1
|
Boumajdi N, Bendani H, Belyamani L, Ibrahimi A. TreeWave: command line tool for alignment-free phylogeny reconstruction based on graphical representation of DNA sequences and genomic signal processing. BMC Bioinformatics 2024; 25:367. [PMID: 39604838 PMCID: PMC11600722 DOI: 10.1186/s12859-024-05992-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Genomic sequence similarity comparison is a crucial research area in bioinformatics. Multiple Sequence Alignment (MSA) is the basic technique used to identify regions of similarity between sequences, although MSA tools are widely used and highly accurate, they are often limited by computational complexity, and inaccuracies when handling highly divergent sequences, which leads to the development of alignment-free (AF) algorithms. RESULTS This paper presents TreeWave, a novel AF approach based on frequency chaos game representation and discrete wavelet transform of sequences for phylogeny inference. We validate our method on various genomic datasets such as complete virus genome sequences, bacteria genome sequences, human mitochondrial genome sequences, and rRNA gene sequences. Compared to classical methods, our tool demonstrates a significant reduction in running time, especially when analyzing large datasets. The resulting phylogenetic trees show that TreeWave has similar classification accuracy to the classical MSA methods based on the normalized Robinson-Foulds distances and Baker's Gamma coefficients. CONCLUSIONS TreeWave is an open source and user-friendly command line tool for phylogeny reconstruction. It is a faster and more scalable tool that prioritizes computational efficiency while maintaining accuracy. TreeWave is freely available at https://github.com/nasmaB/TreeWave .
Collapse
Affiliation(s)
- Nasma Boumajdi
- Laboratory of Biotechnology (MedBiotech), Rabat Medical & Pharmacy School, Bioinova Research Center, Mohammed V University in Rabat, Rabat, Morocco
| | - Houda Bendani
- Laboratory of Biotechnology (MedBiotech), Rabat Medical & Pharmacy School, Bioinova Research Center, Mohammed V University in Rabat, Rabat, Morocco
| | - Lahcen Belyamani
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
- Emergency Department, Military Hospital Mohammed V, Rabat Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Azeddine Ibrahimi
- Laboratory of Biotechnology (MedBiotech), Rabat Medical & Pharmacy School, Bioinova Research Center, Mohammed V University in Rabat, Rabat, Morocco.
| |
Collapse
|
2
|
Alipour F, Holmes C, Lu YY, Hill KA, Kari L. Leveraging machine learning for taxonomic classification of emerging astroviruses. Front Mol Biosci 2024; 10:1305506. [PMID: 38274100 PMCID: PMC10808839 DOI: 10.3389/fmolb.2023.1305506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Astroviruses are a family of genetically diverse viruses associated with disease in humans and birds with significant health effects and economic burdens. Astrovirus taxonomic classification includes two genera, Avastrovirus and Mamastrovirus. However, with next-generation sequencing, broader interspecies transmission has been observed necessitating a reexamination of the current host-based taxonomic classification approach. In this study, a novel taxonomic classification method is presented for emergent and as yet unclassified astroviruses, based on whole genome sequence k-mer composition in addition to host information. An optional component responsible for identifying recombinant sequences was added to the method's pipeline, to counteract the impact of genetic recombination on viral classification. The proposed three-pronged classification method consists of a supervised machine learning method, an unsupervised machine learning method, and the consideration of host species. Using this three-pronged approach, we propose genus labels for 191 as yet unclassified astrovirus genomes. Genus labels are also suggested for an additional eight as yet unclassified astrovirus genomes for which incompatibility was observed with the host species, suggesting cross-species infection. Lastly, our machine learning-based approach augmented by a principal component analysis (PCA) analysis provides evidence supporting the hypothesis of the existence of human astrovirus (HAstV) subgenus of the genus Mamastrovirus, and a goose astrovirus (GoAstV) subgenus of the genus Avastrovirus. Overall, this multipronged machine learning approach provides a fast, reliable, and scalable prediction method of taxonomic labels, able to keep pace with emerging viruses and the exponential increase in the output of modern genome sequencing technologies.
