1
|
Abraham SSC, Barney A, Mohan S, Joy P, Ganesan P, Das S, Cherupanakkal C, Jose A, A R, Zatkova A, Danda S. Gene expression & biochemical analysis in alkaptonuria caused by a founder pathogenic variant across different age groups from India. Indian J Med Res 2024; 160:448-456. [PMID: 39737503 DOI: 10.25259/ijmr_1900_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/15/2024] [Indexed: 01/01/2025] Open
Abstract
Background & objectives Alkaptonuria (AKU) is an autosomal recessive disease wherein biallelic pathogenic variants in the homogentisate 1,2- dioxygenase (HGD) gene encoding the enzyme homogentisate 1,2 dioxygenase cause high levels of homogentisic acid (HGA) to circulate within the body leading to its deposition in connective tissues and excretion in urine. A homozygous splice donor variant (c.87+1G>A) has been identified to be the founder variant causing alkaptonuria among Narikuravars, a group of gypsies settled in Tamil Nadu. Methods Blood and urine samples of 30 homozygous splice site donor variant individuals (2 groups aged 7-20 and 21-83 yr, with 9 and 21 individuals, respectively), carriers and 30 wild-type individuals from the Narikuravars were collected during field visits after obtaining informed consent. Clinical evaluation and genetic counselling were done. The plasma and urine HGA levels were estimated by high-performance liquid chromatography. RNA was extracted from the peripheral blood and reverse transcribed. Sanger sequencing was done to check the consequence of the splice donor variant. Relative quantification of the cDNA in the three groups was done by real-time qPCR (RT-qPCR) studies using reference genes followed by Pearson's correlation analysis. Results In our cohort, among the affected alkaptonuria individuals, the minimum age for eye pigmentation detected was 23 yr. Similarly, the minimum age for back pain and any joint pain was 30 yr and 38 yr, respectively. Sequencing of the cDNA confirmed exon 2 skipping in affected individuals. In comparison to the normal individuals, the affected individuals showed reduced HGD expression. HGD relative expression showed a significant correlation (P<0.05) with mean plasma HGA levels in the younger (≤22 yr) age group but not in the older one. There was also a significant correlation (P<0.05) of reduced HGD expression with back pain in the 21-37 yr age group. Increasing age showed a positive correlation with circulating mean plasma HGA levels and a negative correlation with excreted HGA. Interpretation & conclusions As per the authors' knowledge, this is the first study to confirm the functional effect by RT-PCR of this highly prevalent founder HGD variant causing alkaptonuria in the Narikuravar community. Both plasma and urinary HGA levels correlated well with the gene expression of this variant and could serve as potential markers of AKU severity for those with this variant.
Collapse
Affiliation(s)
| | - Anitha Barney
- Department of Clinical Genetics, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sony Mohan
- Department of Clinical Genetics, Christian Medical College, Vellore, Tamil Nadu, India
| | - Praisy Joy
- Department of Clinical Genetics, Christian Medical College, Vellore, Tamil Nadu, India
| | - Paramasivam Ganesan
- Department of Clinical Genetics, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sweta Das
- Department of Clinical Genetics, Christian Medical College, Vellore, Tamil Nadu, India
| | - Cleetus Cherupanakkal
- Department of Biochemistry, Believers Church Medical College and Hospital, Thiruvalla, Kerala, India
| | - Arun Jose
- Department of Clinical Biochemistry, Christian Medical College, Vellore, Tamil Nadu, India
| | - Rekha A
- Department of Clinical Genetics, Christian Medical College, Vellore, Tamil Nadu, India
| | - Andrea Zatkova
- Human Genetics, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Sumita Danda
- Department of Clinical Genetics, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Figat M, Wiśniewska A, Plichta J, Miłkowska-Dymanowska J, Majewski S, Karbownik MS, Kuna P, Panek MG. Potential association between obstructive lung diseases and cognitive decline. Front Immunol 2024; 15:1363373. [PMID: 39104536 PMCID: PMC11298337 DOI: 10.3389/fimmu.2024.1363373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Chronic obstructive lung diseases, such as asthma and COPD, appear to have a more extensive impact on overall functioning than previously believed. The latest data from clinical trials suggests a potential link between cognitive deterioration and chronic obstructive inflammatory lung disease. This raises the question of whether these diseases affect cognitive functions and whether any relevant biomarker may be identified. Methods This prospective observational study included 78 patients divided equally into asthma, COPD, and control groups (n=26, 27 and 25 respectively). The participants underwent identical examinations at the beginning of the study and after at least 12 months. The test battery comprised 16 questionnaires (11 self-rated, 5 observer-rated, assessing cognition and mental state), spirometry, and blood samples taken for PKA and CREB mRNA evaluation. Results A 2.3-fold increase in CREB mRNA was observed between examinations (p=0.014) for all participants; no distinctions were observed between the asthma, COPD, and control groups. Pooled, adjusted data revealed a borderline interaction between diagnosis and CREB expression in predicting MMSE (p=0.055) in COPD, CREB expression is also associated with MMSE (β=0.273, p=0.034) like with the other conducted tests (β=0.327, p=0.024) from COPD patients. No correlations were generally found for PKA, although one significant negative correlation was found between the first and second time points in the COPD group (β=-0.4157, p=0.049),. Discussion Chronic obstructive lung diseases, such as asthma and COPD, may have some linkage to impairment of cognitive functions. However, the noted rise in CREB mRNA expression might suggest a potential avenue for assessing possible changes in cognition, especially in COPD; such findings may reveal additional transcription factors linked to cognitive decline.
