1
|
Han T, Lombardelli G, Peterson SD, Porfiri M. Inferring the metabolic rate of zebrafish from ventilation frequency. JOURNAL OF FISH BIOLOGY 2024; 105:1939-1950. [PMID: 39319507 DOI: 10.1111/jfb.15922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
Fish schooling has attracted the interest of the scientific community for centuries. Energy savings have been long posited to be a key determinant for the emergence of schooling patterns. Yet, current methodologies do not allow the precise quantification of the metabolic rate of specific individuals within the school, typically leaving researchers with only a single, global measurement of metabolic rate for the collective. In this paper, we demonstrate the feasibility of inferring metabolic rate of swimming fish using the mouth-opening frequency, a simple proxy that can be scored utilizing video recordings in the laboratory or in the field, even for small fish. The mouth-opening frequency is independent of hydrodynamic interactions within the school, thereby mitigating potential confounding factors that arise when using locomotory measures associated with tail-beat motion. We assessed the reliability of mouth-opening frequency as a proxy for metabolic rate by conducting experiments on zebrafish (Danio rerio) using swimming respirometry. We varied the flow speed from 0.8 to 3.2 body lengths per second and extracted tail-beat motion and mouth opening from video recordings. Our results revealed a strong correlation between oxygen uptake and mouth-opening frequency for nonzero flow speeds but not in quiescent water. Contrary to our expectations, we did not find evidence in favor of the use of tail-beat frequency as a proxy for metabolic rate. Overall, our results open the door to the study of individual metabolic rates in fish schools without confounding factors related to hydrodynamic interactions.
Collapse
Affiliation(s)
- Tianjun Han
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, USA
- Center for Urban Science and Progress, Tandon School of Engineering, New York University, Brooklyn, New York, USA
| | - Giulia Lombardelli
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, USA
- Center for Urban Science and Progress, Tandon School of Engineering, New York University, Brooklyn, New York, USA
| | - Sean D Peterson
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, USA
- Center for Urban Science and Progress, Tandon School of Engineering, New York University, Brooklyn, New York, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, USA
| |
Collapse
|
2
|
Africa DD, Dy Quiangco RB, Go CK. Lag and duration of leader-follower relationships in mixed traffic using causal inference. CHAOS (WOODBURY, N.Y.) 2024; 34:013130. [PMID: 38252779 DOI: 10.1063/5.0166785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
This study presents comprehensive analysis of car-following behavior on roads, utilizing Granger causality and transfer entropy techniques to enhance the validity of existing car-following models. It was found that most leader-follower relationships exhibit a delay in lateral movement by 4-5 s and last for short periods of around 3-5 s. These patterns are exhibited for all types of relationship found in the dataset, as well as for followers of all types. These findings imply that lateral movement reactions are governed by a different set of rules from braking and acceleration reactions, and the advantage in following lateral changes is short-lived. This also suggests that mixed traffic conditions may force drivers to slow down and calibrate reactions, as well as limiting the speed advantage gained by following a leader. Our methods were verified against random sampling as a method of selecting leader-follower pairs, decreasing the percent error in predicted speeds by 9.5% using the optimal velocity car-following model. The study concludes with a set of recommendations for future work, including the use of a diversity of car-following models for simulation and the use of causation entropy to distinguish between direct and indirect influences.
