1
|
Yuen JS, Barrick BM, DiCindio H, Pietropinto JA, Kaplan DL. Optimization of Culture Media and Cell Ratios for 3D In Vitro Skeletal Muscle Tissues with Endothelial Cells. ACS Biomater Sci Eng 2023; 9:4558-4566. [PMID: 37326372 DOI: 10.1021/acsbiomaterials.3c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A major challenge of engineering larger macroscale tissues in vitro is the limited diffusion of nutrients and oxygen to the interior. For skeletal muscle, this limitation results in millimeter scale outcomes to avoid necrosis. One method to address this constraint may be to vascularize in vitro-grown muscle tissue, to support nutrient (culture media) flow into the interior of the structure. In this exploratory study, we examine culture conditions that enable myogenic development and endothelial cell survival within tissue engineered 3D muscles. Myoblasts (C2C12s), endothelial cells (HUVECs), and endothelial support cells (C3H 10T1/2s) were seeded into Matrigel-fibrin hydrogels and cast into 3D printed frames to form 3D in vitro skeletal muscle tissues. Our preliminary results suggest that the simultaneous optimization of culture media formulation and cell concentrations is necessary for 3D cultured muscles to exhibit robust myosin heavy chain expression and GFP expression from GFP-transfected endothelial cells. The ability to form differentiated 3D muscles containing endothelial cells is a key step toward achieving vascularized 3D muscle tissues, which have potential use as tissue for implantation in a medical setting, as well as for future foods such as cultivated meats.
Collapse
Affiliation(s)
- John Sk Yuen
- David Kaplan Laboratory, Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts 02215, United States
| | - Brigid M Barrick
- David Kaplan Laboratory, Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts 02215, United States
| | - Hailey DiCindio
- David Kaplan Laboratory, Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts 02215, United States
| | - Jaymie A Pietropinto
- David Kaplan Laboratory, Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts 02215, United States
| | - David L Kaplan
- David Kaplan Laboratory, Biomedical Engineering Department, Tufts University, 4 Colby Street, Medford, Massachusetts 02215, United States
| |
Collapse
|
2
|
Ahmad SS, Chun HJ, Ahmad K, Shaikh S, Lim JH, Ali S, Han SS, Hur SJ, Sohn JH, Lee EJ, Choi I. The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:16-31. [PMID: 37093925 PMCID: PMC10119461 DOI: 10.5187/jast.2022.e114] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Cultured meat is a potential sustainable food generated by the in vitro myogenesis of muscle satellite (stem) cells (MSCs). The self-renewal and differentiation properties of MSCs are of primary interest for cultured meat production. MSC proliferation and differentiation are influenced by a variety of growth factors such as insulin-like growth factors (IGF-1 and IGF-2), transforming growth factor beta (TGF-β), fibroblast growth factors (FGF-2 and FGF-21), platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF) and by hormones like insulin, testosterone, glucocorticoids, and thyroid hormones. In this review, we investigated the roles of growth factors and hormones during cultured meat production because these factors provide signals for MSC growth and structural stability. The aim of this article is to provide the important idea about different growth factors such as FGF (enhance the cell proliferation and differentiation), IGF-1 (increase the number of myoblasts), PDGF (myoblast proliferation), TGF-β1 (muscle repair) and hormones such as insulin (cell survival and growth), testosterone (muscle fiber size), dexamethasone (myoblast proliferation and differentiation), and thyroid hormones (amount and diameter of muscle fibers and determine the usual pattern of fiber distributions) as media components during myogenesis for cultured meat production.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| | - Shahid Ali
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| | - Sung Soo Han
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
- School of Chemical Engineering, Yeungnam
University, Gyeongsan 38541, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jung Hoon Sohn
- Synthetic Biology and Bioengineering
Research Center, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| | - Inho Choi
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
3
|
Abstract
The next robotics frontier will be led by biohybrids. Capable biohybrid robots require microfluidics to sustain, improve, and scale the architectural complexity of their core ingredient: biological tissues. Advances in microfluidics have already revolutionized disease modeling and drug development, and are positioned to impact regenerative medicine but have yet to apply to biohybrids. Fusing microfluidics with living materials will improve tissue perfusion and maturation, and enable precise patterning of sensing, processing, and control elements. This perspective suggests future developments in advanced biohybrids.