Collapse
Affiliation(s)
- Magdalena Figat
- Department of Internal Medicine, Asthma and Allergy, IIChair of Internal Medicine, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Wiśniewska
- Department of Clinical Pharmacology, IChair of Internal Medicine, Medical University of Lodz, Lodz, Poland
| | - Jacek Plichta
- Department of Internal Medicine, Asthma and Allergy, IIChair of Internal Medicine, Medical University of Lodz, Lodz, Poland
| | | | | | - Michał S. Karbownik
- Department of Pharmacology and Toxicology, Medical University of Lodz, Lodz, Poland
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy, IIChair of Internal Medicine, Medical University of Lodz, Lodz, Poland
| | - Michał G. Panek
- Department of Internal Medicine, Asthma and Allergy, IIChair of Internal Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
3
|
Byun E, McCurry SM, Kwon S, Tsai CS, Jun J, Bammler TK, Becker KJ, Thompson HJ. Fatigue, Toll-Like Receptor 4, and Pro-Inflammatory Cytokines in Adults With Subarachnoid Hemorrhage: A 6-Month Longitudinal Study. Biol Res Nurs 2024; 26:192-201. [PMID: 37788710 DOI: 10.1177/10998004231203257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
BACKGROUND Fatigue is prevalent in subarachnoid hemorrhage (SAH) survivors. Biological mechanisms underlying fatigue post-SAH are not clear. Inflammation may contribute to the development of fatigue. This study aimed to examine the associations between inflammatory markers and fatigue during the first 6 months post-SAH. Specific biomarkers examined included both early and concurrent expression of Toll-Like Receptor 4 (TLR4) messenger RNA (mRNA) and plasma concentrations of pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNF-α), Interleukin (IL)1β, and IL6. METHODS We conducted a 6-month longitudinal study with a convenience sample of 43 SAH survivors. We collected blood samples on days 2, 3, and 7 and 2, 3, and 6 months post-SAH to assess biomarkers. Fatigue was assessed by the PROMIS Fatigue Scale at 2, 3, and 6 months. Linear mixed models were used to test the associations between early (days 2, 3, and 7) and concurrent (2, 3, and 6 months) TLR4 mRNA expression (TagMan gene expression assays) and TNF-α, IL1β, and IL6 plasma concentrations (multiplex assays) and concurrent fatigue. RESULTS 28% of SAH survivors experienced fatigue during the first 6 months post-SAH. Fatigue levels in SAH survivors were higher than those of the U.S. population and consistent during the 6 months. Experience of fatigue during the 6 months post-SAH was associated with higher IL1β plasma concentrations on day 7 and IL1β, IL6, and TNF-α plasma concentrations during the 6 months post-SAH. CONCLUSION Inflammation appears to underlie the development of fatigue in SAH survivors.
Collapse
Affiliation(s)
- Eeeseung Byun
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, WA, USA
| | - Susan M McCurry
- Department of Child, Family and Population Health Nursing, University of Washington, Seattle, WA, USA
| | - Suyoung Kwon
- Department of Child, Family and Population Health Nursing, University of Washington, Seattle, WA, USA
| | - Chi-Shan Tsai
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, WA, USA
| | - Jeehye Jun
- Red Cross College of Nursing, Chung-Ang University, Seoul, Republic of Korea
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Kyra J Becker
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Hilaire J Thompson
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Ferreira SA, Tallia F, Heyraud A, Walker SA, Salzlechner C, Jones JR, Rankin SM. 3D printed hybrid scaffolds do not induce adverse inflammation in mice and direct human BM-MSC chondrogenesis in vitro. BIOMATERIALS AND BIOSYSTEMS 2024; 13:100087. [PMID: 38312434 PMCID: PMC10835132 DOI: 10.1016/j.bbiosy.2024.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Biomaterials that can improve the healing of articular cartilage lesions are needed. To address this unmet need, we developed novel 3D printed silica/poly(tetrahydrofuran)/poly(ε-caprolactone) (SiO2/PTHF/PCL-diCOOH) hybrid scaffolds. Our aim was to carry out essential studies to advance this medical device towards functional validation in pre-clinical trials. First, we show that the chemical composition, microarchitecture and mechanical properties of these scaffolds were not affected by sterilisation with gamma irradiation. To evaluate the systemic and local immunogenic reactivity of the sterilised 3D printed hybrid scaffolds, they were implanted subcutaneously into Balb/c mice. The scaffolds did not trigger a systemic inflammatory response over one week of implantation. The interaction between the host immune system and the implanted scaffold elicited a local physiological reaction with infiltration of mononuclear cells without any signs of a chronic inflammatory response. Then, we investigated how these 3D printed hybrid scaffolds direct chondrogenesis in vitro. Human bone marrow-derived mesenchymal stem/stromal cells (hBM-MSCs) seeded within the 3D printed hybrid scaffolds were cultured under normoxic or hypoxic conditions, with or without chondrogenic supplements. Chondrogenic differentiation assessed by both gene expression and protein production analyses showed that 3D printed hybrid scaffolds support hBM-MSC chondrogenesis. Articular cartilage-specific extracellular matrix deposition within these scaffolds was enhanced under hypoxic conditions (1.7 or 3.7 fold increase in the median of aggrecan production in basal or chondrogenic differentiation media). Our findings show that 3D printed SiO2/PTHF/PCL-diCOOH hybrid scaffolds have the potential to support the regeneration of cartilage tissue.