Collapse
Affiliation(s)
- David Demitri Africa
- Collaborative Analytics Group, Department of Mathematics, Ateneo de Manila University, Quezon City 1108, Philippines
| | - Ronald Benjamin Dy Quiangco
- Collaborative Analytics Group, Department of Mathematics, Ateneo de Manila University, Quezon City 1108, Philippines
| | - Clark Kendrick Go
- Collaborative Analytics Group, Department of Mathematics, Ateneo de Manila University, Quezon City 1108, Philippines
| |
Collapse
|
3
|
Jensen NO, Burris B, Zhou L, Yamada H, Reyes C, Pincus Z, Mokalled MH. Functional trajectories during innate spinal cord repair. Front Mol Neurosci 2023; 16:1155754. [PMID: 37492522 PMCID: PMC10365889 DOI: 10.3389/fnmol.2023.1155754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/26/2023] [Indexed: 07/27/2023] Open
Abstract
Adult zebrafish are capable of anatomical and functional recovery following severe spinal cord injury. Axon growth, glial bridging and adult neurogenesis are hallmarks of cellular regeneration during spinal cord repair. However, the correlation between these cellular regenerative processes and functional recovery remains to be elucidated. Whereas the majority of established functional regeneration metrics measure swim capacity, we hypothesize that gait quality is more directly related to neurological health. Here, we performed a longitudinal swim tracking study for 60 individual zebrafish spanning 8 weeks of spinal cord regeneration. Multiple swim parameters as well as axonal and glial bridging were integrated. We established rostral compensation as a new gait quality metric that highly correlates with functional recovery. Tensor component analysis of longitudinal data supports a correspondence between functional recovery trajectories and neurological outcomes. Moreover, our studies predicted and validated that a subset of functional regeneration parameters measured 1 to 2 weeks post-injury is sufficient to predict the regenerative outcomes of individual animals at 8 weeks post-injury. Our findings established new functional regeneration parameters and generated a comprehensive correlative database between various functional and cellular regeneration outputs.
Collapse
Affiliation(s)
- Nicholas O. Jensen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brooke Burris
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Lili Zhou
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Hunter Yamada
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Catrina Reyes
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Zachary Pincus
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Mayssa H. Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
4
|
Jia X, Feng Y, Ma W, Zhao W, Liu Y, Jing G, Tian J, Yang T, Zhang C. A fluidic platform for mobility evaluation of zebrafish with gene deficiency. Front Mol Neurosci 2023; 16:1114928. [PMID: 37089692 PMCID: PMC10117665 DOI: 10.3389/fnmol.2023.1114928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/13/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionZebrafish is a suitable animal model for molecular genetic tests and drug discovery due to its characteristics including optical transparency, genetic manipulability, genetic similarity to humans, and cost-effectiveness. Mobility of the zebrafish reflects pathological conditions leading to brain disorders, disrupted motor functions, and sensitivity to environmental challenges. However, it remains technologically challenging to quantitively assess zebrafish's mobility in a flowing environment and simultaneously monitor cellular behavior in vivo.MethodsWe herein developed a facile fluidic device using mechanical vibration to controllably generate various flow patterns in a droplet housing single zebrafish, which mimics its dynamically flowing habitats.ResultsWe observe that in the four recirculating flow patterns, there are two equilibrium stagnation positions for zebrafish constrained in the droplet, i.e., the “source” with the outward flow and the “sink” with the inward flow. Wild-type zebrafish, whose mobility remains intact, tend to swim against the flow and fight to stay at the source point. A slight deviation from streamline leads to an increased torque pushing the zebrafish further away, whereas zebrafish with motor neuron dysfunction caused by lipin-1 deficiency are forced to stay in the “sink,” where both their head and tail align with the flow direction. Deviation angle from the source point can, therefore, be used to quantify the mobility of zebrafish under flowing environmental conditions. Moreover, in a droplet of comparable size, single zebrafish can be effectively restrained for high-resolution imaging.ConclusionUsing the proposed methodology, zebrafish mobility reflecting pathological symptoms can be quantitively investigated and directly linked to cellular behavior in vivo.