Collapse
|
4
|
Cellular Aquaculture: Prospects and Challenges. MICROMACHINES 2022; 13:mi13060828. [PMID: 35744442 PMCID: PMC9228929 DOI: 10.3390/mi13060828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023]
Abstract
Aquaculture plays an important role as one of the fastest-growing food-producing sectors in global food and nutritional security. Demand for animal protein in the form of fish has been increasing tremendously. Aquaculture faces many challenges to produce quality fish for the burgeoning world population. Cellular aquaculture can provide an alternative, climate-resilient food production system to produce quality fish. Potential applications of fish muscle cell lines in cellular aquaculture have raised the importance of developing and characterizing these cell lines. In vitro models, such as the mouse C2C12 cell line, have been extremely useful for expanding knowledge about molecular mechanisms of muscle growth and differentiation in mammals. Such studies are in an infancy stage in teleost due to the unavailability of equivalent permanent muscle cell lines, except a few fish muscle cell lines that have not yet been used for cellular aquaculture. The Prospect of cell-based aquaculture relies on the development of appropriate muscle cells, optimization of cell conditions, and mass production of cells in bioreactors. Hence, it is required to develop and characterize fish muscle cell lines along with their cryopreservation in cell line repositories and production of ideal mass cells in suitably designed bioreactors to overcome current cellular aquaculture challenges.
Collapse
|
5
|
Knežić T, Janjušević L, Djisalov M, Yodmuang S, Gadjanski I. Using Vertebrate Stem and Progenitor Cells for Cellular Agriculture, State-of-the-Art, Challenges, and Future Perspectives. Biomolecules 2022; 12:699. [PMID: 35625626 PMCID: PMC9138761 DOI: 10.3390/biom12050699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 12/19/2022] Open
Abstract
Global food systems are under significant pressure to provide enough food, particularly protein-rich foods whose demand is on the rise in times of crisis and inflation, as presently existing due to post-COVID-19 pandemic effects and ongoing conflict in Ukraine and resulting in looming food insecurity, according to FAO. Cultivated meat (CM) and cultivated seafood (CS) are protein-rich alternatives for traditional meat and fish that are obtained via cellular agriculture (CA) i.e., tissue engineering for food applications. Stem and progenitor cells are the building blocks and starting point for any CA bioprocess. This review presents CA-relevant vertebrate cell types and procedures needed for their myogenic and adipogenic differentiation since muscle and fat tissue are the primary target tissues for CM/CS production. The review also describes existing challenges, such as a need for immortalized cell lines, or physical and biochemical parameters needed for enhanced meat/fat culture efficiency and ways to address them.
Collapse
Affiliation(s)
- Teodora Knežić
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Ljiljana Janjušević
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Mila Djisalov
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Supansa Yodmuang
- Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd, Pathumwan, Bangkok 10330, Thailand;
| | - Ivana Gadjanski
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| |
Collapse
|
6
|
Abstract
In vitro meat (IVM) is a recent development in the production of sustainable food. The consumer perception of IVM has a strong impact on the commercial success of IVM. Hence this review examines existing studies related to consumer concerns, acceptance and uncertainty of IVM. This will help create better marketing strategies for IVM-producing companies in the future. In addition, IVM production is described in terms of the types of cells and culture conditions employed. The applications of self-organising, scaffolding, and 3D printing techniques to produce IVM are also discussed. As the conditions for IVM production are controlled and can be manipulated, it will be feasible to produce a chemically safe and disease-free meat with improved consumer acceptance on a sustainable basis.
Collapse
|
7
|
Guan X, Zhou J, Du G, Chen J. Bioprocessing technology of muscle stem cells: implications for cultured meat. Trends Biotechnol 2021; 40:721-734. [PMID: 34887105 DOI: 10.1016/j.tibtech.2021.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022]
Abstract
Muscle stem cells (MuSCs) are essential for the growth, maintenance, and repair of skeletal muscle. In the emerging area of cultured meat, meat products are manufactured with MuSCs using theory and technology from the fields of cell culture, tissue engineering, and food processing. Recently, considerable progress has been made in bioprocessing technologies for MuSCs, including isolation, expansion, differentiation, and tissue building. Here we summarize cutting-edge operational strategies and recently characterized regulatory mechanisms for MuSCs. Furthermore, we discuss their applicability to refining the production process for cultured meat and accelerating its industrialization.