Collapse
Affiliation(s)
| | | | - Agathe Heyraud
- Department of Materials, Imperial College London, London, UK
| | - Simone A. Walker
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Julian R. Jones
- Department of Materials, Imperial College London, London, UK
| | - Sara M. Rankin
- National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
5
|
Dzator JSA, Smith RA, Coupland KG, Howe PRC, Griffiths LR. Associations between Cerebrovascular Function and the Expression of Genes Related to Endothelial Function in Hormonal Migraine. Int J Mol Sci 2024; 25:1694. [PMID: 38338971 PMCID: PMC10855027 DOI: 10.3390/ijms25031694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
There is evidence to suggest that hormonal migraine is associated with altered cerebrovascular function. We aimed to investigate whether the expression of genes related to endothelial function in venous blood (1) might influence cerebrovascular function, (2) differs between hormonal migraineur and non-migraineur women, and (3) changes following resveratrol supplementation. This study utilised data obtained from 87 women (59 hormonal migraineurs and 28 controls) where RNA from venous blood was used to quantify gene expression and transcranial Doppler ultrasound was used to evaluate cerebrovascular function. Spearman's correlation analyses were performed between gene expression, cerebrovascular function, and migraine-related disability. We compared the expression of genes associated with endothelial function between migraineurs and non-migraineurs, and between resveratrol and placebo. The expression of several genes related to endothelial function was associated with alterations in cerebrovascular function. Notably, the expression of CALCA was associated with increased neurovascular coupling capacity (p = 0.013), and both CALCA (p = 0.035) and VEGF (p = 0.014) expression were associated with increased cerebral blood flow velocity in the overall study population. Additionally, VCAM1 expression correlated with decreased pulsatility index (a measure of cerebral arterial stiffness) (p = 0.009) and headache impact test-6 scores (p = 0.007) in the migraineurs. No significant differences in gene expression were observed between migraineurs and controls, or between placebo and resveratrol treatments in migraineurs. Thus, altering the expression of genes related to endothelial function may improve cerebrovascular function and decrease migraine-related disability.
Collapse
Affiliation(s)
- Jemima S. A. Dzator
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW 2308, Australia (P.R.C.H.)
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| | - Robert A. Smith
- Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Kirsten G. Coupland
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW 2308, Australia (P.R.C.H.)
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Peter R. C. Howe
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW 2308, Australia (P.R.C.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Centre for Health Research, University of Southern Queensland, Raceview, QLD 4350, Australia
| | - Lyn R. Griffiths
- Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
6
|
Peng C, Ye H, Yi Z. GAPDH: unveiling its impact as a key hypoxia-related player in head and neck squamous cell carcinoma tumor progression, prognosis, and therapeutic potential. Am J Cancer Res 2023; 13:5846-5867. [PMID: 38187058 PMCID: PMC10767337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/01/2023] [Indexed: 01/09/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), characterized by hypoxia patterns, ranks as the sixth most prevalent malignant tumor worldwide. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays a role in oncogenesis under hypoxic conditions in various cancers. However, its precise function in HNSCC, especially under varied hypoxic conditions, including at high altitudes, remains unclear. Elevated GAPDH mRNA and protein levels in HNSCC relative to normal tissues have been demonstrated through data from The Cancer Genome Atlas (TCGA), GSE29330, and the Human Protein Atlas (P<0.05). This elevation was further confirmed through in vitro experiments utilizing two HNSCC cell lines and a normal oral mucosal epithelial cell line. Additionally, data from TCGA and GSE41613 reveal a correlation between elevated GAPDH expression and diminished overall and progression-free survival in patients (P<0.05). Subsequent analysis identifies GAPDH as an independent risk factor for HNSCC (P<0.05). Using the ESTIMATE and single-sample gene set enrichment analysis (ssGSEA) algorithms, high GAPDH expression was found to be associated with reduced immune scores and diminished anti-tumor cell infiltration, such as CD8+ T cells, in TCGA and GSE41613 datasets (P<0.05). Analysis of single-cell RNA sequencing data from GSE139324 suggests that elevated GAPDH expression hinders communication between plasmacytoid dendritic cells and mast cells (P<0.05). Furthermore, in the TCGA and GSE41613 datasets, GAPDH's biological function is closely tied to hypoxia through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Variation Analysis (GSVA) analyses. Moreover, its expression is linked to one cuproptosis-related gene, five N6-methyladenosine-related genes, six immune checkpoint genes, and pivotal pathways such as MYC and E2F (P<0.05). GAPDH showed excellent predictive value in estimating the efficacy of immunotherapy and 11 anti-tumor drugs (e.g., cisplatin) (P<0.05), using TIDE and pRRophetic algorithms on the TCGA and GSE41613 datasets. Under 1% O2 in vitro, HNSCC cells show elevated GAPDH expression, leading to decreased apoptosis and increased migration, clonogenicity, invasiveness, and resistance to cisplatin (P<0.05). At 5% O2, these effects persisted, albeit less pronouncedly. Inhibiting GAPDH reversed these effects under all oxygen concentrations (P<0.05). Overall, our findings reveal GAPDH as a key hypoxia-related player influencing tumor progression, prognosis, and therapeutic potential in HNSCC.