Collapse
Affiliation(s)
- Xiaoyu Jia
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Shaanxi, Xi'an, China
- School of Physics, Northwest University, Shaanxi, Xi'an, China
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Shaanxi, Xi'an, China
| | - Yibo Feng
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Shaanxi, Xi'an, China
- School of Physics, Northwest University, Shaanxi, Xi'an, China
| | - Wenju Ma
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Shaanxi, Xi'an, China
| | - Wei Zhao
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Shaanxi, Xi'an, China
| | - Yanan Liu
- School of Physics, Northwest University, Shaanxi, Xi'an, China
| | - Guangyin Jing
- School of Physics, Northwest University, Shaanxi, Xi'an, China
- *Correspondence: Guangyin Jing
| | - Jing Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Shaanxi, Xi'an, China
- Jing Tian
| | - Tao Yang
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Shaanxi, Xi'an, China
- Tao Yang
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Shaanxi, Xi'an, China
- School of Physics, Northwest University, Shaanxi, Xi'an, China
- Ce Zhang
| |
Collapse
|
5
|
Jensen NO, Burris B, Zhou L, Yamada H, Reyes C, Mokalled MH. Functional Trajectories during innate spinal cord repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526502. [PMID: 36778427 PMCID: PMC9915574 DOI: 10.1101/2023.01.31.526502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adult zebrafish are capable of anatomical and functional recovery following severe spinal cord injury. Axon growth, glial bridging and adult neurogenesis are hallmarks of cellular regeneration during spinal cord repair. However, the correlation between these cellular regenerative processes and functional recovery remains to be elucidated. Whereas the majority of established functional regeneration metrics measure swim capacity, we hypothesize that gait quality is more directly related to neurological health. Here, we performed a longitudinal swim tracking study for sixty individual zebrafish spanning eight weeks of spinal cord regeneration. Multiple swim parameters as well as axonal and glial bridging were integrated. We established rostral compensation as a new gait quality metric that highly correlates with functional recovery. Tensor component analysis of longitudinal data supports a correspondence between functional recovery trajectories and neurological outcomes. Moreover, our studies predicted and validated that a subset of functional regeneration parameters measured 1 to 2 weeks post-injury is sufficient to predict the regenerative outcomes of individual animals at 8 weeks post-injury. Our findings established new functional regeneration parameters and generated a comprehensive correlative database between various functional and cellular regeneration outputs.
Collapse
|
6
|
Geng Y, Yates C, Peterson RT. Social behavioral profiling by unsupervised deep learning reveals a stimulative effect of dopamine D3 agonists on zebrafish sociality. CELL REPORTS METHODS 2023; 3:100381. [PMID: 36814839 PMCID: PMC9939379 DOI: 10.1016/j.crmeth.2022.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/15/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
It has been a major challenge to systematically evaluate and compare how pharmacological perturbations influence social behavioral outcomes. Although some pharmacological agents are known to alter social behavior, precise description and quantification of such effects have proven difficult. We developed a scalable social behavioral assay for zebrafish named ZeChat based on unsupervised deep learning to characterize sociality at high resolution. High-dimensional and dynamic social behavioral phenotypes are automatically classified using this method. By screening a neuroactive compound library, we found that different classes of chemicals evoke distinct patterns of social behavioral fingerprints. By examining these patterns, we discovered that dopamine D3 agonists possess a social stimulative effect on zebrafish. The D3 agonists pramipexole, piribedil, and 7-hydroxy-DPAT-HBr rescued social deficits in a valproic-acid-induced zebrafish autism model. The ZeChat platform provides a promising approach for dissecting the pharmacology of social behavior and discovering novel social-modulatory compounds.
Collapse
Affiliation(s)
- Yijie Geng
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher Yates
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Randall T. Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
7
|
Zhang P, Peterson SD, Porfiri M. Dipole- and vortex sheet-based models of fish swimming. J Theor Biol 2023; 556:111313. [PMID: 36261068 DOI: 10.1016/j.jtbi.2022.111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Abstract
Elucidating the hydrodynamics of fish swimming is critical to identifying the processes underlying fish orientation and schooling. Due to their mathematical tractability, models based on potential flow are preferred in the study of bidirectional interactions of fish with their surroundings. Dipole-based models that assimilate fish to pairs of vortices are particularly enticing, but yet to be thoroughly validated. Here, we embark on a computational fluid dynamics (CFD) campaign informed by experimental data to validate the accuracy of dipole-based models. The locomotory patterns of a fish undergoing carangiform swimming are reconstructed from existing experimental data, which are used as inputs to CFD simulations of a fish swimming in a channel flow. We demonstrate that dipole-based models are accurate in capturing key features of the fluid flow, but cannot predict the elongated flow streamlines around the fish that are evident in CFD. To address this issue, we propose an alternative model that replaces each vortex in the pair with a sheet along the fish length. Using a pair of vortex sheets that span approximately 80% of the fish body length with a separation distance of approximately 50% of the body width, the model is successful in predicting the fluid flow around the swimming fish for a range of background flow speeds and channel widths. The proposed model shows improved accuracy at the cost of a mildly increased computational effort, thereby constituting an ideal basis for research on fish hydrodynamics.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Mechanical and Aerospace Engineering and Center for Urban Science and Progress, New York University Tandon School of Engineering, 370 Jay Street, Brooklyn, 11201, NY, USA; Department of Mechanical Engineering, Tennessee Technological University, 115 W. 10th Street, Cookeville, 38505, TN, USA
| | - Sean D Peterson
- Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, ON, Canada
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, Department of Biomedical Engineering, and Center for Urban Science and Progress, New York University Tandon School of Engineering, 370 Jay Street, Brooklyn, 11201, NY, USA.
