1
|
Yu WT, Wang X, Yin T, Tsui CKM, You CJ. Development and validation of a rapid loop-mediated isothermal amplification assay for the detection of Chrysomyxa and characterization of Chrysomyxa woroninii overwintering on Picea in China. IMA Fungus 2024; 15:23. [PMID: 39113143 PMCID: PMC11304928 DOI: 10.1186/s43008-024-00157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Chrysomyxa rusts cause significant damage to spruce in both natural forests and plantations. Particularly, Three Chrysomyxa species, Chrysomyxa deformans, Chrysomyxa qilianensis, and Chrysomyxa rhododendri, listed as National Forest Dangerous Pests in China, have severely affected many economically and ecologically important spruce native species in China. Also, Chrysomyxa arctostaphyli, an important plant quarantine fungus, causes a damaging broom rust disease on spruce. Therefore, rapid, and efficient detection tools are urgently needed for proper rust disease detection and management. In this study, a sensitive, genus-specific loop-mediated isothermal amplification (LAMP) assay targeting the ITS-28S rRNA region was developed to detect the presence of Chrysomyxa in spruce needle and bud samples. After optimization and validation, the LAMP assay was found to be sensitive to detect as low as 5.2 fg/µL DNA, making it suitable for rapid on-site testing for rust infection. The assay was also specific to Chrysomyxa species, with no positive signals from other rust genus/species. The application of LAMP in the early detection of rust infections in spruce needles and buds was investigated, and spatial colonization profiles as well as the means of overwintering of Chrysomyxa woroninii in infected buds and branches were verified using the LAMP assay. This LAMP detection method will facilitate further studies on the characteristics of the life cycle and inoculation of other systemic rusts.
Collapse
Affiliation(s)
- Wan Ting Yu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Xin Wang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Tan Yin
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Clement Kin-Ming Tsui
- Infectious Disease Research Laboratory, National Centre for Infectious Diseases, Tan Tock Seng Hospital, Singapore, 308433, Singapore
- Faculty of Medicine, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Chong Juan You
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Feau N, Tanney JB, Herath P, Leal I, Hamelin RC. Genome sequences of three genetic lineages of the fungus Nothophaeocryptopus gaeumannii, the causal agent of Swiss needle cast on Douglas-fir trees. Microbiol Resour Announc 2024; 13:e0100823. [PMID: 38265221 PMCID: PMC10868261 DOI: 10.1128/mra.01008-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Here, we present the nearly complete genome sequences of the three main genetic lineages of Nothophaeocryptopus gaeumannii, an endophytic ascomycete fungus responsible for Swiss needle cast, a foliar disease that is emerging as a significant threat to the Douglas-fir tree in its natural distribution range.
Collapse
Affiliation(s)
- Nicolas Feau
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia, Canada
| | - Joey B. Tanney
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia, Canada
| | - Padmini Herath
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Isabel Leal
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia, Canada
| | - Richard C. Hamelin
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
- Département des Sciences du bois et de la Forêt, Faculté de Foresterie et Géographie, Université Laval, Québec, Canada
| |
Collapse
|
3
|
Ioos R, Puertolas A, Renault C, Ndiaye A, Cerf-Wendling I, Hubert J, Wang W, Jiao C, Li H, Armengol J, Aguayo J. Harnessing the power of comparative genomics to support the distinction of sister species within Phyllosticta and development of highly specific detection of Phyllosticta citricarpa causing citrus black spot by real-time PCR. PeerJ 2023; 11:e16354. [PMID: 37901471 PMCID: PMC10601906 DOI: 10.7717/peerj.16354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023] Open
Abstract
Citrus crops are affected by many fungal diseases. Among them, Citrus Black Spot caused by the ascomycete Phyllosticta citricarpa is particularly economically damaging wherever it occurs. Many other species of Phyllosticta are described on Citrus, but only P. citricarpa is considered a quarantine pest on the European continent. In order to prevent the introduction of this species into Europe, it is essential to have a detection test which can reliably identify it, and not confuse it with other species present on citrus, notably P. paracitricarpa. The latter taxon has recently been described as very close to P. citricarpa, and most detection tests do not allow to distinguish the two species. In this work, we exploited the genomic data of 37 isolates of Phyllosticta spp. from citrus, firstly to assess their phylogenetic relationships, and secondly to search for genomic regions that allowed the definition of species-specific markers of P. citricarpa. Analysis of 51 concatenated genes separated P. citricarpa and P. paracitricarpa in two phylogenetic clades. A locus was selected to define a hydrolysis probe and primers combination that could be used in real-time PCR for the specific detection of the quarantine species, to the exclusion of all others present on Citrus. This test was then thoroughly validated on a set of strains covering a wide geographical diversity, and on numerous biological samples to demonstrate its reliability for regulatory control. The validation data highlighted the need to check the reliability of the test in advance, when a change of reagents was being considered.