Collapse
Affiliation(s)
- Cong Peng
- Department of Otolaryngology, Guizhou Provincial People's Hospital Guiyang, Guizhou, China
| | - Huiping Ye
- Department of Otolaryngology, Guizhou Provincial People's Hospital Guiyang, Guizhou, China
| | - Zhuguang Yi
- Department of Otolaryngology, Guizhou Provincial People's Hospital Guiyang, Guizhou, China
| |
Collapse
|
7
|
Raina R, Hussain A, Almutary AG, Haque S, Raza T, D’Souza AC, Subramani S, Sajeevan A. Co-administration of Chrysin and Luteolin with Cisplatin and Topotecan Exhibits a Variable Therapeutic Value in Human Cancer Cells, HeLa. ACS OMEGA 2023; 8:41204-41213. [PMID: 37970041 PMCID: PMC10633856 DOI: 10.1021/acsomega.3c04443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023]
Abstract
Combinational treatment is a promising strategy for better cancer treatment outcomes. Chrysin and luteolin have demonstrated effective anticancer activity. Cisplatin and topotecan are commonly used for the treatment of human cancers. However, various side effects including drug resistance are an imperative restriction to use them as pharmacological therapy. Therefore, the aim was to use these agents in combination with flavones for better efficacy. In the present study, it was found that the combination of chrysin and cisplatin and luteolin and cisplatin significantly improved the anticancer effect as both the combinations showed synergistic interactions [combinational index (CI < 1)]. Remarkably, the combination of chrysin and luteolin with topotecan depicted the antagonistic interaction (CI > 1). Further, increased expression of the pro-apoptotic proteins Bax and caspase 8 and the inhibition of the antiapoptotic protein Bcl-2 were instituted in the synergistic doses (chrysin + cisplatin and luteolin + cisplatin), hence promoting apoptosis. Also, it was found that the synergistic combination inhibited the migration of HeLa cells by downregulation of metalloproteases and upregulation of TIMPs. However, there are no significant changes depicted in the antagonistic combinations which support their role in their antagonistic effects. Based on these results, it can be inferred that the two or more drug combinations need to be explored well for their interaction to enhance the therapeutic outcomes.
Collapse
Affiliation(s)
- Ritu Raina
- School
of Life Sciences, Manipal Academy of Higher
of Education, Academic City 345050, Dubai, United Arab Emirates
| | - Arif Hussain
- School
of Life Sciences, Manipal Academy of Higher
of Education, Academic City 345050, Dubai, United Arab Emirates
| | - Abdulmajeed G. Almutary
- Department
of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Khalifa
City, Abu Dhabi 51072, United Arab Emirates
- Department
of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Shafiul Haque
- Research
and Scientific Studies Unit, College of Nursing and Allied Health
Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Tasleem Raza
- Department
of Biochemistry, Era’s Lucknow Medical
College and Hospital, Lucknow 226003, India
| | - Ashley Cletus D’Souza
- School
of Life Sciences, Manipal Academy of Higher
of Education, Academic City 345050, Dubai, United Arab Emirates
| | - Sachin Subramani
- School
of Life Sciences, Manipal Academy of Higher
of Education, Academic City 345050, Dubai, United Arab Emirates
| | - Akash Sajeevan
- School
of Life Sciences, Manipal Academy of Higher
of Education, Academic City 345050, Dubai, United Arab Emirates
| |
Collapse
|
8
|
AFROZE N, SUNDARAM MK, RAINA R, JATHAN J, BHAGAVATULA D, HAQUE S, HUSSAIN A. Concurrent treatment of flavonol with chemotherapeutics potentiates or counteracts the therapeutic implications in cervical cancer cells. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.22.02938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
9
|
Sharma V, Varshney R, Sethy NK. Identification of Suitable Reference Genes for Lowlanders Exposed to High Altitude and Ladakhi Highlanders. High Alt Med Biol 2022; 23:319-329. [PMID: 36219748 DOI: 10.1089/ham.2022.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sharma, Vandana, Rajeev Varshney, and Niroj Kumar Sethy. Identification of suitable reference genes for lowlanders exposed to high altitude and Ladakhi highlanders. High Alt Med Biol. 23:319-329, 2022. Background: Identifying a stable and reliable reference gene (RG) is a prerequisite for the unbiased and unambiguous analysis of gene expression data. It has become evident that conventionally used housekeeping genes such as beta-actin (ACTB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and peptidylprolyl Isomerase A (PPIA) exhibit varied expression patterns under hypoxia. Hence, the identification of stable RGs for humans exposed to hypobaric hypoxia can enhance the accuracy of gene expression studies by limiting the negligent use of random housekeeping genes. Methods: Using TaqMan™ array-based quantitative real-time quantitative polymerase chain reaction, we evaluated the expression of 32 commonly used human RGs among lowlanders at Delhi (altitude 216 m, SL), lowlanders at Leh (altitude 3,524 m) after 1 day (HA-D1) and 7 days (HA-D7), as well as indigenous Ladakhi highlanders at the same altitude. The expression stability of the RGs was evaluated using geNorm, NormFinder, BestKeeper, Delta CT method, and RefFinder algorithms. Results: Our studies identify TATA-box binding protein (TBP), proteasome 26S subunit, ATPase 4 (PSMC4), and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) as the most stable human RGs for normalizing human gene expression under hypobaric hypoxia. In addition, we report the combination of TBP and cyclin-dependent kinase inhibitor 1B (CDKN1B) as the most stable RG for studying lowlander gene expression during high-altitude exposure. In contrast, RPL30 and 18S exhibited maximum variation across study groups and were identified as the least stable RGs.
