1
|
Chaudron Y, Pifferi F, Aujard F. Overview of age-related changes in psychomotor and cognitive functions in a prosimian primate, the gray mouse lemur (Microcebus murinus): Recent advances in risk factors and antiaging interventions. Am J Primatol 2021; 83:e23337. [PMID: 34706117 DOI: 10.1002/ajp.23337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/13/2023]
Abstract
Aging is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. Impaired glucose homeostasis is a major risk factor for cognitive decline in middle-aged humans, pointing at the existence of early markers of unhealthy aging. The gray mouse lemur (Microcebus murinus), a small lemuriform Malagasy primate, shows relatively slow aging with decreased psychomotor capacities at middle-age (around 5-year old). In some cases (∼10%), it spontaneously leads to pathological aging. In this case, some age-related deficits, such as severe cognitive decline, brain atrophy, amyloidosis, and glucoregulatory imbalance are congruent with what is observed in humans. In the present review, we inventory the changes occurring in psychomotor and cognitive functions during healthy and pathological aging in mouse lemur. It includes a summary of the cerebral, metabolic, and cellular alterations that occur during aging and their relation to cognitive decline. As nutrition is one of the major nonpharmacological antiaging strategies with major potential effects on cognitive performances, we also discuss its role in brain functions and cognitive decline in this species. We show that the overall approach of aging studies in the gray mouse lemur offers promising ways of investigation for understanding, prevention, and treatments of pathological aging in humans.
Collapse
Affiliation(s)
- Yohann Chaudron
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| | - Fabien Pifferi
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| | - Fabienne Aujard
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| |
Collapse
|
2
|
Fritz RG, Zimmermann E, Meier M, Mestre-Francés N, Radespiel U, Schmidtke D. Neurobiological substrates of animal personality and cognition in a nonhuman primate (Microcebus murinus). Brain Behav 2020; 10:e01752. [PMID: 32683780 PMCID: PMC7507526 DOI: 10.1002/brb3.1752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The gray mouse lemur (Microcebus murinus) is an important nonhuman primate model in biomedical research. Numerous studies investigated mouse lemur behavior and possible factors underlying interindividual variation in both, animal personality and cognitive performance. Some effects, such as an age-related decline in executive functioning, have robustly been found across laboratory colonies; however, little is known about the brain structural substrates in mouse lemurs. METHODS Here, we provide first exploratory data linking in vivo magnetic resonance imaging of 34 mouse lemurs to performance in a standardized, touchscreen-based task on object discrimination and reversal learning as well as to animal personality under different scenarios in an open field. RESULTS High interindividual variability in both brain morphometric and behavioral measurements was found, but only few significant correlations between brain structure and behavior were revealed: Object discrimination learning was linked to the volume of the hippocampus and to temporal lobe thickness, while reversal learning was linked to thalamic volume and the thickness of the anterior cingulate lobe. Emergence latency into the open field correlated with volume of the amygdala. General exploration-avoidance in the empty open-field arena correlated with thicknesses of the anterior cingulate lobe and fronto-parietal substructures. Neophilia, assessed as exploration of a novel object placed in the arena, among others, related to the volume of the caudate nucleus. CONCLUSION In summary, our data suggest a prominent role of temporal structures (including the hippocampus) for learning capability, as well as thalamic and anterior cingulate structures for cognitive flexibility and response inhibition. The amygdala, the anterior cingulate lobe, and the caudate nucleus are particularly linked to animal personality in the open-field setting. These findings are congruent with the comparative psychological literature and provide a valuable basis for future studies elucidating aspects of behavioral variation in this nonhuman primate model.
