1
|
Fu M, Qu H, Wang Y, Guan J, Xia T, Zheng K, Tang L, Zhou C, Zhou H, Cong W, Zhang J, Han B. Overcoming research challenges: In vitro cultivation of Ameson portunus (Phylum Microsporidia). J Invertebr Pathol 2024; 204:108091. [PMID: 38462166 DOI: 10.1016/j.jip.2024.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/03/2023] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Ameson portunus is an intracellular pathogen that infects marine crabs Portunus trituberculatus and Scylla paramamosain, causing significant economic losses. However, research into this important parasite has been limited due to the absence of an in vitro culture system. To address this challenge, we developed an in vitro cultivation model of A. portunus using RK13 cell line in this study. The fluorescent labeling assay indicated a high infection rate (∼60 %) on the first day post-infection and quantitative PCR (qPCR) detection demonstrated successful infection as early as six hours post-inoculation. Fluorescence in situ hybridization (FISH) and qPCR were used for the detection of A. portunus infected cells. The FISH probe we designed allowed detection of A. portunus in infected cells and qPCR assay provided accurate quantification of A. portunus in the samples. Transmission electron microscopy (TEM) images revealed that A. portunus could complete its entire life cycle and produce mature spores in RK13 cells. Additionally, we have identified novel life cycle characteristics during the development of A. portunus in RK 13 cells using TEM. These findings contribute to our understanding of new life cycle pathways of A. portunus. The establishment of an in vitro culture model for A. portunus is critical as it provides a valuable tool for understanding the molecular and immunological events that occur during infection. Furthermore, it will facilitate the development of effective treatment strategies for this intracellular pathogen.
Collapse
Affiliation(s)
- Ming Fu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Marine College, Shandong University, Weihai 264209, China
| | - Hongnan Qu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yongliang Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jingyu Guan
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tian Xia
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Kai Zheng
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Liyuan Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chunxue Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huaiyu Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wei Cong
- Marine College, Shandong University, Weihai 264209, China.
| | - Jinyong Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Bing Han
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
2
|
Gu S, Qi T, Rohr JR, Liu X. Meta-analysis reveals less sensitivity of non-native animals than natives to extreme weather worldwide. Nat Ecol Evol 2023; 7:2004-2027. [PMID: 37932385 DOI: 10.1038/s41559-023-02235-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/21/2023] [Indexed: 11/08/2023]
Abstract
Extreme weather events (EWEs; for example, heatwaves, cold spells, storms, floods and droughts) and non-native species invasions are two major threats to global biodiversity and are increasing in both frequency and consequences. Here we synthesize 443 studies and apply multilevel mixed-effects metaregression analyses to compare the responses of 187 non-native and 1,852 native animal species across terrestrial, freshwater and marine ecosystems to different types of EWE. Our results show that marine animals, regardless of whether they are non-native or native, are overall insensitive to EWEs, except for negative effects of heatwaves on native mollusks, corals and anemone. By contrast, terrestrial and freshwater non-native animals are only adversely affected by heatwaves and storms, respectively, whereas native animals negatively respond to heatwaves, cold spells and droughts in terrestrial ecosystems and are vulnerable to most EWEs except cold spells in freshwater ecosystems. On average, non-native animals displayed low abundance in terrestrial ecosystems, and decreased body condition and life history traits in freshwater ecosystems, whereas native animals displayed declines in body condition, life history traits, abundance, distribution and recovery in terrestrial ecosystems, and community structure in freshwater ecosystems. By identifying areas with high overlap between EWEs and EWE-tolerant non-native species, we also provide locations where native biodiversity might be adversely affected by their joint effects and where EWEs might facilitate the establishment and/or spread of non-native species under continuing global change.
Collapse
Affiliation(s)
- Shimin Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tianyi Qi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jason R Rohr
- Department of Biological Sciences, Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Xia J, Deng C, Zheng X, Huang Y, Elvidge CK, Fu S. Differential effects of parental and developmental temperatures on larval thermal adaptation in oviparous and viviparous model fish species. J Therm Biol 2023; 117:103695. [PMID: 37659344 DOI: 10.1016/j.jtherbio.2023.103695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/04/2023]
Abstract
Phenotypic plasticity has been identified as a major mechanism of response to changing temperatures. Parental effects are potentially important drivers of ecological and evolutionary dynamics, while developmental plasticity also plays a key role in generating phenotypic variation. However, little is known of the interaction between parental effects and developmental plasticity on the thermal phenotypes of fishes with different reproductive modes (i.e. oviparous vs. viviparous). To understand the contributions of inter- and intra-generational plasticity of thermal phenotypes (preferred temperature, avoidance temperatures, critical thermal thresholds) in fishes with different reproductive modes, we carried out a factorial experiment in which both breeding parents and offspring were exposed to lower (22 °C) or higher (28 °C) temperatures, using zebrafish (Danio rerio) and guppies (Poecilia reticulata) as representative oviparous and viviparous species. We found that offspring thermal preference and avoidance of both species were significantly influenced by parental effects and developmental plasticity, with higher thermal preference and avoidance consistent with higher background (parental) temperature treatments. However, parental effects were only found to impose significant effect on the thermal tolerances of guppies. The findings suggest that phenotypic plasticity, both within and across generations, may be an important mechanism to adapt to rapid climate changes, and that future temperature fluctuations may impose more profound effects on viviparous fish species in general.