| |
Collapse
|
8
|
Seizurogenic effect of perfluorooctane sulfonate in zebrafish larvae. Neurotoxicology 2022; 93:257-264. [DOI: 10.1016/j.neuro.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
|
9
|
Lombana DAB, Porfiri M. Collective response of fish to combined manipulations of illumination and flow. Behav Processes 2022; 203:104767. [DOI: 10.1016/j.beproc.2022.104767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2022]
|
10
|
Gallois B, Pontani LL, Debrégeas G, Candelier R. A scalable assay for chemical preference of small freshwater fish. Front Behav Neurosci 2022; 16:990792. [PMID: 36212190 PMCID: PMC9541871 DOI: 10.3389/fnbeh.2022.990792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Sensing the chemical world is of primary importance for aquatic organisms, and small freshwater fish are increasingly used in toxicology, ethology, and neuroscience by virtue of their ease of manipulation, tissue imaging amenability, and genetic tractability. However, precise behavioral analyses are generally challenging to perform due to the lack of knowledge of what chemical the fish are exposed to at any given moment. Here we developed a behavioral assay and a specific infrared dye to probe the preference of young zebrafish for virtually any compound. We found that the innate aversion of zebrafish to citric acid is not mediated by modulation of the swim but rather by immediate avoidance reactions when the product is sensed and that the preference of juvenile zebrafish for ATP changes from repulsion to attraction during successive exposures. We propose an information-based behavioral model for which an exploration index emerges as a relevant behavioral descriptor, complementary to the standard preference index. Our setup features a high versatility in protocols and is automatic and scalable, which paves the way for high-throughput preference compound screening at different ages.
Collapse
|
11
|
Zhong Q, Quinn DB. Streamwise and lateral maneuvers of a fish-inspired hydrofoil. BIOINSPIRATION & BIOMIMETICS 2021; 16:056015. [PMID: 34352733 DOI: 10.1088/1748-3190/ac1ad9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Fish are highly maneuverable compared to human-made underwater vehicles. Maneuvers are inherently transient, so they are often studied via observations of fish and fish-like robots, where their dynamics cannot be recorded directly. To study maneuvers in isolation, we designed a new kind of wireless carriage whose air bushings allow a hydrofoil to maneuver semi-autonomously in a water channel. We show that modulating the hydrofoil's frequency, amplitude, pitch bias, and stroke speed ratio (pitching speed of left vs right stroke) produces streamwise and lateral maneuvers with mixed effectiveness. Modulating pitch bias, for example, produces quasi-steady lateral maneuvers with classic reverse von Kármán wakes, whereas modulating the stroke speed ratio produces sudden yaw torques and vortex pairs like those observed behind turning zebrafish. Our findings provide a new framework for considering in-plane maneuvers and streamwise/lateral trajectory corrections in fish and fish-inspired robots.