Collapse
Affiliation(s)
- Xin Guan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
8
|
Hong TK, Shin DM, Choi J, Do JT, Han SG. Current Issues and Technical Advances in Cultured Meat Production: A Review. Food Sci Anim Resour 2021; 41:355-372. [PMID: 34017947 PMCID: PMC8112310 DOI: 10.5851/kosfa.2021.e14] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
As the global population grows, we need a stable protein supply to meet the demands. Although plant-derived protein sources are widely available, animal meat maintains its popularity as a high-quality and savory protein source. Recently, cultured meat, also known as in vitro meat, has been suggested as a meat analog produced through in vitro cell culture technology. Cultured meat has several advantages over conventional meat, such as environmental protection, disease prevention, and animal welfare. However, cultured meat manufacturing is an emerging technology; thus, its further and dynamic development would be pivotal. Commercialization of cultured meat to the public will take a long time but cultured meat undoubtedly will come to our table someday. Here, we discuss the social and economic aspects of cultured meat production as well as the recent technical advances in cultured meat technology.
Collapse
Affiliation(s)
- Tae Kyung Hong
- Department of Stem Cell and Regenerative
Biotechnology, KU Institute of Science and Technology, Konkuk
University, Seoul 05029, Korea
| | - Dong-Min Shin
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University,
Seoul 05029, Korea
| | - Joonhyuk Choi
- Department of Stem Cell and Regenerative
Biotechnology, KU Institute of Science and Technology, Konkuk
University, Seoul 05029, Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative
Biotechnology, KU Institute of Science and Technology, Konkuk
University, Seoul 05029, Korea
| | - Sung Gu Han
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University,
Seoul 05029, Korea
| |
Collapse
|
9
|
Sun M, Liu A, Yang X, Gong J, Yu M, Yao X, Wang H, He Y. 3D Cell Culture—Can It Be As Popular as 2D Cell Culture? ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Miao Sun
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - An Liu
- Department of Orthopaedic Surgery Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310000 China
| | - Xiaofu Yang
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Jiaxing Gong
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Xinhua Yao
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Yong He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
- State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
| |
Collapse
|
10
|
Abstract
Living systems have evolved to survive in a wide range of environments and safely interact with other objects and organisms. Thus, living systems have been the source of inspiration for many researchers looking to apply their mechanics and unique characteristics in engineering robotics. Moving beyond bioinspiration, biohybrid actuators, with compliance and self-healing capabilities enabled by living cells or tissue interfaced with artificial structures, have drawn great interest as ways to address challenges in soft robotics, and in particular have seen success in small-scale robotic actuation. However, macro-scale biohybrid actuators beyond the centimeter scale currently face many practical obstacles. In this perspective, we discuss the challenges in scaling up biohybrid actuators and the path to realize large-scale biohybrid soft robotics.
Collapse
|
11
|
Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. ACTA ACUST UNITED AC 2020. [DOI: 10.1038/s43016-020-0046-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Wang Y, Liu S, Yan Y, Li S, Tong H. SPARCL1 promotes C2C12 cell differentiation via BMP7-mediated BMP/TGF-β cell signaling pathway. Cell Death Dis 2019; 10:852. [PMID: 31699966 PMCID: PMC6838091 DOI: 10.1038/s41419-019-2049-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022]
Abstract
The extracellular matrix (ECM) is known to regulate tissue development and cell morphology, movement, and differentiation. SPARCL1 is an ECM protein, but its role in mouse cell differentiation has not been widely investigated. The results of western blotting and immunofluorescence showed that SPARCL1 is associated with the repair of muscle damage in mice and that SPARCL1 binds to bone morphogenetic protein 7 (BMP7) by regulating BMP/transforming growth factor (TGF)-β cell signaling. This pathway promotes the differentiation of C2C12 cells. Using CRISPR/Cas9 technology, we also showed that SPARCL1 activates BMP/TGF-β to promote the differentiation of C2C12 cells. BMP7 molecules were found to interact with SPARCL1 by immunoprecipitation analysis. Western blotting and immunofluorescence were performed to verify the effect of BMP7 on C2C12 cell differentiation. Furthermore, SPARCL1 was shown to influence the expression of BMP7 and activity of the BMP/TGF-β signaling pathway. Finally, SPARCL1 activation was accompanied by BMP7 inhibition in C2C12 cells, which confirmed that SPARCL1 affects BMP7 expression and can promote C2C12 cell differentiation through the BMP/TGF-β pathway. The ECM is essential for muscle regeneration and damage repair. This study intends to improve the understanding of the molecular mechanisms of muscle development and provide new treatment ideas for muscle injury diseases.