Collapse
Affiliation(s)
- Jigang Xia
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China; Fish Ecology and Conservation Research Center, Chongqing Normal University, Chongqing, 401331, China.
| | - Chuke Deng
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China; Fish Ecology and Conservation Research Center, Chongqing Normal University, Chongqing, 401331, China
| | - Xueli Zheng
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Yan Huang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Chris K Elvidge
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Shijian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China; Fish Ecology and Conservation Research Center, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
4
|
Sarabeev V, Balbuena J, Jarosiewicz A, Voronova N, Sueiro R, Leiro J, Ovcharenko M. Disentangling the determinants of symbiotic species richness in native and invasive gammarids (Crustacea, Amphipoda) of the Baltic region. Int J Parasitol 2023; 53:305-316. [PMID: 37004736 DOI: 10.1016/j.ijpara.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/04/2023] [Accepted: 02/21/2023] [Indexed: 04/03/2023]
Abstract
Dispersal of alien species is a global problem threatening native biodiversity. Co-introduction of non-native parasites and pathogens adds to the severity of this threat, but this indirect impact has received less attention. To shed light on the key factors determining the richness of microorganisms in native and invasive host species, we compared symbiotic (parasitic and epibiotic) communities of gammarids across different habitats and localities along the Baltic coast of Poland. Seven gammarid species, two native and five invasive, were sampled from 16 freshwater and brackish localities. Sixty symbiotic species of microorganisms of nine phyla were identified. This taxonomically diverse species assemblage of symbionts allowed us to assess the effect of host translocation and regional ecological determinants driving assembly richness in the gammarid hosts. Our results revealed that (i) the current assemblages of symbionts of gammarid hosts in the Baltic region are formed by native and co-introduced species; (ii) species richness of the symbiotic community was higher in the native Gammarus pulex than in the invasive hosts, probably reflecting a process of species loss by invasive gammarids in the new area and the distinct habitat conditions occupied by G. pulex and invasive hosts; (iii) both host species and locality were key drivers shaping assembly composition of symbionts, whereas habitat condition (freshwater versus brackish) was a stronger determinant of communities than geographic distance; (iv) the dispersion patterns of the individual species richness of symbiotic communities were best described by Poisson distributions; in the case of an invasive host, the dispersion of the rich species diversity may switch to a right-skewed negative binomial distribution, suggesting a host-mediated regulation process. We believe this is the first analysis of the symbiotic species richness in native and invasive gammarid hosts in European waters based on original field data and a broad range of taxonomic groups including Microsporidia, Choanozoa, Ciliophora, Apicomplexa, Platyhelminthes, Nematoda, Nematomorha, Acanthocephala and Rotifera, to document the patterns of species composition and distribution.
Collapse
|
5
|
Henry J, Bai Y, Kreuder F, Saaristo M, Kaslin J, Wlodkowic D. A miniaturized electrothermal array for rapid analysis of temperature preference behaviors in ecology and ecotoxicology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120202. [PMID: 36169081 DOI: 10.1016/j.envpol.2022.120202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/16/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Due to technical limitations, there have been minimal studies performed on thermal preferences and thermotactic behaviors of aquatic ectotherm species commonly used in ecotoxicity testing. In this work, we demonstrate an innovative, purpose-built and miniaturized electrothermal array for rapid thermal preference behavioral tests. We applied the novel platform to define thermal preferences in multiple invertebrate and vertebrate species. Specifically, Dugesia notogaea (freshwater planarians), Chironomus tepperi (nonbiting midge larvae), Ostracoda (seed shrimp), Artemia franciscana (brine shrimp), Daphnia carinata (water flea), Austrochiltonia subtenuis (freshwater amphipod), Physa acuta (freshwater snail), Potamopyrgus antipodarum (New Zealand mud snail) and larval stage of Danio rerio (zebrafish) were tested. The Australian freshwater water fleas, amphipods, snail Physa acuta as well as zebrafish exhibited the most consistent preference to cool zones and clear avoidance of zones >27 °C out of nine species tested. Our results indicate the larval stage of zebrafish as the most responsive species highly suitable for prospective development of multidimensional behavioral test batteries. We also showcase preliminary data that environmentally relevant concentrations of pharmaceutical pollutants such as non-steroidal anti-inflammatory drug (NSAID) ibuprofen (9800 ng/L) and insecticide imidacloprid (4600 ng/L) but not anti-depressant venlafaxine (2200 ng/L) and (iv) anticonvulsant medications gabapentin (400 ng/L) can perturb thermal preference behavior of larval zebrafish. Collectively our results demonstrate the utility of simple and inexpensive thermoelectric technology in rapid exploration of thermal preference in diverse species of aquatic animals. We postulate that more broadly such technologies can also have added value in ecotoxicity testing of emerging contaminants.