Collapse
Affiliation(s)
- Qiang Zhong
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, United States of America
| | - Daniel B Quinn
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, United States of America
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, United States of America
| |
Collapse
|
12
|
Dagenais P, Blanchoud S, Pury D, Pfefferli C, Aegerter-Wilmsen T, Aegerter CM, Jaźwińska A. Hydrodynamic stress and phenotypic plasticity of the zebrafish regenerating fin. J Exp Biol 2021; 224:271142. [PMID: 34338301 DOI: 10.1242/jeb.242309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/14/2021] [Indexed: 01/23/2023]
Abstract
Understanding how extrinsic factors modulate genetically encoded information to produce a specific phenotype is of prime scientific interest. In particular, the feedback mechanism between abiotic forces and locomotory organs during morphogenesis to achieve efficient movement is a highly relevant example of such modulation. The study of this developmental process can provide unique insights on the transduction of cues at the interface between physics and biology. Here, we take advantage of the natural ability of adult zebrafish to regenerate their amputated fins to assess its morphogenic plasticity upon external modulations. Using a variety of surgical and chemical treatments, we could induce phenotypic responses to the structure of the fin. Through the ablation of specific rays in regenerating caudal fins, we generated artificially narrowed appendages in which the fin cleft depth and the positioning of rays bifurcations were perturbed compared with normal regenerates. To dissect the role of mechanotransduction in this process, we investigated the patterns of hydrodynamic forces acting on the surface of a zebrafish fin during regeneration by using particle tracking velocimetry on a range of biomimetic hydrofoils. This experimental approach enabled us to quantitatively compare hydrodynamic stress distributions over flapping fins of varying sizes and shapes. As a result, viscous shear stress acting on the distal margin of regenerating fins and the resulting internal tension are proposed as suitable signals for guiding the regulation of ray growth dynamics and branching pattern. Our findings suggest that mechanical forces are involved in the fine-tuning of the locomotory organ during fin morphogenesis.
Collapse
Affiliation(s)
- Paule Dagenais
- Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Simon Blanchoud
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - David Pury
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Catherine Pfefferli
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Tinri Aegerter-Wilmsen
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Christof M Aegerter
- Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|
13
|
Lucon-Xiccato T, Bella L, Mainardi E, Baraldi M, Bottarelli M, Sandonà D, Bertolucci C. An Automated Low-Cost Swim Tunnel for Measuring Swimming Performance in Fish. Zebrafish 2021; 18:231-234. [PMID: 33877911 DOI: 10.1089/zeb.2020.1975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The study of swimming behavior is an important part of fish biology research and the swim tunnel is used to study swimming performance as well as metabolism of fish. In this investigation, we have developed a user-friendly, automated, modular, and low-cost swim tunnel that permits to study the performance of one or more fish separately, as well as a small group of individuals. To validate our swim tunnel, we assessed swimming activity of four different species (zebrafish, medaka, guppy, and cavefish) recording reliable data of swimming behavior and performance. Because swimming behavior has been recently used in different fields from physiology to ecotoxicology, our setup could help researchers with a low-cost solution.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Laura Bella
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elena Mainardi
- Department of Engineering, and University of Ferrara, Ferrara, Italy
| | - Mattia Baraldi
- Department of Engineering, and University of Ferrara, Ferrara, Italy
| | | | - Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
14
|
Dagenais P, Aegerter CM. Hydrodynamic stress maps on the surface of a flexible fin-like foil. PLoS One 2021; 16:e0244674. [PMID: 33434237 PMCID: PMC7802974 DOI: 10.1371/journal.pone.0244674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/14/2020] [Indexed: 11/18/2022] Open
Abstract
We determine the time dependence of pressure and shear stress distributions on the surface of a pitching and deforming hydrofoil from measurements of the three dimensional flow field. Period-averaged stress maps are obtained both in the presence and absence of steady flow around the foil. The velocity vector field is determined via volumetric three-component particle tracking velocimetry and subsequently inserted into the Navier-Stokes equation to calculate the total hydrodynamic stress tensor. In addition, we also present a careful error analysis of such measurements, showing that local evaluations of stress distributions are possible. The consistency of the force time-dependence is verified using a control volume analysis. The flapping foil used in the experiments is designed to allow comparison with a small trapezoidal fish fin, in terms of the scaling laws that govern the oscillatory flow regime. As a complementary approach, unsteady Euler-Bernoulli beam theory is employed to derive instantaneous transversal force distributions on the flexible hydrofoil from its deflection and the results are compared to the spatial distributions of hydrodynamic stresses obtained from the fluid velocity field.