Collapse
Affiliation(s)
- Vandana Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Delhi, India
| | - Rajeev Varshney
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Delhi, India
| | - Niroj Kumar Sethy
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Delhi, India
| |
Collapse
|
10
|
Varzari A, Deyneko IV, Bruun GH, Dembic M, Hofmann W, Cebotari VM, Ginda SS, Andresen BS, Illig T. Candidate genes and sequence variants for susceptibility to mycobacterial infection identified by whole-exome sequencing. Front Genet 2022; 13:969895. [PMID: 36338958 PMCID: PMC9632272 DOI: 10.3389/fgene.2022.969895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Inborn errors of immunity are known to influence susceptibility to mycobacterial infections. The aim of this study was to characterize the genetic profile of nine patients with mycobacterial infections (eight with BCGitis and one with disseminated tuberculosis) from the Republic of Moldova using whole-exome sequencing. In total, 12 variants in eight genes known to be associated with Mendelian Susceptibility to Mycobacterial Disease (MSMD) were detected in six out of nine patients examined. In particular, a novel splice site mutation c.373–2A>C in STAT1 gene was found and functionally confirmed in a patient with disseminated tuberculosis. Trio analysis was possible for seven out of nine patients, and resulted in 23 candidate variants in 15 novel genes. Four of these genes - GBP2, HEATR3, PPP1R9B and KDM6A were further prioritized, considering their elevated expression in immune-related tissues. Compound heterozygosity was found in GBP2 in a single patient, comprising a maternally inherited missense variant c.412G>A/p.(Ala138Thr) predicted to be deleterious and a paternally inherited intronic mutation c.1149+14T>C. Functional studies demonstrated that the intronic mutation affects splicing and the level of transcript. Finally, we analyzed pathogenicity of variant combinations in gene pairs and identified five patients with putative oligogenic inheritance. In summary, our study expands the spectrum of genetic variation contributing to susceptibility to mycobacterial infections in children and provides insight into the complex/oligogenic disease-causing mode.
Collapse
Affiliation(s)
- Alexander Varzari
- Laboratory of Human Genetics, Chiril Draganiuc Institute of Phthisiopneumology, Kishinev, Moldova
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
- *Correspondence: Alexander Varzari,
| | - Igor V. Deyneko
- Laboratory of Functional Genomics, Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| | - Gitte Hoffmann Bruun
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Maja Dembic
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Winfried Hofmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Victor M. Cebotari
- Municipal Hospital of Phthisiopneumology, Department of Pediatrics, Kishinev, Moldova
| | - Sergei S. Ginda
- Laboratory of Immunology and Allergology, Chiril Draganiuc Institute of Phthisiopneumology, Kishinev, Moldova
| | - Brage S. Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- The Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Steimer M, Kaiser S, Ulbrich F, Kalbhenn J, Bürkle H, Schallner N. Expression of HO1 and PER2 can predict the incidence of delirium in trauma patients with concomitant brain injury. Sci Rep 2021; 11:15388. [PMID: 34321570 PMCID: PMC8319290 DOI: 10.1038/s41598-021-94773-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/16/2021] [Indexed: 11/09/2022] Open
Abstract
Intensive care unit (ICU)-acquired delirium is associated with adverse outcome in trauma patients with concomitant traumatic brain injury (TBI), but diagnosis remains challenging. Quantifying circadian disruption by analyzing expression of the circadian gene period circadian regulator 2 (PER2) and heme oxygenase 1 (HO1), which determines heme turnover, may prove to be potential diagnostic tools. Expression of PER2 and HO1 was quantified using qPCR from blood samples 1 day and 7 days after trauma. Association analysis was performed comparing mRNA expression levels with parameters of trauma (ISS—injury severity score), delirium, acute kidney injury (AKI) and length of ICU stay. 48 polytraumatized patients were included (equal distribution of TBI versus non-TBI) corrected for ISS, age and gender using a matched pairs approach. Expression levels of PER2 and HO1 were independent of age (PER2: P = 0.935; HO1: P = 0.988), while expression levels were significantly correlated with trauma severity (PER2: P = 0.009; HO1: P < 0.001) and longer ICU length of stay (PER2: P = 0.018; HO1: P < 0.001). High expression levels increased the odds of delirium occurrence (PER2: OR = 4.32 [1.14–13.87]; HO1: OR = 4.50 [1.23–14.42]). Patients with TBI showed a trend towards elevated PER2 (OR = 3.00 [0.84–9.33], P = 0.125), but not towards delirium occurrence (P = 0.556). TBI patients were less likely to develop AKI compared to non-TBI (P = 0.022). Expression levels of PER2 and HO1 correlate with the incidence of delirium in an age-independent manner and may potentially improve diagnostic algorithms when used as delirium biomarkers. Trial registration: German Clinical Trials Register (Trial-ID DRKS00008981; Universal Trial Number U1111-1172-6077; Jan. 18, 2018).