Collapse
Affiliation(s)
- Fatemeh Alipour
- School of Computer Science, University of Waterloo, Waterloo, ON, Canada
| | - Connor Holmes
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Yang Young Lu
- School of Computer Science, University of Waterloo, Waterloo, ON, Canada
| | - Kathleen A. Hill
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Lila Kari
- School of Computer Science, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
3
|
Spectral Decomposition of Mappings of Molecular Genetic Information in the System Basis of Single Nucleotide Functions. Symmetry (Basel) 2022. [DOI: 10.3390/sym14050844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This paper presents and visualizes examples of large amounts of genetic information using a new class of cognitive computer graphics algorithms. These algorithms are related to the semiotics of perception and allow the interpretation of those properties of nucleotide sequences that are difficult to perceive by simple reading or by standard means of statistical analysis. This article summarizes previously presented algorithms for visualizing long nucleic acids based on the primary Hadamard–Walsh function system. The described methods allow us to produce one-dimensional mappings of nucleic acids by levels corresponding to their scale-integral physicochemical parameters and construct a spectral decomposition of the nucleotide composition. An example of the spectral decomposition of parametric representations of molecular genetic structures is given. In addition, a multiscale composition of genetic functional mappings visualizing the structural features of nucleic acids is discussed.
Collapse
|
4
|
Millán Arias P, Alipour F, Hill KA, Kari L. DeLUCS: Deep learning for unsupervised clustering of DNA sequences. PLoS One 2022; 17:e0261531. [PMID: 35061715 PMCID: PMC8782307 DOI: 10.1371/journal.pone.0261531] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022] Open
Abstract
We present a novel Deep Learning method for the Unsupervised Clustering of DNA Sequences (DeLUCS) that does not require sequence alignment, sequence homology, or (taxonomic) identifiers. DeLUCS uses Frequency Chaos Game Representations (FCGR) of primary DNA sequences, and generates "mimic" sequence FCGRs to self-learn data patterns (genomic signatures) through the optimization of multiple neural networks. A majority voting scheme is then used to determine the final cluster assignment for each sequence. The clusters learned by DeLUCS match true taxonomic groups for large and diverse datasets, with accuracies ranging from 77% to 100%: 2,500 complete vertebrate mitochondrial genomes, at taxonomic levels from sub-phylum to genera; 3,200 randomly selected 400 kbp-long bacterial genome segments, into clusters corresponding to bacterial families; three viral genome and gene datasets, averaging 1,300 sequences each, into clusters corresponding to virus subtypes. DeLUCS significantly outperforms two classic clustering methods (K-means++ and Gaussian Mixture Models) for unlabelled data, by as much as 47%. DeLUCS is highly effective, it is able to cluster datasets of unlabelled primary DNA sequences totalling over 1 billion bp of data, and it bypasses common limitations to classification resulting from the lack of sequence homology, variation in sequence length, and the absence or instability of sequence annotations and taxonomic identifiers. Thus, DeLUCS offers fast and accurate DNA sequence clustering for previously intractable datasets.
Collapse
Affiliation(s)
- Pablo Millán Arias
- School of Computer Science, University of Waterloo, Waterloo, ON, Canada
| | - Fatemeh Alipour
- School of Computer Science, University of Waterloo, Waterloo, ON, Canada
| | - Kathleen A. Hill
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Lila Kari
- School of Computer Science, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
5
|
Wu YQ, Yu ZG, Tang RB, Han GS, Anh VV. An Information-Entropy Position-Weighted K-Mer Relative Measure for Whole Genome Phylogeny Reconstruction. Front Genet 2021; 12:766496. [PMID: 34745231 PMCID: PMC8568955 DOI: 10.3389/fgene.2021.766496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022] Open
Abstract
Alignment methods have faced disadvantages in sequence comparison and phylogeny reconstruction due to their high computational costs in handling time and space complexity. On the other hand, alignment-free methods incur low computational costs and have recently gained popularity in the field of bioinformatics. Here we propose a new alignment-free method for phylogenetic tree reconstruction based on whole genome sequences. A key component is a measure called information-entropy position-weighted k-mer relative measure (IEPWRMkmer), which combines the position-weighted measure of k-mers proposed by our group and the information entropy of frequency of k-mers. The Manhattan distance is used to calculate the pairwise distance between species. Finally, we use the Neighbor-Joining method to construct the phylogenetic tree. To evaluate the performance of this method, we perform phylogenetic analysis on two datasets used by other researchers. The results demonstrate that the IEPWRMkmer method is efficient and reliable. The source codes of our method are provided at https://github.com/ wuyaoqun37/IEPWRMkmer.