Collapse
Affiliation(s)
- Paule Dagenais
- Physik-Institut, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
15
|
Bek JW, De Clercq A, Coucke PJ, Willaert A. The ZE-Tunnel: An Affordable, Easy-to-Assemble, and User-Friendly Benchtop Zebrafish Swim Tunnel. Zebrafish 2021; 18:29-41. [PMID: 33428527 DOI: 10.1089/zeb.2020.1948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The popularity of zebrafish in both basic biological and biomedical research has led to an increased need for understanding their behavior. Locomotor behavior is an important outcome of different factors, such as specific genotypes or external stimuli that influence the nervous and musculoskeletal system. Locomotion can be studied by forced swimming in a swim tunnel, a device capable of generating a laminar water flow at different speeds in a chamber where zebrafish can be placed. However, commercially available swim tunnels are relatively expensive and in-house built systems are mostly presented without clear building instructions or proper validation procedures. In this study, we developed an alternative, cheap (<250 euro), and user-friendly, but customizable benchtop swim tunnel, called the "Zebrafish exercise-tunnel" (ZE-Tunnel). Detailed step-by-step instructions on how to construct the tunnel components, including the frame, mechanical, and electric components are given. The ZE-Tunnel was reliably used to exercise fish for prolonged periods and its performance was successfully validated by replicating previously published experiments on critical speed testing in zebrafish. Finally, implementation of behavioral video analysis using freely available motion-tracking software showed differences in swimming dynamics in the Chihuahua skeletal zebrafish mutant.
Collapse
Affiliation(s)
- Jan Willem Bek
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University, Ghent, Belgium
| | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University, Ghent, Belgium
| | - Paul J Coucke
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University, Ghent, Belgium
| | - Andy Willaert
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Subendran S, Kang CW, Chen CY. Comprehensive Hydrodynamic Investigation of Zebrafish Tail Beats in a Microfluidic Device with a Shape Memory Alloy. MICROMACHINES 2021; 12:mi12010068. [PMID: 33435330 PMCID: PMC7827268 DOI: 10.3390/mi12010068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
Abstract
The zebrafish is acknowledged as a reliable species of choices for biomechanical-related investigations. The definite quantification of the hydrodynamic flow physics caused by behavioral patterns, particularly in the zebrafish tail beat, is critical for a comprehensive understanding of food toxicity in this species, and it can be further interpreted for possible human responses. The zebrafish’s body size and swimming speed place it in the intermediate flow regime, where both viscous and inertial forces play significant roles in the fluid–structure interaction. This pilot work highlighted the design and development of a novel microfluidic device coupled with a shape memory alloy (SMA) actuator to immobilize the zebrafish within the observation region for hydrodynamic quantification of the tail-beating behavioral responses, which may be induced by the overdose of food additive exposure. This study significantly examined behavioral patterns of the zebrafish in early developmental stages, which, in turn, generated vortex circulation. The presented findings on the behavioral responses of the zebrafish through the hydrodynamic analysis provided a golden protocol to assess the zebrafish as an animal model for new drug discovery and development.
Collapse
|
17
|
Comparative Analysis of Neurotoxicity of Six Phthalates in Zebrafish Embryos. TOXICS 2021; 9:toxics9010005. [PMID: 33430197 PMCID: PMC7825694 DOI: 10.3390/toxics9010005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
The effects and underlying mechanisms of phthalates on neurotoxicity remain unclear as compared with the potentials of these substances as endocrine disruptors. The locomotor activities of zebrafish embryos were investigated upon exposure to six phthalates: dimethyl phthalate (DMP), diethyl phthalate (DEP), benzyl butyl phthalate (BBzP), di-2-ethylhexyl phthalate (DEHP), di-n-octyl phthalate (DnOP), and diisononyl phthalate (DiNP). Moreover, changes in fluorescence intensity in the green fluorescent protein (GFP) transgenic (Tg) lines Tg(HuC:eGFP), Tg(sox10:eGFP), and Tg(mbp:GFP) were measured after exposure to six phthalates, and changes in the expression profiles of genes involved in the cholinergic (ache) and dopaminergic systems (dat, th, and drd1b) were assessed. Exposure to BBzP, DEHP, and DiNP affected larval behaviors, whereas exposure to DMP, DEP, and DnOP revealed no alterations. A reduced expression of Tg(HuC:eGFP) was observed upon exposure to BBzP, DEHP, and DiNP. The expression of Tg(sox10:eGFP) and Tg(mbp:GFP) was reduced only in response to BBzP and DiNP, respectively. Further, exposure to DiNP upregulated ache and drd1b. The upregulation of ache and downregulation of drd1b was observed in DEHP-exposed groups. Exposure to BBzP suppressed th expression. These observations indicate that exposure to phthalates impaired embryogenesis of the neurological system and neurochemicals in zebrafish embryos, although the detailed mechanisms varied among the individual phthalates. Further mechanistic studies are needed to better understand the causality between phthalate exposure and neurotoxicity.