Collapse
Affiliation(s)
- YuXin Wang
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - ShuaiYu Liu
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - YunQin Yan
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - ShuFeng Li
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - HuiLi Tong
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China. .,Life Science and Biotechnology Research Center, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
13
|
Muscle tissue engineering in fibrous gelatin: implications for meat analogs. NPJ Sci Food 2019; 3:20. [PMID: 31646181 PMCID: PMC6803664 DOI: 10.1038/s41538-019-0054-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Bioprocessing applications that derive meat products from animal cell cultures require food-safe culture substrates that support volumetric expansion and maturation of adherent muscle cells. Here we demonstrate scalable production of microfibrous gelatin that supports cultured adherent muscle cells derived from cow and rabbit. As gelatin is a natural component of meat, resulting from collagen denaturation during processing and cooking, our extruded gelatin microfibers recapitulated structural and biochemical features of natural muscle tissues. Using immersion rotary jet spinning, a dry-jet wet-spinning process, we produced gelatin fibers at high rates (~ 100 g/h, dry weight) and, depending on process conditions, we tuned fiber diameters between ~ 1.3 ± 0.1 μm (mean ± SEM) and 8.7 ± 1.4 μm (mean ± SEM), which are comparable to natural collagen fibers. To inhibit fiber degradation during cell culture, we crosslinked them either chemically or by co-spinning gelatin with a microbial crosslinking enzyme. To produce meat analogs, we cultured bovine aortic smooth muscle cells and rabbit skeletal muscle myoblasts in gelatin fiber scaffolds, then used immunohistochemical staining to verify that both cell types attached to gelatin fibers and proliferated in scaffold volumes. Short-length gelatin fibers promoted cell aggregation, whereas long fibers promoted aligned muscle tissue formation. Histology, scanning electron microscopy, and mechanical testing demonstrated that cultured muscle lacked the mature contractile architecture observed in natural muscle but recapitulated some of the structural and mechanical features measured in meat products.
Collapse
|
14
|
Simsa R, Yuen J, Stout A, Rubio N, Fogelstrand P, Kaplan DL. Extracellular Heme Proteins Influence Bovine Myosatellite Cell Proliferation and the Color of Cell-Based Meat. Foods 2019; 8:E521. [PMID: 31640291 PMCID: PMC6835221 DOI: 10.3390/foods8100521] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/18/2019] [Indexed: 01/23/2023] Open
Abstract
Skeletal muscle-tissue engineering can be applied to produce cell-based meat for human consumption, but growth parameters need to be optimized for efficient production and similarity to traditional meat. The addition of heme proteins to plant-based meat alternatives was recently shown to increase meat-like flavor and natural color. To evaluate whether heme proteins also have a positive effect on cell-based meat production, bovine muscle satellite cells (BSCs) were grown in the presence of hemoglobin (Hb) or myoglobin (Mb) for up to nine days in a fibrin hydrogel along 3D-printed anchor-point constructs to generate bioartificial muscles (BAMs). The influence of heme proteins on cell proliferation, tissue development, and tissue color was analyzed. We found that the proliferation and metabolic activity of BSCs was significantly increased when Mb was added, while Hb had no, or a slightly negative, effect. Hb and, in particular, Mb application led to a very similar color of BAMs compared to cooked beef, which was not noticeable in groups without added heme proteins. Taken together, these results indicate a potential benefit of adding Mb to cell culture media for increased proliferation and adding Mb or Hb for the coloration of cell-based meat.
Collapse
Affiliation(s)
- Robin Simsa
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
- VERIGRAFT AB, 41346 Gothenburg, Sweden.
- Wallenberg Laboratory, University of Gothenburg, 41345 Gothenburg, Sweden.
| | - John Yuen
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| | - Andrew Stout
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| | - Natalie Rubio
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| | - Per Fogelstrand
- Wallenberg Laboratory, University of Gothenburg, 41345 Gothenburg, Sweden.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
15
|
Ben-Arye T, Levenberg S. Tissue Engineering for Clean Meat Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00046] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
16
|
Rubio N, Datar I, Stachura D, Kaplan D, Krueger K. Cell-Based Fish: A Novel Approach to Seafood Production and an Opportunity for Cellular Agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|