Collapse
Affiliation(s)
- Renaud Ioos
- Laboratoire de la Santé des Végétaux, Unité de Mycologie, USC INRAE, ANSES, Malzéville, France
| | - Alexandra Puertolas
- Laboratoire de la Santé des Végétaux, Unité de Mycologie, USC INRAE, ANSES, Malzéville, France
- ANSES, European Union Reference Laboratory on Plant Pathogenic Fungi and Oomycetes, Malzéville, France
| | - Camille Renault
- Laboratoire de la Santé des Végétaux, Unité de Mycologie, USC INRAE, ANSES, Malzéville, France
- ANSES, European Union Reference Laboratory on Plant Pathogenic Fungi and Oomycetes, Malzéville, France
| | - Aida Ndiaye
- Laboratoire de la Santé des Végétaux, Unité de Mycologie, USC INRAE, ANSES, Malzéville, France
| | - Isabelle Cerf-Wendling
- Laboratoire de la Santé des Végétaux, Unité de Mycologie, USC INRAE, ANSES, Malzéville, France
| | - Jacqueline Hubert
- Laboratoire de la Santé des Végétaux, Unité de Mycologie, USC INRAE, ANSES, Malzéville, France
| | - Wen Wang
- The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Zhejiang, Hangzhou, China
| | - Chen Jiao
- The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Zhejiang, Hangzhou, China
| | - Hongye Li
- The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Zhejiang, Hangzhou, China
| | - Josep Armengol
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Valencia, Spain
| | - Jaime Aguayo
- Laboratoire de la Santé des Végétaux, Unité de Mycologie, USC INRAE, ANSES, Malzéville, France
| |
Collapse
|
4
|
New-Generation Sequencing Technology in Diagnosis of Fungal Plant Pathogens: A Dream Comes True? J Fungi (Basel) 2022; 8:jof8070737. [PMID: 35887492 PMCID: PMC9320658 DOI: 10.3390/jof8070737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
The fast and continued progress of high-throughput sequencing (HTS) and the drastic reduction of its costs have boosted new and unpredictable developments in the field of plant pathology. The cost of whole-genome sequencing, which, until few years ago, was prohibitive for many projects, is now so affordable that a new branch, phylogenomics, is being developed. Fungal taxonomy is being deeply influenced by genome comparison, too. It is now easier to discover new genes as potential targets for an accurate diagnosis of new or emerging pathogens, notably those of quarantine concern. Similarly, with the development of metabarcoding and metagenomics techniques, it is now possible to unravel complex diseases or answer crucial questions, such as "What's in my soil?", to a good approximation, including fungi, bacteria, nematodes, etc. The new technologies allow to redraw the approach for disease control strategies considering the pathogens within their environment and deciphering the complex interactions between microorganisms and the cultivated crops. This kind of analysis usually generates big data that need sophisticated bioinformatic tools (machine learning, artificial intelligence) for their management. Herein, examples of the use of new technologies for research in fungal diversity and diagnosis of some fungal pathogens are reported.