Collapse
|
18
|
A Miniature Intermittent-Flow Respirometry System with a 3D-Printed, Palm-Sized Zebrafish Treadmill for Measuring Rest and Activity Metabolic Rates. SENSORS 2020; 20:s20185088. [PMID: 32906794 PMCID: PMC7570584 DOI: 10.3390/s20185088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Zebrafish are a preferred vertebrate model for evaluating metabolism during development, and for toxicity studies. However, commercially available intermittent-flow respirometry systems (IFRS) do not provide a suitable zebrafish-scaled swimming tunnel with a low water volume and proper flow velocities. We developed a miniature IFRS (mIFRS) with a 3D-printed, palm-sized zebrafish treadmill for measuring the swimming ability and metabolic rate of a single one- or three-month-old zebrafish with and without toxicity treatment. The 3D-printed zebrafish treadmill consists of discrete components assembled together which enables the provision of a temporary closed circulating water flow. The results showed that three-month-old zebrafish of normal physiological status had higher energetic efficiency and could swim at a higher critical swimming speed (Ucrit) of 16.79 cm/s with a lower cost of transport (COTopt) of 0.11 μmol g−1m−1. However, for a single three-month-old zebrafish treated with an antibacterial agent, Ucrit decreased to 45% of normal zebrafish and the COTopt increased to 0.24 μmol g−1m−1, due to the impairment of mitochondria. Our mIFRS provides a low-cost, portable, and readily adaptable tool for studying the swimming performance and energetic metabolism of zebrafish.
Collapse
|
19
|
Nadermann N, Volkoff H. Effects of short-term exercise on food intake and the expression of appetite-regulating factors in goldfish. Peptides 2020; 123:170182. [PMID: 31678371 DOI: 10.1016/j.peptides.2019.170182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022]
Abstract
In mammals, growing evidence indicates that exercise affects food intake, metabolism and the expression and blood levels of appetite regulators. In this study, we examined the effects of short-term (30 min, at low and high water flow) exercise on food intake, glucose levels and the expressions of appetite regulators in goldfish hypothalamus (irisin, orexin, CART, leptin), intestine (CCK, PYY, proglucagon/GLP-1), muscle (irisin) and liver (leptin), of brain-derived neurotrophic factor (BDNF) in brain, interleukin-6 (IL6) in muscle and hypothalamus, and major metabolic enzymes, the glycolytic enzyme glucokinase (GCK) and its regulatory protein (GCKR) in liver, the lipolytic enzyme lipoprotein lipase in intestine and muscle, and trypsin in intestine. Fish submitted to high flow exercise had a lower post-exercise food intake compared to control fish but no differences were seen in glucose levels between groups. Exercise induced an increase in hypothalamic expression levels of CART, IL6 and BDNF, but not orexin, irisin, CRF, leptin and NPY. High flow exercise induced an increase in intestine CCK, PYY and GLP-1, and muscle irisin and IL-6 expression levels. Exercise had no effects on expression levels of hepatic leptin or any of the metabolic enzymes examined. Our results suggest that, in goldfish, short-term exercise might decrease feeding in part by affecting the expressions of myokines and peripheral, but not central appetite regulators or metabolic enzyme/hormones.