Collapse
Affiliation(s)
- Rebecca Grace Fritz
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Martin Meier
- ZTL-Imaging, Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | | | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Daniel Schmidtke
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
3
|
Schmidtke D, Zimmermann E, Trouche SG, Fontès P, Verdier JM, Mestre-Francés N. Linking cognition to age and amyloid-β burden in the brain of a nonhuman primate (Microcebus murinus). Neurobiol Aging 2020; 94:207-216. [PMID: 32650184 DOI: 10.1016/j.neurobiolaging.2020.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 03/04/2020] [Accepted: 03/26/2020] [Indexed: 12/22/2022]
Abstract
The gray mouse lemur (Microcebus murinus) is a valuable model in research on age-related proteopathies. This nonhuman primate, comparable to humans, naturally develops tau and amyloid-β proteopathies during aging. Whether these are linked to cognitive alterations is unknown. Here, standardized cognitive testing in pairwise discrimination and reversal learning in a sample of 37 aged (>5 years) subjects was combined with tau and amyloid-β histochemistry in individuals that died naturally. Correlation analyses in successfully tested subjects (n = 22) revealed a significant relation between object discrimination learning and age, strongly influenced by outliers, suggesting pathological cases. Where neuroimmunohistochemistry was possible, as subjects deceased, the naturally developed cortical amyloid-β burden was significantly linked to pretraining success (intraneuronal accumulations) and discrimination learning (extracellular deposits), showing that cognitive (pairwise discrimination) performance in old age predicts the natural accumulation of amyloid-β at death. This is the first description of a direct relation between the cortical amyloid-β burden and cognition in a nonhuman primate.
Collapse
Affiliation(s)
- Daniel Schmidtke
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience Hannover, Hannover, Germany.
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Stéphanie G Trouche
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| | - Pascaline Fontès
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| | - Jean-Michel Verdier
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| | - Nadine Mestre-Francés
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| |
Collapse
|
4
|
Fritz RG, Zimmermann E, Picq JL, Lautier C, Meier M, Kästner S, Schmidtke D. Sex-specific patterns of age-related cerebral atrophy in a nonhuman primate Microcebus murinus. Neurobiol Aging 2020; 91:148-159. [PMID: 32229027 DOI: 10.1016/j.neurobiolaging.2020.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022]
Abstract
Steadily aging populations result in a growing need for research regarding age-related brain alterations and neurodegenerative pathologies. By allowing a good translation of results to humans, nonhuman primates, such as the gray mouse lemur Microcebus murinus, have gained attention in this field. Our aim was to examine correlations between atrophy-induced brain alterations and age, with special focus on sex differences in mouse lemurs. For cerebral volumetric measurements, in vivo magnetic resonance imaging was performed on 59 animals (28♀♀/31♂♂) aged between 1.0 to 11.9 years. Volumes of different brain regions, cortical thicknesses, and ventricular expansions were evaluated. Analyses revealed significant brain atrophies with increasing age, particularly around the caudate nucleus, the thalamus, and frontal, parietal, and temporo-occipital regions. Especially old females showed a strong decline in cingulate cortex thickness and had higher values of ventricular expansion, whereas cortical thickness of the splenium and occipital regions decreased mainly in males. Our study, thus, provides first evidence for sex-specific, age-related brain alterations in a nonhuman primate, suggesting that mouse lemurs can help elucidating the mechanism underlying sex disparities in cerebral aging, for which there is mixed evidence in humans.
Collapse
Affiliation(s)
- Rebecca G Fritz
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jean-Luc Picq
- Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France; Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Fontenay-aux-Roses, France; Laboratoire de Psychopathologie et de Neuropsychologie, Université Paris 8, St Denis, France
| | - Corinne Lautier
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL University, Montpellier, France
| | - Martin Meier
- ZTL-Imaging, Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Sabine Kästner
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Daniel Schmidtke
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
5
|
Hozer C, Pifferi F, Aujard F, Perret M. The Biological Clock in Gray Mouse Lemur: Adaptive, Evolutionary and Aging Considerations in an Emerging Non-human Primate Model. Front Physiol 2019; 10:1033. [PMID: 31447706 PMCID: PMC6696974 DOI: 10.3389/fphys.2019.01033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/26/2019] [Indexed: 01/04/2023] Open
Abstract
Circadian rhythms, which measure time on a scale of 24 h, are genetically generated by the circadian clock, which plays a crucial role in the regulation of almost every physiological and metabolic process in most organisms. This review gathers all the available information about the circadian clock in a small Malagasy primate, the gray mouse lemur (Microcebus murinus), and reports 30 years data from the historical colony at Brunoy (France). Although the mouse lemur has long been seen as a "primitive" species, its clock displays high phenotypic plasticity, allowing perfect adaptation of its biological rhythms to environmental challenges (seasonality, food availability). The alterations of the circadian timing system in M. murinus during aging show many similarities with those in human aging. Comparisons are drawn with other mammalian species (more specifically, with rodents, other non-human primates and humans) to demonstrate that the gray mouse lemur is a good complementary and alternative model for studying the circadian clock and, more broadly, brain aging and pathologies.