Collapse
|
5
|
Salgado-Salazar C, Skaltsas DN, Phipps T, Castlebury LA. Comparative genome analyses suggest a hemibiotrophic lifestyle and virulence differences for the beech bark disease fungal pathogens Neonectria faginata and Neonectria coccinea. G3-GENES GENOMES GENETICS 2021; 11:6163289. [PMID: 33693679 DOI: 10.1093/g3journal/jkab071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/25/2021] [Indexed: 11/14/2022]
Abstract
Neonectria faginata and Neonectria coccinea are the causal agents of the insect-fungus disease complex known as beech bark disease (BBD), known to cause mortality in beech forest stands in North America and Europe. These fungal species have been the focus of extensive ecological and disease management studies, yet less progress has been made toward generating genomic resources for both micro- and macro-evolutionary studies. Here, we report a 42.1 and 42.7 mb highly contiguous genome assemblies of N. faginata and N. coccinea, respectively, obtained using Illumina technology. These species share similar gene number counts (12,941 and 12,991) and percentages of predicted genes with assigned functional categories (64 and 65%). Approximately 32% of the predicted proteomes of both species are homologous to proteins involved in pathogenicity, yet N. coccinea shows a higher number of predicted mitogen-activated protein kinase genes, virulence determinants possibly contributing to differences in disease severity between N. faginata and N. coccinea. A wide range of genes encoding for carbohydrate-active enzymes capable of degradation of complex plant polysaccharides and a small number of predicted secretory effector proteins, secondary metabolite biosynthesis clusters and cytochrome oxidase P450 genes were also found. This arsenal of enzymes and effectors correlates with, and reflects, the hemibiotrophic lifestyle of these two fungal pathogens. Phylogenomic analysis and timetree estimations indicated that the N. faginata and N. coccinea species divergence may have occurred at ∼4.1 million years ago. Differences were also observed in the annotated mitochondrial genomes as they were found to be 81.7 kb (N. faginata) and 43.2 kb (N. coccinea) in size. The mitochondrial DNA expansion observed in N. faginata is attributed to the invasion of introns into diverse intra- and intergenic locations. These first draft genomes of N. faginata and N. coccinea serve as valuable tools to increase our understanding of basic genetics, evolutionary mechanisms and molecular physiology of these two nectriaceous plant pathogenic species.
Collapse
Affiliation(s)
- Catalina Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD 20705, USA
| | - Demetra N Skaltsas
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD 20705, USA.,Oak Ridge Institute for Science and Education, ARS Research Participation Program, Oak Ridge, TN 37831, USA
| | - Tunesha Phipps
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD 20705, USA
| | - Lisa A Castlebury
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD 20705, USA
| |
Collapse
|
6
|
Lim W, Siddig E, Eadie K, Nyuykonge B, Ahmed S, Fahal A, Verbon A, Smit S, van de Sande WWJ. The development of a novel diagnostic PCR for Madurella mycetomatis using a comparative genome approach. PLoS Negl Trop Dis 2020; 14:e0008897. [PMID: 33326425 PMCID: PMC7743967 DOI: 10.1371/journal.pntd.0008897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/17/2020] [Indexed: 12/17/2022] Open
Abstract
Background Eumycetoma is a neglected tropical disease most commonly caused by the fungus Madurella mycetomatis. Identification of eumycetoma causative agents can only be reliably performed by molecular identification, most commonly by species-specific PCR. The current M. mycetomatis specific PCR primers were recently discovered to cross-react with Madurella pseudomycetomatis. Here, we used a comparative genome approach to develop a new M. mycetomatis specific PCR for species identification. Methodology Predicted-protein coding sequences unique to M. mycetomatis were first identified in BLASTCLUST based on E-value, size and presence of orthologues. Primers were then developed for 16 unique sequences and evaluated against 60 M. mycetomatis isolates and other eumycetoma causing agents including the Madurella sibling species. Out of the 16, only one was found to be specific to M. mycetomatis. Conclusion We have discovered a predicted-protein coding sequence unique to M. mycetomatis and have developed a new species-specific PCR to be used as a novel diagnostic marker for M. mycetomatis. Mycetoma is a neglected tropical disease characterised by tumorous swellings and grain formation. This disease can be caused by more than 70 different micro-organisms and is categorised into actinomycetoma (caused by bacteria) and eumycetoma (caused by fungi). The most common causative agent of mycetoma is the fungus Madurella mycetomatis. Diagnosis of eumycetoma is often only done clinically or by histopathological examination and culturing of the grains. Unfortunately, that often leads to misidentifications. Molecular identification is currently the most reliable method to identify the causative agents. However, we have recently discovered that the only M. mycetomatis species-specific PCR primers cross-reacts to Madurella pseudomycetomatis. Since all Madurella species cause eumycetoma and have different susceptibilities to antifungal agents, it is important to be able to accurately identify them to the species level. Here we have used a comparative genome approach to identify and design new M. mycetomatis species-specific PCR primers. These primers can be used to identify M. mycetomatis directly from grains and do not cross-react with any of the other eumycetoma causative agents tested. We, therefore, recommended the use of these primers in reference centres and local laboratories to identify M. mycetomatis to the species level.
