1
|
Wan W, Grossart HP, Wu QL, Xiong X, Yuan W, Zhang W, Zhang Q, Liu W, Yang Y. Global meta-analysis deciphering ecological restoration performance of dredging: Divergent variabilities of pollutants and hydrobiontes. WATER RESEARCH 2025; 280:123506. [PMID: 40118002 DOI: 10.1016/j.watres.2025.123506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/08/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Global "Sustainable Development Goals" propose ambitious targets to protect water resource and provide clean water, whereas comprehensive understanding of restoration performance and ecological mechanisms are lacking for dredging adopted for purifying polluted waterbodies and maintaining navigation channels. Here, we conducted a global meta-analysis to estimate ecological restoration consequence of dredging as pollution mitigation and navigation channel maintenance measures using a dataset compiled from 191 articles covering 696 studies and 84 environmental and ecological parameters (e.g., pollutants and hydrobiontes). We confirm that dredging shows negative influences on 77.50% pollutants in the BA model (before dredging vs. after dredging) and 84.21% pollutants in the CI model (control vs. impact) as well as on sediment nutrient fluxes. Additionally, 57.14% attributes (i.e., richness, diversity, biomass, and density) of hydrobiontes in the BA model and 89.47% attributes of hydrobiontes in the CI model responded negatively to dredging. As a result, 76.32% of the pollutants and 61.11% of the hydrobiont attributes responded uniformly to dredging in the BA and CI models. Our findings emphasize that dredging generally decreases pollutants and mitigates algal blooms, controlling phosphorus is easier than controlling nitrogen by dredging, and attributes (i.e., richness, diversity, and biomass) of hydrobiontes (i.e., zooplankton, phytoplankton, and zoobenthos) are density-dependent in dredging-disturbed environments. Our findings broaden our knowledge on ecological restoration performance of dredging as a mitigation measure in global aquatic ecosystems, and these findings might be helpful to use and optimize dredging to efficiently and sustainably purify polluted aquatic ecosystems.
Collapse
Affiliation(s)
- Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hans-Peter Grossart
- Dept. Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur Alten Fischerrhütte 2, Stechlin D-16775, Germany; University of Potsdam, Institute of Biochemistry and Biology, Maulbeerallee 2, D-14469, Potsdam, Germany
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiang Xiong
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China
| | - Wenke Yuan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China
| | - Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
2
|
South J, Botha TL, Wolmarans NJ, Wepener V, Weyl OLF. Playing with food: Detection of prey injury cues stimulates increased functional foraging traits in Xenopus laevis. AFRICAN ZOOLOGY 2020. [DOI: 10.1080/15627020.2020.1723439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Josie South
- DST/NRF Research Chair in Inland Fisheries and Freshwater Ecology, South African Institute for Aquatic Biodiversity (SAIAB), Grahamstown, South Africa
| | - Tarryn L Botha
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Nico J Wolmarans
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Victor Wepener
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Olaf LF Weyl
- DST/NRF Research Chair in Inland Fisheries and Freshwater Ecology, South African Institute for Aquatic Biodiversity (SAIAB), Grahamstown, South Africa
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Behringer DC, Karvonen A, Bojko J. Parasite avoidance behaviours in aquatic environments. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0202. [PMID: 29866915 DOI: 10.1098/rstb.2017.0202] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2018] [Indexed: 02/05/2023] Open
Abstract
Parasites, including macroparasites, protists, fungi, bacteria and viruses, can impose a heavy burden upon host animals. However, hosts are not without defences. One aspect of host defence, behavioural avoidance, has been studied in the terrestrial realm for over 50 years, but was first reported from the aquatic environment approximately 20 years ago. Evidence has mounted on the importance of parasite avoidance behaviours and it is increasingly apparent that there are core similarities in the function and benefit of this defence mechanism between terrestrial and aquatic systems. However, there are also stark differences driven by the unique biotic and abiotic characteristics of terrestrial and aquatic (marine and freshwater) environments. Here, we review avoidance behaviours in a comparative framework and highlight the characteristics of each environment that drive differences in the suite of mechanisms and cues that animals use to avoid parasites. We then explore trade-offs, potential negative effects of avoidance behaviour and the influence of human activities on avoidance behaviours. We conclude that avoidance behaviours are understudied in aquatic environments but can have significant implications for disease ecology and epidemiology, especially considering the accelerating emergence and re-emergence of parasites.This article is part of the Theo Murphy meeting issue 'Evolution of pathogen and parasite avoidance behaviours'.
Collapse
Affiliation(s)
- Donald C Behringer
- School of Forest Resources and Conservation, Program in Fisheries and Aquatic Sciences, University of Florida, Gainesville, FL, USA .,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Anssi Karvonen
- Department of Biological and Environmental Science, University of Jyvaskyla, PO Box 35, 40014 Jyvaskyla, Finland
| | - Jamie Bojko
- School of Forest Resources and Conservation, Program in Fisheries and Aquatic Sciences, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|