Collapse
|
6
|
Schmidtke D, Lempp C, Dubicanac M, Radespiel U, Zimmermann E, Baumgärtner W, Kästner S, Meier M, Balkema-Buschmann A, Harris RA, Raveendran M, Muzny DM, Worley KC, Rogers J. Spontaneous Spongiform Brainstem Degeneration in a Young Mouse Lemur ( Microcebus murinus) with Conspicuous Behavioral, Motor, Growth, and Ocular Pathologies. Comp Med 2018; 68:489-495. [PMID: 30486920 DOI: 10.30802/aalas-cm-18-000019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here we report a case of severe growth retardation and neurologic abnormalities in a female gray mouse lemur (Microcebus murinus), a small NHP species for which the genomic sequence recently became available. The female lemur we present here died on postnatal day 125. This lemur had impaired development of motor skills and showed severe ataxia and tremors. In addition, hearing seemed normal whereas ophthalmic examination revealed incipient bilateral cataracts, abnormal pigmentation in the lens of the left eye, and a missing optokinetic nystagmus, which indicated impaired vision. Most prominently, the lemur showed severe growth retardation. Necropsy revealed maldevelopment of the left reproductive organs and unilateral dilation of the right lateral ventricle, which was confirmed on brain MRI. Brain histology further revealed large, bilateral areas of vacuolation within the brainstem, but immunohistochemistry indicated no sign of pathologic prion protein deposition. Full genomic sequencing of the lemur revealed a probably pathologic mutation in LARGE2 of the LARGE gene family, which has been associated with congenital muscular dystrophies. However, potentially functional mutations in other genes were also present. The observed behavioral and motor signs in the presented animal might have been linked to spongiform degeneration and resulting brainstem dysfunction and progressive muscle weakness. The macroscopic developmental abnormalities and ophthalmic findings might be genetic in origin and linked to the mutation in LARGE2.
Collapse
Affiliation(s)
- Daniel Schmidtke
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany; Center for Neuroscience Systems Hannover, Hannover, Lower Saxony, Germany.
| | - Charlotte Lempp
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Marko Dubicanac
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany; Center for Neuroscience Systems Hannover, Hannover, Lower Saxony, Germany
| | - Wolfgang Baumgärtner
- Center for Neuroscience Systems Hannover, Hannover, Lower Saxony, Germany; Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Sabine Kästner
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Martin Meier
- Imaging Center, Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, FriedrichLoeffler-Institute, Federal Research Institute for Animal Health, Greifswald, Mecklenburg Western Pomerania, Germany
| | - R Alan Harris
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Muthuswamy Raveendran
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Donna M Muzny
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Kim C Worley
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jeffrey Rogers
- Department of Molecular and Human Genetics and Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Dubicanac M, Radespiel U, Zimmermann E. A review on ocular findings in mouse lemurs: potential links to age and genetic background. Primate Biol 2017; 4:215-228. [PMID: 32110707 PMCID: PMC7041539 DOI: 10.5194/pb-4-215-2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022] Open
Abstract
Mouse lemurs, the world's smallest primates, inhabit forests in
Madagascar. They are nocturnal, arboreal and dependent on vision
for their everyday lives. In the last decades, the grey mouse
lemur became increasingly important for biomedical research, in particular
aging research. Experiments which require the combination of visual
fitness and old age consequently depend on a solid knowledge of
ocular pathologies. Although ocular diseases in mouse lemurs have
been described as being common, they have not received much
attention so far. Yet it is important to know when and why ocular
diseases in captive mouse lemurs may occur. This review aims to
provide a comprehensive overview of known ocular findings in mouse
lemurs. It summarizes the frequency of ocular findings in captive
mouse lemur colonies and points to their likely causes and treatment
options based on the evidence available from other animals and
humans. In addition, it shall be discussed whether age or genetic
background may affect their development. This review may be used as
a reference for future studies which require an assessment of visual
performance in mouse lemurs and help to evaluate observed clinical
signs and ocular diseases. Furthermore, the high incidence of
specific diseases may provide new perspectives and set the groundwork
for a new animal model for ocular research.
Collapse
Affiliation(s)
- Marko Dubicanac
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| |
Collapse
|