Collapse
Affiliation(s)
- Jason Henry
- The Neurotox Lab, School of Science, RMIT University, Melbourne, Victoria, 3083, Australia
| | - Yutao Bai
- The Neurotox Lab, School of Science, RMIT University, Melbourne, Victoria, 3083, Australia
| | - Florian Kreuder
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Minna Saaristo
- Environmental Protection Authority Victoria, EPA Science, Macleod, Victoria, 3085, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, Victoria, 3083, Australia. http://www.rmit.edu.au/staff/donald-wlodkowic
| |
Collapse
|
6
|
Kobak J, Rachalewski M, Bącela-Spychalska K. What doesn’t kill you doesn’t make you stronger: Parasites modify interference competition between two invasive amphipods. NEOBIOTA 2021. [DOI: 10.3897/neobiota.69.73734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We used a freshwater amphipod-microsporidian model (Ponto-Caspian hosts: Dikerogammarus villosus and D. haemobaphes, parasite: Cucumispora dikerogammari) to check whether parasites affect biological invasions by modulating behaviour and intra- and interspecific interactions between the invaders. We tested competition for shelter in conspecific and heterospecific male pairs (one or both individuals infected or non-infected). In general, amphipods of both species increased their shelter occupancy time when accompanied by infected rather than non-infected conspecifics and heterospecifics. Infected amphipods faced lower aggression from non-infected conspecifics. Moreover, D. villosus was more aggressive than D. haemobaphes and more aggressive towards conspecifics vs. heterospecifics. In summary, infection reduced the intra- and interspecific competitivity of amphipods, which became less capable of defending their shelters, despite their unchanged need for shelter occupancy. Dikerogammarus haemobaphes, commonly considered as a weaker competitor, displaced by D. villosus from co-occupied locations, was able to compete efficiently for the shelter with D. villosus when microsporidian infections appeared on the scene. This suggests that parasites may be important mediators of biological invasions, facilitating the existence of large intra- and interspecific assemblages of invasive alien amphipods.
Collapse
|
7
|
Millard RS, Ellis RP, Bateman KS, Bickley LK, Tyler CR, van Aerle R, Santos EM. How do abiotic environmental conditions influence shrimp susceptibility to disease? A critical analysis focussed on White Spot Disease. J Invertebr Pathol 2020; 186:107369. [PMID: 32272137 DOI: 10.1016/j.jip.2020.107369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 01/14/2023]
Abstract
White Spot Syndrome Virus (WSSV) causes White Spot Disease (WSD) and is historically the most devastating disease in the shrimp industry. Global losses from this disease have previously exceeded $3 bn annually, having a major impact on a global industry worth US$19 bn per annum. Shrimp are cultured predominantly in enclosed ponds that are subject to considerable fluctuations in abiotic conditions and WSD outbreaks are increasingly linked to periods of extreme weather, which may cause major fluctuations in pond culture conditions. Combined with the intensity of production in these systems, the resulting suboptimal physicochemical conditions have a major bearing on the susceptibility of shrimp to infection and disease. Current knowledge indicates that pond temperature and salinity are major factors determining outbreak severity. WSSV appears to be most virulent in water temperatures between 25 and 28 °C and salinities far removed from the isoosmotic point of shrimp. Elevated temperatures (>30 °C) may protect against WSD, depending on the stage of infection, however the mechanisms mediating this effect have not been well established. Other factors relating to water quality that may play key roles in determining outbreak severity include dissolved oxygen concentration, nitrogenous compound concentration, partial pressure of carbon dioxide and pH, but data on their impacts on WSSV susceptibility in cultured shrimps is scarce. This illustrates a major research gap in our understanding of the influence of environmental conditions on disease. For example, it is not clear whether temperature manipulations can be used effectively to prevent or mitigate WSD in cultured shrimp. Therefore, developing our understanding of the impact of environmental conditions on shrimp susceptibility to WSSV may provide insight for WSD mitigation when, even after decades of research, there is no effective practical prophylaxis or treatment.