Collapse
Affiliation(s)
- Yao-Qun Wu
- Hunan Key Laboratory for Computation and Simulation in Science and Engineering and Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Hunan, China.,Provincial Key Laboratory of Informational Service for Rural Area of Southwestern Hunan, Shaoyang University, Shaoyang, China
| | - Zu-Guo Yu
- Hunan Key Laboratory for Computation and Simulation in Science and Engineering and Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Hunan, China
| | - Run-Bin Tang
- Hunan Key Laboratory for Computation and Simulation in Science and Engineering and Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Hunan, China
| | - Guo-Sheng Han
- Hunan Key Laboratory for Computation and Simulation in Science and Engineering and Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Hunan, China
| | - Vo V Anh
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia
| |
Collapse
|
6
|
Naeem SM, Mabrouk MS, Eldosoky MA, Sayed AY. Automated detection of colon cancer using genomic signal processing. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00192-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Abstract
Background
Disorders in deoxyribonucleic acid (DNA) mutations are the common cause of colon cancer. Detection of these mutations is the first step in colon cancer diagnosis. Differentiation among normal and cancerous colon gene sequences is a method used for mutation identification. Early detection of this type of disease can avoid complications that can lead to death. In this study, 55 healthy and 55 cancerous genes for colon cells obtained from the national center for biotechnology information GenBank are used. After applying the electron–ion interaction pseudopotential (EIIP) numbering representation method for the sequences, single-level discrete wavelet transform (DWT) is applied using Haar wavelet. Then, some statistical features are obtained from the wavelet domain. These features are mean, variance, standard deviation, autocorrelation, entropy, skewness, and kurtosis. The resulting values are applied to the k-nearest neighbor (KNN) and support vector machine (SVM) algorithms to obtain satisfactory classification results.
Results
Four important parameters are calculated to evaluate the performance of the classifiers. Accuracy (ACC), F1 score, and Matthews correlation coefficient (MCC) are 95%, 94.74%, and 0.9045%, respectively, for SVM and 97.5%, 97.44%, and 0.9512%, respectively, for KNN.
Conclusion
This study has created a novel successful system for colorectal cancer classification and detection with the well-satisfied results. The K-nearest network results are the best with low error for the generated classification system, even though the results of the SVM network are acceptable.
Collapse
|
7
|
|
8
|
Yang A, Zhang W, Wang J, Yang K, Han Y, Zhang L. Review on the Application of Machine Learning Algorithms in the Sequence Data Mining of DNA. Front Bioeng Biotechnol 2020; 8:1032. [PMID: 33015010 PMCID: PMC7498545 DOI: 10.3389/fbioe.2020.01032] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/10/2020] [Indexed: 11/13/2022] Open
Abstract
Deoxyribonucleic acid (DNA) is a biological macromolecule. Its main function is information storage. At present, the advancement of sequencing technology had caused DNA sequence data to grow at an explosive rate, which has also pushed the study of DNA sequences in the wave of big data. Moreover, machine learning is a powerful technique for analyzing largescale data and learns spontaneously to gain knowledge. It has been widely used in DNA sequence data analysis and obtained a lot of research achievements. Firstly, the review introduces the development process of sequencing technology, expounds on the concept of DNA sequence data structure and sequence similarity. Then we analyze the basic process of data mining, summary several major machine learning algorithms, and put forward the challenges faced by machine learning algorithms in the mining of biological sequence data and possible solutions in the future. Then we review four typical applications of machine learning in DNA sequence data: DNA sequence alignment, DNA sequence classification, DNA sequence clustering, and DNA pattern mining. We analyze their corresponding biological application background and significance, and systematically summarized the development and potential problems in the field of DNA sequence data mining in recent years. Finally, we summarize the content of the review and look into the future of some research directions for the next step.