Collapse
Affiliation(s)
- Wilson Lim
- Erasmus MC, University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Emmanuel Siddig
- Erasmus MC, University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, The Netherlands
- Mycetoma Research Centre, University of Khartoum, Khartoum, Sudan
| | - Kimberly Eadie
- Erasmus MC, University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Bertrand Nyuykonge
- Erasmus MC, University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Sarah Ahmed
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Ahmed Fahal
- Mycetoma Research Centre, University of Khartoum, Khartoum, Sudan
| | - Annelies Verbon
- Erasmus MC, University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, The Netherlands
| | - Sandra Smit
- Wageningen University & Research, Department of Plant Science, Wageningen, The Netherlands
| | - Wendy WJ van de Sande
- Erasmus MC, University Medical Center Rotterdam, Department of Microbiology and Infectious Diseases, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
7
|
An easy and robust method for isolation and validation of single-nucleotide polymorphic markers from a first Erysiphe alphitoides draft genome. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01580-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
In Situ Processing and Efficient Environmental Detection (iSPEED) of tree pests and pathogens using point-of-use real-time PCR. PLoS One 2020; 15:e0226863. [PMID: 32240194 PMCID: PMC7117680 DOI: 10.1371/journal.pone.0226863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/16/2020] [Indexed: 11/29/2022] Open
Abstract
Global trade and climate change are responsible for a surge in foreign invasive species and emerging pests and pathogens across the world. Early detection and surveillance activities are essential to monitor the environment and prevent or mitigate future ecosystem impacts. Molecular diagnostics by DNA testing has become an integral part of this process. However, for environmental applications, there is a need for cost-effective and efficient point-of-use DNA testing to obtain accurate results from remote sites in real-time. This requires the development of simple and fast sample processing and DNA extraction, room-temperature stable reagents and a portable instrument. We developed a point-of-use real-time Polymerase Chain Reaction system using a crude buffer-based DNA extraction protocol and lyophilized, pre-made, reactions for on-site applications. We demonstrate the use of this approach with pathogens and pests covering a broad spectrum of known undesirable forest enemies: the fungi Sphaerulina musiva, Cronartium ribicola and Cronartium comandrae, the oomycete Phytophthora ramorum and the insect Lymantria dispar. We obtained positive DNA identification from a variety of different tissues, including infected leaves, pathogen spores, or insect legs and antenna. The assays were accurate and yielded no false positive nor negative. The shelf-life of the lyophilized reactions was confirmed after one year at room temperature. Finally, successful tests conducted with portable thermocyclers and disposable instruments demonstrate the suitability of the method, named in Situ Processing and Efficient Environmental Detection (iSPEED), for field testing. This kit fits in a backpack and can be carried to remote locations for accurate and rapid detection of pests and pathogens.
Collapse
|
9
|
Molecular assays to detect the presence and viability of Phytophthora ramorum and Grosmannia clavigera. PLoS One 2020; 15:e0221742. [PMID: 32023247 PMCID: PMC7001964 DOI: 10.1371/journal.pone.0221742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022] Open
Abstract
Wood and wood products can harbor microorganisms that can raise phytosanitary concerns in countries importing or exporting these products. To evaluate the efficacy of wood treatment on the survival of microorganisms of phytosanitary concern the method of choice is to grow microbes in petri dishes for subsequent identification. However, some plant pathogens are difficult or impossible to grow in axenic cultures. A molecular methodology capable of detecting living fungi and fungus-like organisms in situ can provide a solution. RNA represents the transcription of genes and can become rapidly unstable after cell death, providing a proxy measure of viability. We designed and used RNA-based molecular diagnostic assays targeting genes essential to vital processes and assessed their presence in wood colonized by fungi and oomycetes through reverse transcription and real-time polymerase chain reaction (PCR). A stability analysis was conducted by comparing the ratio of mRNA to gDNA over time following heat treatment of mycelial cultures of the Oomycete Phytophthora ramorum and the fungus Grosmannia clavigera. The real-time PCR results indicated that the DNA remained stable over a period of 10 days post treatment in heat-treated samples, whereas mRNA could not be detected after 24 hours for P. ramorum or 96 hours for G. clavigera. Therefore, this method provides a reliable way to evaluate the viability of these pathogens and offers a potential way to assess the effectiveness of existing and emerging wood treatments. This can have important phytosanitary impacts on assessing both timber and non-timber forest products of commercial value in international wood trade.