Collapse
Affiliation(s)
- Matti Steimer
- Department of Anesthesiology & Critical Care Medicine, Medical Center - Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sandra Kaiser
- Department of Anesthesiology & Critical Care Medicine, Medical Center - Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felix Ulbrich
- Department of Anesthesiology & Critical Care Medicine, Medical Center - Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Kalbhenn
- Department of Anesthesiology & Critical Care Medicine, Medical Center - Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hartmut Bürkle
- Department of Anesthesiology & Critical Care Medicine, Medical Center - Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Schallner
- Department of Anesthesiology & Critical Care Medicine, Medical Center - Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
12
|
Validation of Reference Genes via qRT-PCR in Multiple Conditions in Brandt's Voles, Lasiopodomys brandtii. Animals (Basel) 2021; 11:ani11030897. [PMID: 33801053 PMCID: PMC8004067 DOI: 10.3390/ani11030897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary This study validated the stability of the expression profiles of nine common candidate reference genes (Gapdh, Hprt1, β-actin, PPIA, Rpl13a, Tbp, Sdha, Hmbs, and B2M) using qRT-PCR in different tissues, developmental stages, and photoperiods. None of these genes were suitable as optimal reference genes at 4 weeks postnatal in different tissues. Under different developmental stages in the hypothalamus, B2M for males and Rpl13a for females were suitable as reference genes. Under different photoperiods in the hypothalamus, none of the selected genes were suitable as reference genes at 6 weeks postnatal, β-actin and PPIA were the optimal reference genes at 12 weeks postnatal, while Hprt1, β-actin, PPIA, Hmbs, and B2M were excellent reference genes at 24 weeks postnatal. Abstract The choice of optimal reference gene is challenging owing to the varied expression of reference genes in different organs, development stages, and experimental treatments. Brandt’s vole (Lasiopodomys brandtii) is an ideal animal to explore the regulatory mechanism of seasonal breeding, and many studies on this vole involve gene expression analysis using quantitative real-time polymerase chain reaction (qRT-PCR). In this study, we used the method of the coefficient of variation and the NormFinder algorithm to evaluate the performance of nine commonly used reference genes Gapdh, Hprt1, β-actin, PPIA, Rpl13a, Tbp, Sdha, Hmbs, and B2M using qRT-PCR in eight different tissues, five developmental stages, and three different photoperiods. We found that all nine genes were not uniformly expressed among different tissues. B2M and Rpl13a were the optimal reference genes for different postnatal development stages in the hypothalamus for males and females, respectively. Under different photoperiods in the hypothalamus, none of the selected genes were suitable as reference genes at 6 weeks postnatal; β-actin and PPIA were the optimal reference genes at 12 weeks postnatal; Hprt1, β-actin, PPIA, Hmbs, and B2M were excellent reference genes at 24 weeks postnatal. The present study provides a useful basis for selecting the appropriate reference gene in Lasiopodomys brandtii.
Collapse
|
13
|
Yan W, Xie M, Li R, Hu H, Tang B, Shen J. Identification and Validation of Reference Genes Selection in Ovarian Cancer Exposed to Hypoxia. Onco Targets Ther 2020; 13:7423-7431. [PMID: 32801765 PMCID: PMC7395691 DOI: 10.2147/ott.s249733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Hypoxia-mediated tumor metastasis, progression and drug resistance are major clinical challenges in ovarian cancer. Meanwhile, the genetic basis of these traits is still not clear. RT-qPCR, as an efficient and sensitive gene expression technique, has been widely used for gene analyses, providing a basis for in-depth understanding of molecular changes in different microenvironments. However, there is currently a lack of suitable reference genes to normalize the data associated with hypoxia in ovarian cancer cells. METHODS A systematic method is needed to select the most suitable reference gene. Here, eight candidate reference genes (GAPDH, β-actin, 18S RNA, TUBB, PPIA, TBP, RPL13A and SDHA) from humans were selected to assess their expression levels in SKOV3 cells under hypoxia. The geNorm and NormFinder programs were utilized to evaluate the expression stabilities of these selected candidate reference genes. RESULTS Interestingly, 18S RNA was considered to be an ideal reference gene for the normalization of target gene expression under hypoxic conditions. Furthermore, this result was confirmed in another two ovarian cancer cell line, CAOV3 and OVCAR3 cell line. Finally, these results suggest that appropriate reference genes should be selected before performing gene expression analysis during hypoxic environmental exposure. CONCLUSION 18S RNA can be used as an appropriate reference gene for the study of gene expression in ovarian cancer samples under hypoxia by RT-qPCR.