Collapse
Affiliation(s)
- Rebecca S Millard
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom; International Centre of Excellence for Aquatic Animal Health, Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth DT4 8UB, United Kingdom.
| | - Robert P Ellis
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Kelly S Bateman
- Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom; International Centre of Excellence for Aquatic Animal Health, Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth DT4 8UB, United Kingdom; OIE Collaborating Centre - Emerging Aquatic Animal Diseases, Barrack Road, The Nothe, Weymouth DT4 8UB, United Kingdom
| | - Lisa K Bickley
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom; Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom; Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Ronny van Aerle
- Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom; International Centre of Excellence for Aquatic Animal Health, Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth DT4 8UB, United Kingdom; OIE Collaborating Centre - Emerging Aquatic Animal Diseases, Barrack Road, The Nothe, Weymouth DT4 8UB, United Kingdom
| | - Eduarda M Santos
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom; Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom.
| |
Collapse
|
8
|
Mascaró M, Horta JL, Diaz F, Paschke K, Rosas C, Simões N. Effect of a gradually increasing temperature on the behavioural and physiological response of juvenile Hippocampus erectus: Thermal preference, tolerance, energy balance and growth. J Therm Biol 2019; 85:102406. [PMID: 31657747 DOI: 10.1016/j.jtherbio.2019.102406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/13/2019] [Accepted: 08/25/2019] [Indexed: 12/17/2022]
Abstract
The physiological and behavioural responses of ectotherms to temperature is strongly dependent on the individuals' previous thermal history. Laboratory based studies investigating the mechanisms of thermoregulation in marine ectotherms, however, rarely consider key temporal elements of thermal exposure, such as the rate at which temperature changes. We tested the hypothesis that juvenile seahorses, Hippocampus erectus, from a tropical coastal lagoon in Yucatan, Mexico, would exhibit variations in physiological and behavioural descriptors of thermoregulation when submitted to contrasting regimes during 30 days: temperature constant at 25 °C (C 25); gradually increasing 1 °C every 5 days from 25 to 30 °C (GI 25-30); and constant at 30 °C (C 30). Immediately after exposure, critical maximum temperature, thermal preference, oxygen consumption, partial energy balance, growth rate and survival of seahorses were measured. Seahorses exposed to GI 25-30 showed a significantly higher critical thermal maxima (37.8 ± 0.9 °C), preference (28.7 ± 0.4 °C), growth (1.10 ± 0.49%) and survival (97.6%) than those exposed to C 30 (36.5 ± 1, 29.4 ± 0.3 °C, 0.48 ± 0.32%, 73.8%, respectively). Both high temperature regimes induced metabolic depression, but ramping resulted in a greater amount of energy assimilated (278.9 ± 175.4 J g-1 day-1) and higher energy efficiency for growth (89.8%) than constant exposure to 30 °C (115.4 ± 63.4 J g-1 day-1, 65.3%, respectively). Gradually increasing temperature allowed physiological mechanisms of thermal adjustment to take place, reflecting the capacity of juvenile H. erectus to respond to environmental change. Despite its advantage, this capacity is limited in time, since the cumulative effect of thermal exposure affected metabolic performance, eventually compromising survival. The study of seahorse response to thermal variations in the context of ocean warming needs to consider the temporal elements of thermal exposure to foresee its vulnerability under future scenarios.
Collapse
Affiliation(s)
- M Mascaró
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de abrigo s/n Sisal, Yucatán, Mexico; Laboratorio Nacional de Resiliencia Costera Laboratorios Nacionales, CONACYT, Mexico City, Mexico
| | - J L Horta
- Posgrado en Ciencias del Mar y Limnología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de abrigo s/n Sisal, Yucatán, Mexico
| | - F Diaz
- Laboratorio de Ecofisiología de Organismos Acuáticos, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana # 3918, Ensenada, Baja California, Mexico
| | - K Paschke
- Instituto de Acuicultura, Universidad Austral de Chile, Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile
| | - C Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de abrigo s/n Sisal, Yucatán, Mexico; Laboratorio Nacional de Resiliencia Costera Laboratorios Nacionales, CONACYT, Mexico City, Mexico
| | - N Simões
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de abrigo s/n Sisal, Yucatán, Mexico; Laboratorio Nacional de Resiliencia Costera Laboratorios Nacionales, CONACYT, Mexico City, Mexico; International Chair for Coastal and Marine Studies, Harte Research Institute for Gulf of Mexico Studies, Texas A&M University, Corpus Christi, Texas, USA.
| |
Collapse
|