Collapse
Affiliation(s)
- Aimin Yang
- College of Science, North China University of Science and Technology, Tangshan, China
| | - Wei Zhang
- College of Science, North China University of Science and Technology, Tangshan, China
| | - Jiahao Wang
- College of Science, North China University of Science and Technology, Tangshan, China
| | - Ke Yang
- College of Yi Sheng, North China University of Science and Technology, Tangshan, China
| | - Yang Han
- College of Science, North China University of Science and Technology, Tangshan, China
| | - Limin Zhang
- Mathmatics and Computer Department, Hengshui University, Hengshui, China
| |
Collapse
|
9
|
Paredes O, Romo-Vázquez R, Román-Godínez I, Vélez-Pérez H, Salido-Ruiz RA, Morales JA. Frequency spectra characterization of noncoding human genomic sequences. Genes Genomics 2020; 42:1215-1226. [DOI: 10.1007/s13258-020-00980-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/27/2020] [Indexed: 11/28/2022]
|
10
|
Ranjard L, Wong TKF, Rodrigo AG. Effective machine-learning assembly for next-generation amplicon sequencing with very low coverage. BMC Bioinformatics 2019; 20:654. [PMID: 31829137 PMCID: PMC6907241 DOI: 10.1186/s12859-019-3287-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/20/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND In short-read DNA sequencing experiments, the read coverage is a key parameter to successfully assemble the reads and reconstruct the sequence of the input DNA. When coverage is very low, the original sequence reconstruction from the reads can be difficult because of the occurrence of uncovered gaps. Reference guided assembly can then improve these assemblies. However, when the available reference is phylogenetically distant from the sequencing reads, the mapping rate of the reads can be extremely low. Some recent improvements in read mapping approaches aim at modifying the reference according to the reads dynamically. Such approaches can significantly improve the alignment rate of the reads onto distant references but the processing of insertions and deletions remains challenging. RESULTS Here, we introduce a new algorithm to update the reference sequence according to previously aligned reads. Substitutions, insertions and deletions are performed in the reference sequence dynamically. We evaluate this approach to assemble a western-grey kangaroo mitochondrial amplicon. Our results show that more reads can be aligned and that this method produces assemblies of length comparable to the truth while limiting error rate when classic approaches fail to recover the correct length. Finally, we discuss how the core algorithm of this method could be improved and combined with other approaches to analyse larger genomic sequences. CONCLUSIONS We introduced an algorithm to perform dynamic alignment of reads on a distant reference. We showed that such approach can improve the reconstruction of an amplicon compared to classically used bioinformatic pipelines. Although not portable to genomic scale in the current form, we suggested several improvements to be investigated to make this method more flexible and allow dynamic alignment to be used for large genome assemblies.
Collapse
Affiliation(s)
- Louis Ranjard
- The Research School of Biology, The Australian National University, Canberra, Australia
| | - Thomas K. F. Wong
- The Research School of Biology, The Australian National University, Canberra, Australia
| | - Allen G. Rodrigo
- The Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
11
|
Li J, Zhang L, Li H, Ping Y, Xu Q, Wang R, Tan R, Wang Z, Liu B, Wang Y. Integrated entropy-based approach for analyzing exons and introns in DNA sequences. BMC Bioinformatics 2019; 20:283. [PMID: 31182012 PMCID: PMC6557737 DOI: 10.1186/s12859-019-2772-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Numerous essential algorithms and methods, including entropy-based quantitative methods, have been developed to analyze complex DNA sequences since the last decade. Exons and introns are the most notable components of DNA and their identification and prediction are always the focus of state-of-the-art research. RESULTS In this study, we designed an integrated entropy-based analysis approach, which involves modified topological entropy calculation, genomic signal processing (GSP) method and singular value decomposition (SVD), to investigate exons and introns in DNA sequences. We optimized and implemented the topological entropy and the generalized topological entropy to calculate the complexity of DNA sequences, highlighting the characteristics of repetition sequences. By comparing digitalizing entropy values of exons and introns, we observed that they are significantly different. After we converted DNA data to numerical topological entropy value, we applied SVD method to effectively investigate exon and intron regions on a single gene sequence. Additionally, several genes across five species are used for exon predictions. CONCLUSIONS Our approach not only helps to explore the complexity of DNA sequence and its functional elements, but also provides an entropy-based GSP method to analyze exon and intron regions. Our work is feasible across different species and extendable to analyze other components in both coding and noncoding region of DNA sequences.
Collapse
Affiliation(s)
- Junyi Li
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055 China
| | - Li Zhang
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055 China
| | - Huinian Li
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055 China
| | - Yuan Ping
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055 China
| | - Qingzhe Xu
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055 China
| | - Rongjie Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
| | - Renjie Tan
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
| | - Zhen Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Bo Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
| | - Yadong Wang
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055 China
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
| |
Collapse
|
12
|
AbdelRassoul R, Abd El-Bary AEM, El-Ebshihy AM. DNA Computing Modeling of HEMT transistor Noise Parameters. 2018 28TH INTERNATIONAL CONFERENCE ON COMPUTER THEORY AND APPLICATIONS (ICCTA) 2018. [DOI: 10.1109/iccta45985.2018.9499145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|