Collapse
Affiliation(s)
- Wenying Yan
- Department of Gynecology, Wangjiang Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Mei Xie
- Department of Respiratory and Critical Care Medicine, Chengdu Second People’s Hospital, Chengdu, Sichuan Province, People’s Republic of China
| | - Rong Li
- Department of Gynecology, Sichuan Maternal and Child Health Hospital, Chengdu, Sichuan Province, People’s Republic of China
| | - Hongmei Hu
- Department of Gynecology, Sichuan Maternal and Child Health Hospital, Chengdu, Sichuan Province, People’s Republic of China
| | - Biao Tang
- Department of Gynecology, Sichuan Maternal and Child Health Hospital, Chengdu, Sichuan Province, People’s Republic of China
| | - Jie Shen
- Department of Orthopaedics, The First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, People’s Republic of China
| |
Collapse
|
14
|
Xiao J, Li X, Fan X, Fan F, Lei H, Li C. Gene Expression Profile Reveals Hematopoietic-Related Molecule Changes in Response to Hypoxic Exposure. DNA Cell Biol 2020; 39:548-554. [PMID: 32155344 DOI: 10.1089/dna.2019.5004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Qing-Tibet Plateau is characterized by low oxygen pressure, which is an important biomedical and ecological stressor. However, the variation in gene expression during periods of stay on the plateau has not been well studied. We recruited eight volunteers to stay on the plateau for 3, 7, and 30 days. Human Clariom D arrays were used to measure transcriptome changes in the mRNA expression profiles in these volunteers' blood. Analysis of variance (ANOVA) indicated that 699 genes were significantly differentially expressed in response to entering the plateau during hypoxic exposure. The genes with changes in transcript abundance were involved in the terms phosphoprotein, acetylation, protein binding, and protein transport. Furthermore, numerous genes involved in hematopoietic functions, including erythropoiesis and immunoregulation, were differentially expressed in response to hypoxia. This phenomenon may be one of reasons why the majority of people entering the plateau do not have excessive erythrocyte proliferation and are susceptible to infection.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Blood Transfusion, Air Force Medical Center, PLA, Beijing, P.R. China
| | - Xiaowei Li
- Department of Blood Transfusion, Air Force Medical Center, PLA, Beijing, P.R. China
| | - Xiu Fan
- Department of Blood Transfusion, Air Force Medical Center, PLA, Beijing, P.R. China
| | - Fengyan Fan
- Department of Blood Transfusion, Air Force Medical Center, PLA, Beijing, P.R. China
| | - Huifen Lei
- Department of Blood Transfusion, Air Force Medical Center, PLA, Beijing, P.R. China
| | - Cuiying Li
- Department of Blood Transfusion, Air Force Medical Center, PLA, Beijing, P.R. China
| |
Collapse
|
15
|
Qi H, Zhang H, Zhao X, Qin Y, Liang G, He X, Zhang J. Integrated analysis of mRNA and protein expression profiling in tubal endometriosis. Reproduction 2020; 159:601-614. [PMID: 32130204 PMCID: PMC7159149 DOI: 10.1530/rep-19-0587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Tubal endometriosis (tubal EM) is a subtype of endometriosis (EM) associated with fallopian tube impairments and infertility. Since the molecular mechanism underlying tubal EM is not clear, we assume that an aberrant transcriptome of fallopian tube epithelium and microenvironment changes caused by cytokines in tubal fluid are possible causes. The aim of this study was to identify potential hub mRNAs/proteins of tubal EM through integrated transcriptomic and proteomic analyses and to elucidate significant pathways, cellular functions, and interaction networks during the initiation and progression of tubal EM. We obtained human fallopian tube epithelium and tubal fluid samples from patients with and without tubal EM. Tubal epithelia were analyzed using microarray, and tubal fluid was analyzed using quantitative label-free LC-MS/MS. We identified differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) and determined common mRNAs/protein. We observed 35 commonly deregulated mRNAs/proteins, and IPA indicated that cellular movement, inflammatory response, and immune cell trafficking were significantly activated during the pathogenesis of tubal EM. We also identified acute phase response signaling pathway activation as a unique pathogenesis signature of tubal EM. Our results demonstrate that an integrated analysis of the transcriptome and proteome has the potential to reveal novel disease mechanisms at a molecular level.
Collapse
Affiliation(s)
- Hang Qi
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Huiyu Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Xiaoya Zhao
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Ya Qin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Guiling Liang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Xiaoqing He
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Jian Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| |
Collapse
|
16
|
Demirci M, Bahar Tokman H, Taner Z, Keskin FE, Çağatay P, Ozturk Bakar Y, Özyazar M, Kiraz N, Kocazeybek BS. Bacteroidetes and Firmicutes levels in gut microbiota and effects of hosts TLR2/TLR4 gene expression levels in adult type 1 diabetes patients in Istanbul, Turkey. J Diabetes Complications 2020; 34:107449. [PMID: 31677982 DOI: 10.1016/j.jdiacomp.2019.107449] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 09/03/2019] [Accepted: 09/08/2019] [Indexed: 02/08/2023]
Abstract
AIM The aim of this study was to determine and compare the levels of both Bacteroidetes and Firmicutes in the gut microbiota and TLR2/TLR4 gene expression in the blood of patients with type 1 diabetes mellitus (T1DM) and healthy individuals. These results may serve as a preliminary assessment to guide future research. METHOD Between January and October 2014, stool and blood samples were collected from 53 adult T1DM patients and 53 age- and gender-matched healthy individuals. Bacteroidetes and Firmicutes levels were assessed from stool sample DNA and TLR2 and TLR4 expression levels were analyzed via qPCR using RNA from EDTA blood samples from both patients and healthy controls. RESULTS The amounts of Bacteroidetes and Firmicutes were statistically significantly higher and lower, respectively, in the T1DM group than in the healthy control group (p < 0.001 and p < 0.001, respectively). In addition, the Firmicutes/Bacteroidetes ratios in patients with T1DM were significantly lower than in healthy controls. The TLR4 and TLR2 gene expression levels in T1DM patients were significantly upregulated and downregulated, respectively, compared to those in the control group. CONCLUSION Our data are the first to show a relationship between T1DM and gut microbiota in our country. In addition, our results provide information about the connections between T1DM, gut microbiota, and TLR2 and TLR4 expression. We believe that Bacteroidetes and Firmicutes in the gut microbiota may play a role in the autoimmune process of T1DM and that these findings should be further investigated in the future.