Collapse
|
10
|
Ibarra Caballero JR, Ata JP, Leddy KA, Glenn TC, Kieran TJ, Klopfenstein NB, Kim MS, Stewart JE. Genome comparison and transcriptome analysis of the invasive brown root rot pathogen, Phellinus noxius, from different geographic regions reveals potential enzymes associated with degradation of different wood substrates. Fungal Biol 2020; 124:144-154. [PMID: 32008755 DOI: 10.1016/j.funbio.2019.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 11/25/2022]
Abstract
Phellinus noxius is a root-decay pathogen with a pan-tropical/subtropical distribution that attacks a wide range of tree hosts. For this study, genomic sequencing was conducted on P. noxius isolate P919-02W.7 from Federated States of Micronesia (Pohnpei), and its gene expression profile was analyzed using different host wood (Acer, Pinus, Prunus, and Salix) substrates. The assembled genome was 33.92 Mbp with 2954 contigs and 9389 predicted genes. Only small differences were observed in size and gene content in comparison with two other P. noxius genome assemblies (isolates OVT-YTM/97 from Hong Kong, China and FFPRI411160 from Japan, respectively). Genome analysis of P. noxius isolate P919-02W.7 revealed 488 genes encoding proteins related to carbohydrate and lignin metabolism, many of these enzymes are associated with degradation of plant cell wall components. Most of the transcripts expressed by P. noxius isolate P919-02W.7 were similar regardless of wood substrates. This study highlights the vast suite of decomposing enzymes produced by P. noxius, which suggests potential for degrading diverse wood substrates, even from temperate host trees. This information contributes to our understanding of pathogen ecology, mechanisms of wood decomposition, and pathogenic/saprophytic lifestyle.
Collapse
Affiliation(s)
- Jorge R Ibarra Caballero
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| | - Jessa P Ata
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA; Department of Forest Biological Sciences, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - K A Leddy
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Troy J Kieran
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Ned B Klopfenstein
- USDA Forest Service, Rocky Mountain Research Station, Moscow, ID 83843, USA
| | - Mee-Sook Kim
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA.
| | - Jane E Stewart
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
11
|
Thierry M, Gladieux P, Fournier E, Tharreau D, Ioos R. A Genomic Approach to Develop a New qPCR Test Enabling Detection of the Pyricularia oryzae Lineage Causing Wheat Blast. PLANT DISEASE 2020; 104:60-70. [PMID: 31647693 DOI: 10.1094/pdis-04-19-0685-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rapid detection is key to managing emerging diseases because it allows their spread around the world to be monitored and limited. The first major wheat blast epidemics were reported in 1985 in the Brazilian state of Paraná. Following this outbreak, the disease quickly spread to neighboring regions and countries and, in 2016, the first report of wheat blast disease outside South America was released. This Asian outbreak was due to the trade of infected South American seed, demonstrating the importance of detection tests in order to avoid importing contaminated biological material into regions free from the pathogen. Genomic analysis has revealed that one particular lineage within the fungal species Pyricularia oryzae is associated with this disease: the Triticum lineage. A comparison of 81 Pyricularia genomes highlighted polymorphisms specific to the Triticum lineage, and this study developed a real-time PCR test targeting one of these polymorphisms. The test's performance was then evaluated in order to measure its analytical specificity, analytical sensitivity, and robustness. The C17 quantitative PCR test detected isolates belonging to the Triticum lineage with high sensitivity, down to 13 plasmid copies or 1 pg of genomic DNA per reaction tube. The blast-based approach developed here to study P. oryzae can be transposed to other emerging diseases.