Collapse
Affiliation(s)
- Noelle Nadermann
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada; Hochschule Mannheim University, Mannheim, 68163, Germany
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
20
|
König D, Dagenais P, Senk A, Djonov V, Aegerter CM, Jaźwińska A. Distribution and Restoration of Serotonin-Immunoreactive Paraneuronal Cells During Caudal Fin Regeneration in Zebrafish. Front Mol Neurosci 2019; 12:227. [PMID: 31616250 PMCID: PMC6763699 DOI: 10.3389/fnmol.2019.00227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 09/04/2019] [Indexed: 12/22/2022] Open
Abstract
Aquatic vertebrates possess diverse types of sensory cells in their skin to detect stimuli in the water. In the adult zebrafish, a common model organism, the presence of such cells in fins has only rarely been studied. Here, we identified scattered serotonin (5-HT)-positive cells in the epidermis of the caudal fin. These cells were distinct from keratinocytes as revealed by their low immunoreactivity for cytokeratin and desmosome markers. Instead, they were detected by Calretinin (Calbindin-2) and Synaptic vesicle glycoprotein 2 (SV2) antibodies, indicating a calcium-regulated neurosecretory activity. Consistently, electron microscopy revealed abundant secretory organelles in desmosome-negative cells in the fin epidermis. Based on the markers, 5-HT, Calretinin and SV2, we referred to these cells as HCS-cells. We found that HCS-cells were spread throughout the entire caudal fin at an average density of 140 cells per mm2 on each fin surface. These cells were strongly enriched at ray bifurcations in wild type fins, as well as in elongated fins of another longfin mutant fish. To determine whether hydrodynamics play a role in the distribution of HCS-cells, we used an interdisciplinary approach and performed kinematic analysis. Measurements of particle velocity with a fin model revealed differences in fluid velocities between bifurcated rods and adjacent non-bifurcated regions. Therefore the accumulation of HCS-cells near bone bifurcations may be a biological adaptation for sensing of water parameters. The significance of this HCS-cell pattern is reinforced by the fact, that it is reestablished in the regenerated fin after amputation. Regeneration of HCS-cells was not impaired by the chemical inhibition of serotonin synthesis, suggesting that this neurotransmitter is not essential for the restorative process. In conclusion, our study identified a specific population of solitary paraneurons in the zebrafish fin, whose distribution correlates with fluid dynamics.
Collapse
Affiliation(s)
- Désirée König
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Paule Dagenais
- Physik-Institut, University of Zurich, Zurich, Switzerland
| | - Anita Senk
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | | | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
21
|
Murciano C, Cazorla-Vázquez S, Gutiérrez J, Hijano JA, Ruiz-Sánchez J, Mesa-Almagro L, Martín-Reyes F, Fernández TD, Marí-Beffa M. Widening control of fin inter-rays in zebrafish and inferences about actinopterygian fins. J Anat 2018; 232:783-805. [PMID: 29441573 DOI: 10.1111/joa.12785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2018] [Indexed: 01/03/2023] Open
Abstract
The amputation of a teleost fin rapidly triggers an intricate maze of hierarchically regulated signalling processes which ultimately reconstruct the diverse tissues of the appendage. Whereas the generation of the fin pattern along the proximodistal axis brings with it several well-known developmental regulators, the mechanisms by which the fin widens along its dorsoventral axis remain poorly understood. Utilizing the zebrafish as an experimental model of fin regeneration and studying more than 1000 actinopterygian species, we hypothesized a connection between specific inter-ray regulatory mechanisms and the morphological variability of inter-ray membranes found in nature. To tackle these issues, both cellular and molecular approaches have been adopted and our results suggest the existence of two distinguishable inter-ray areas in the zebrafish caudal fin, a marginal and a central region. The present work associates the activity of the cell membrane potassium channel kcnk5b, the fibroblast growth factor receptor 1 and the sonic hedgehog pathway to the control of several cell functions involved in inter-ray wound healing or dorsoventral regeneration of the zebrafish caudal fin. This ray-dependent regulation controls cell migration, cell-type patterning and gene expression. The possibility that modifications of these mechanisms are responsible for phenotypic variations found in euteleostean species, is discussed.
Collapse
Affiliation(s)
- Carmen Murciano
- Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Science, University of Málaga, Málaga, Spain
| | - Salvador Cazorla-Vázquez
- Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Science, University of Málaga, Málaga, Spain
| | - Javier Gutiérrez
- Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Science, University of Málaga, Málaga, Spain
| | - Juan Antonio Hijano
- Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Science, University of Málaga, Málaga, Spain
| | - Josefa Ruiz-Sánchez
- Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Science, University of Málaga, Málaga, Spain
| | - Laura Mesa-Almagro
- Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Science, University of Málaga, Málaga, Spain
| | - Flores Martín-Reyes
- Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Science, University of Málaga, Málaga, Spain
| | | | - Manuel Marí-Beffa
- Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Science, University of Málaga, Málaga, Spain.,Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Málaga, Spain
| |
Collapse
|