dependent on genetic background than environmental context. Our results pave the way towards further genomic analyses of admixture, and monitoring of the spread of dock mussels both at large and at fine spacial scales.
Collapse
Affiliation(s)
- Alexis Simon
- ISEMUniv MontpellierCNRSEPHEIRDMontpellierFrance
| | | | - Einar Eg Nielsen
- Section for Marine Living ResourcesNational Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | | - Rossana Sussarellu
- Ifremer Unité Biogéochimie et ÉcotoxicologieCentre AtlantiqueNantesFrance
| | - Thierry Burgeot
- Ifremer Unité Biogéochimie et ÉcotoxicologieCentre AtlantiqueNantesFrance
| | | | - Joop W. P. Coolen
- Wageningen Marine ResearchDen HelderThe Netherlands
- Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
| | - Jean‐Baptiste Lamy
- SG2M‐LGPMMLaboratoire de Génétique et Pathologie des Mollusques MarinsIfremerLa TrembladeFrance
| | - Stéphane Robert
- SG2M‐LGPMMLaboratoire de Génétique et Pathologie des Mollusques MarinsIfremerLa TrembladeFrance
| | - Maria Skazina
- St. Petersburg State UniversitySt. PetersburgRussia
- Laboratory of Monitoring and Conservation of Natural Arctic EcosystemsMurmansk Arctic State UniversityMurmanskRussia
| | - Petr Strelkov
- St. Petersburg State UniversitySt. PetersburgRussia
- Laboratory of Monitoring and Conservation of Natural Arctic EcosystemsMurmansk Arctic State UniversityMurmanskRussia
| | | | - Ibon Cancio
- CBET Research GroupDepartment of Zoology and Animal Cell BiologyFaculty Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE‐UPV/EHU)University of the Basque Country (UPV/EHU)BilbaoSpain
| | - John J. Welch
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Frédérique Viard
- Department AD2MUPMC Univ Paris 06CNRSUMR 7144Station BiologiqueSorbonne UniversitésRoscoffFrance
| | | |
Collapse
|
6
|
Larsson J, Smolarz K, Świeżak J, Turower M, Czerniawska N, Grahn M. Multi biomarker analysis of pollution effect on resident populations of blue mussels from the Baltic Sea. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:240-256. [PMID: 29558709 DOI: 10.1016/j.aquatox.2018.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/10/2018] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
Anthropogenic pollution including metals, petroleum, toxins, nutrients and many others is a growing problem in the marine environment. These are important factors altering the environment and by that the fate of many local populations of marine organisms. The aim of this study was to assess the impact of selected point pollution sources on resident populations of the blue mussel (Mytilus edulis trossulus) in the Baltic Sea using multiple biomarker approach. The study used a nested sampling scheme in which sites from reference (REF) habitats are geographically paired with selected sites from sewage treatment plants (STP) and harbors (HAR). The results showed that mussels from harbors had a higher frequency of histological abnormalities in the digestive gland compared to mussels from sewage effluent affected areas and reference sites. However these mussels together with mussels from STPs had higher lipid content, body mass index (BMI) and gonado-somatic index (GSI) compared to mussels from reference sites. A marked spatial variability was found with a stronger toxicity of ambient environment affecting resident mussel populations in the Gulf of Gdańsk area, while an opposite pattern was found in Tvärminne area. Yet the blue mussels sampled in the Gulf of Gdańsk were characterized by the highest GSI and BMI values compared to Askö and Tvärminne populations. No differences in analyzed biomarker response related to species identity, measured by a species-specific genetic marker, were found indicative of strong genetic introgression in the Baltic Proper.
Collapse
Affiliation(s)
- Josefine Larsson
- Södertörn University, School of Natural Science, Technology and Environmental Studies, Huddinge, Stockholm, Sweden
| | - Katarzyna Smolarz
- University of Gdańsk, Institute of Oceanography, Department of Marine Ecosystem Functioning, Laboratory of Estuarine Ecology, Gdynia, Poland.
| | - Justyna Świeżak
- University of Gdańsk, Institute of Oceanography, Department of Marine Ecosystem Functioning, Laboratory of Estuarine Ecology, Gdynia, Poland
| | - Magda Turower
- University of Gdańsk, Institute of Oceanography, Department of Marine Ecosystem Functioning, Laboratory of Estuarine Ecology, Gdynia, Poland
| | - Natalia Czerniawska
- University of Gdańsk, Institute of Oceanography, Department of Marine Ecosystem Functioning, Laboratory of Estuarine Ecology, Gdynia, Poland
| | - Mats Grahn
- Södertörn University, School of Natural Science, Technology and Environmental Studies, Huddinge, Stockholm, Sweden
| |
Collapse
|
7
|
Wedekind C. Demographic and genetic consequences of disturbed sex determination. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160326. [PMID: 28760767 PMCID: PMC5540866 DOI: 10.1098/rstb.2016.0326] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
During sex determination, genetic and/or environmental factors determine the cascade of processes of gonad development. Many organisms, therefore, have a developmental window in which their sex determination can be sensitive to, for example, unusual temperatures or chemical pollutants. Disturbed environments can distort population sex ratios and may even cause sex reversal in species with genetic sex determination. The resulting genotype-phenotype mismatches can have long-lasting effects on population demography and genetics. I review the theoretical and empirical work in this context and explore in a simple population model the role of the fitness vyy of chromosomally aberrant YY genotypes that are a consequence of environmentally induced feminization. Low vyy is mostly beneficial for population growth. During feminization, low vyy reduces the proportion of genetic males and hence accelerates population growth, especially at low rates of feminization and at high fitness costs of the feminization itself (i.e. when feminization would otherwise not affect population dynamics much). When sex reversal ceases, low vyy mitigates the negative effects of feminization and can even prevent population extinction. Little is known about vyy in natural populations. The available models now need to be parametrized in order to better predict the long-term consequences of disturbed sex determination.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'.
Collapse
Affiliation(s)
- Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|