Collapse
Affiliation(s)
- Maud Thierry
- UMR BGPI, Montpellier University, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR BGPI, F-34398 Montpellier, France
- ANSES Plant Health Laboratory, Mycology Unit, Domaine de Pixérécourt, Bâtiment E, F-54220 Malzéville, France
| | - Pierre Gladieux
- UMR BGPI, Montpellier University, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Elisabeth Fournier
- UMR BGPI, Montpellier University, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Didier Tharreau
- UMR BGPI, Montpellier University, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR BGPI, F-34398 Montpellier, France
| | - Renaud Ioos
- ANSES Plant Health Laboratory, Mycology Unit, Domaine de Pixérécourt, Bâtiment E, F-54220 Malzéville, France
| |
Collapse
|
12
|
Hamelin RC, Roe AD. Genomic biosurveillance of forest invasive alien enemies: A story written in code. Evol Appl 2020; 13:95-115. [PMID: 31892946 PMCID: PMC6935587 DOI: 10.1111/eva.12853] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/30/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
The world's forests face unprecedented threats from invasive insects and pathogens that can cause large irreversible damage to the ecosystems. This threatens the world's capacity to provide long-term fiber supply and ecosystem services that range from carbon storage, nutrient cycling, and water and air purification, to soil preservation and maintenance of wildlife habitat. Reducing the threat of forest invasive alien species requires vigilant biosurveillance, the process of gathering, integrating, interpreting, and communicating essential information about pest and pathogen threats to achieve early detection and warning and to enable better decision-making. This process is challenging due to the diversity of invasive pests and pathogens that need to be identified, the diverse pathways of introduction, and the difficulty in assessing the risk of establishment. Genomics can provide powerful new solutions to biosurveillance. The process of invasion is a story written in four chapters: transport, introduction, establishment, and spread. The series of processes that lead to a successful invasion can leave behind a DNA signature that tells the story of an invasion. This signature can help us understand the dynamic, multistep process of invasion and inform management of current and future introductions. This review describes current and future application of genomic tools and pipelines that will provide accurate identification of pests and pathogens, assign outbreak or survey samples to putative sources to identify pathways of spread, and assess risk based on traits that impact the outbreak outcome.
Collapse
Affiliation(s)
- Richard C. Hamelin
- Department of Forest and Conservation SciencesThe University of British ColumbiaVancouverBCCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Département des sciences du bois et de la forêt, Faculté de Foresterie et GéographieUniversité LavalQuébecQCCanada
| | - Amanda D. Roe
- Great Lakes Forestry CenterNatural Resources CanadaSault Ste. MarieONCanada
| |
Collapse
|
13
|
Dale AL, Feau N, Everhart SE, Dhillon B, Wong B, Sheppard J, Bilodeau GJ, Brar A, Tabima JF, Shen D, Brasier CM, Tyler BM, Grünwald NJ, Hamelin RC. Mitotic Recombination and Rapid Genome Evolution in the Invasive Forest Pathogen Phytophthora ramorum. mBio 2019; 10:e02452-18. [PMID: 30862749 PMCID: PMC6414701 DOI: 10.1128/mbio.02452-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
Invasive alien species often have reduced genetic diversity and must adapt to new environments. Given the success of many invasions, this is sometimes called the genetic paradox of invasion. Phytophthora ramorum is invasive, limited to asexual reproduction within four lineages, and presumed clonal. It is responsible for sudden oak death in the United States, sudden larch death in Europe, and ramorum blight in North America and Europe. We sequenced the genomes of 107 isolates to determine how this pathogen can overcome the invasion paradox. Mitotic recombination (MR) associated with transposons and low gene density has generated runs of homozygosity (ROH) affecting 2,698 genes, resulting in novel genotypic diversity within the lineages. One ROH enriched in effectors was fixed in the NA1 lineage. An independent ROH affected the same scaffold in the EU1 lineage, suggesting an MR hot spot and a selection target. Differences in host infection between EU1 isolates with and without the ROH suggest that they may differ in aggressiveness. Non-core regions (not shared by all lineages) had signatures of accelerated evolution and were enriched in putative pathogenicity genes and transposons. There was a striking pattern of gene loss, including all effectors, in the non-core EU2 genome. Positive selection was observed in 8.0% of RxLR and 18.8% of Crinkler effector genes compared with 0.9% of the core eukaryotic gene set. We conclude that the P. ramorum lineages are diverging via a rapidly evolving non-core genome and that the invasive asexual lineages are not clonal, but display genotypic diversity caused by MR.IMPORTANCE Alien species are often successful invaders in new environments, despite the introduction of a few isolates with a reduced genetic pool. This is called the genetic paradox of invasion. We found two mechanisms by which the invasive forest pathogen causing sudden oak and sudden larch death can evolve. Extensive mitotic recombination producing runs of homozygosity generates genotypic diversity even in the absence of sexual reproduction, and rapid turnover of genes in the non-core, or nonessential portion of genome not shared by all isolates, allows pathogenicity genes to evolve rapidly or be eliminated while retaining essential genes. Mitotic recombination events occur in genomic hot spots, resulting in similar ROH patterns in different isolates or groups; one ROH, independently generated in two different groups, was enriched in pathogenicity genes and may be a target for selection. This provides important insights into the evolution of invasive alien pathogens and their potential for adaptation and future persistence.