Collapse
Affiliation(s)
- Mehmet Demirci
- Department of Medical Microbiology, Beykent University, School of Medicine, Istanbul, Turkey
| | - Hrisi Bahar Tokman
- Department of Medical Microbiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| | - Zeynep Taner
- Department of Medical Microbiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Fatma Ela Keskin
- Department of Endocrinology, Gaziosmanpasa Taksim Training and Research Hospital, Health Sciences University, Istanbul, Turkey
| | - Penbe Çağatay
- Vocational School of Health Service, Department of Medical Services and Technics, Istanbul University - Cerrahpasa, Istanbul, Turkey
| | - Yesim Ozturk Bakar
- Department of Medical Microbiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Mücahit Özyazar
- Department of Endocrinology, Gaziosmanpasa Hospital, Yeni Yuzyil University, Medical Faculty, Istanbul, Turkey
| | - Nuri Kiraz
- Department of Medical Microbiology, School of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Bekir S Kocazeybek
- Department of Medical Microbiology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
17
|
Konečná K, Lyčka M, Nohelová L, Petráková M, Fňašková M, Koriťáková E, Sováková PP, Brabencová S, Preiss M, Rektor I, Fajkus J, Fojtová M. Holocaust history is not reflected in telomere homeostasis in survivors and their offspring. J Psychiatr Res 2019; 117:7-14. [PMID: 31255955 DOI: 10.1016/j.jpsychires.2019.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 01/30/2023]
Abstract
Telomeres, nucleoprotein structures at the ends of eukaryotic chromosomes, are crucial for the maintenance of genome integrity. While the lengths of telomeres at birth are determined genetically, many factors including environmental and living conditions affect the telomere lengths during a lifespan. In this context, extreme and long-term stress has been shown to negatively impact telomeres and their protective function, with even offspring being influenced by the stress experienced by parents. Using quantitative PCR, the relative lengths of telomeres of survivors of the Holocaust during World War II and two generations of their offspring were analyzed. These data were related to those of control groups, persons of comparable age without a strong life stress experience. In contrast to previous studies of other stress-exposed groups, the relative lengths of telomeres were comparable in groups of persons exposed to Holocaust-related stress and their progenies, and in control groups. Interestingly, shorter telomeres of Holocaust survivors of the age under 12 in the year 1945 compared to Holocaust survivors of the age above 12 were detected. Our results are discussed with respect to certain exceptionality of persons having been able to cope with an extreme stress more than 70 years ago and living to a very old age.
Collapse
Affiliation(s)
- Klára Konečná
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Lucie Nohelová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Monika Petráková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Monika Fňašková
- Brain and Mind Research, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
| | - Eva Koriťáková
- Brain and Mind Research, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic; Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Pavla Polanská Sováková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Sylva Brabencová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Preiss
- Brain and Mind Research, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic; National Institute of Mental Health and University of New York in Prague, Czech Republic
| | - Ivan Rektor
- Brain and Mind Research, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
18
|
Reduction of HIP2 expression causes motor function impairment and increased vulnerability to dopaminergic degeneration in Parkinson's disease models. Cell Death Dis 2018; 9:1020. [PMID: 30282965 PMCID: PMC6170399 DOI: 10.1038/s41419-018-1066-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 11/08/2022]
Abstract
Huntingtin interaction protein 2 (HIP2) is an E2 ubiquitin-conjugating enzyme associated with neurodegenerative diseases, and HIP2 mRNA has been implicated as a potential blood biomarker for Parkinson's disease (PD). However, it is unclear whether the alteration of HIP2 expression may contribute to the development of PD, and whether the change of HIP2 in blood could reflect its expression in the brain or motor functions in PD patients. In this study, we established a mouse line with HIP2 haploinsufficiency. The reduction of the HIP2 expression led to spontaneous motor function impairment and dopaminergic neuronal loss. Furthermore, HIP2 haploinsufficiency increased the susceptibility of mice to 6-hydroxydopamine (6-OHDA) and caused severe loss of dopaminergic neurons. Interestingly, in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model for PD, we observed concurrent, highly correlated decrease of HIP2 expression in the brain and in the blood. Using blood samples from more than 300 patients, we validated the decreased HIP2 mRNA in PD patients, including de novo patients. Finally, in a 1-year, 20-patient study, we observed reversed blood HIP2 mRNA levels accompanying improved motor and overall daily functions in 75% of the PD patients with instructed Tai Chi training. Therefore, our in vivo studies have indicated HIP2 insufficiency as a contributing factor for PD, and functionally validated blood HIP2 as a useful and reversible biomarker for PD.
Collapse
|
19
|
Toscano JHB, Lopes LG, Giraldelo LA, da Silva MH, Okino CH, de Souza Chagas AC. Identification of appropriate reference genes for local immune-related studies in Morada Nova sheep infected with Haemonchus contortus. Mol Biol Rep 2018; 45:1253-1262. [DOI: 10.1007/s11033-018-4281-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/24/2018] [Indexed: 01/23/2023]
|