Collapse
Affiliation(s)
- Angela L Dale
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- GC-New Construction Materials, FPInnovations, Vancouver, British Columbia, Canada
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sydney E Everhart
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, USA
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Braham Dhillon
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Barbara Wong
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Faculté de Foresterie et Géomatique, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
| | - Julie Sheppard
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guillaume J Bilodeau
- Ottawa Plant Laboratory, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Avneet Brar
- Ottawa Plant Laboratory, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Javier F Tabima
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Clive M Brasier
- Forest Research, Alice Holt Lodge, Farnham, Surrey, United Kingdom
| | - Brett M Tyler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USA
| | - Niklaus J Grünwald
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon, USA
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Faculté de Foresterie et Géomatique, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
| |
Collapse
|
14
|
Bergeron MJ, Feau N, Stewart D, Tanguay P, Hamelin RC. Genome-enhanced detection and identification of fungal pathogens responsible for pine and poplar rust diseases. PLoS One 2019; 14:e0210952. [PMID: 30726264 PMCID: PMC6364900 DOI: 10.1371/journal.pone.0210952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/06/2019] [Indexed: 01/19/2023] Open
Abstract
Biosurveillance is a proactive approach that may help to limit the spread of invasive fungal pathogens of trees, such as rust fungi which have caused some of the world's most damaging diseases of pines and poplars. Most of these fungi have a complex life cycle, with up to five spore stages, which is completed on two different hosts. They have a biotrophic lifestyle and may be propagated by asymptomatic plant material, complicating their detection and identification. A bioinformatics approach, based on whole genome comparison, was used to identify genome regions that are unique to the white pine blister rust fungus, Cronartium ribicola, the poplar leaf rust fungi Melampsora medusae and Melampsora larici-populina or to members of either the Cronartium and Melampsora genera. Species- and genus-specific real-time PCR assays, targeting these unique regions, were designed with the aim of detecting each of these five taxonomic groups. In total, twelve assays were developed and tested over a wide range of samples, including different spore types, different infected plant parts on the pycnio-aecial or uredinio-telial host, and captured insect vectors. One hundred percent detection accuracy was achieved for the three targeted species and two genera with either a single assay or a combination of two assays. This proof of concept experiment on pine and poplar leaf rust fungi demonstrates that the genome-enhanced detection and identification approach can be translated into effective real-time PCR assays to monitor tree fungal pathogens.
Collapse
Affiliation(s)
- Marie-Josée Bergeron
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Québec, Québec, Canada
| | - Nicolas Feau
- Forest Sciences Centre, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Don Stewart
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Québec, Québec, Canada
| | - Philippe Tanguay
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Québec, Québec, Canada
| | - Richard C. Hamelin
- Forest Sciences Centre, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Institut de Biologie Intégrative des Systèmes, Université Laval, Québec, Québec, Canada
| |
Collapse
|
15
|
Luikart G, Kardos M, Hand BK, Rajora OP, Aitken SN, Hohenlohe PA. Population Genomics: Advancing Understanding of Nature. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_60] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|