1
|
Jessl L, Oehlmann J. No effects of the antiandrogens cyproterone acetate (CPA), flutamide and p,p'-DDE on early sexual differentiation but CPA-induced retardation of embryonic development in the domestic fowl ( Gallus gallus domesticus). PeerJ 2023; 11:e16249. [PMID: 37901474 PMCID: PMC10601917 DOI: 10.7717/peerj.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Because a wide range of environmental contaminants are known to cause endocrine disorders in humans and animals, in vivo tests are needed to identify such endocrine disrupting chemicals (EDCs) and to assess their biological effects. Despite the lack of a standardized guideline, the avian embryo has been shown to be a promising model system which responds sensitively to EDCs. After previous studies on the effects of estrogenic, antiestrogenic and androgenic substances, the present work focuses on the effects of in ovo exposure to p,p'-DDE, flutamide and cyproterone acetate (CPA) as antiandrogenic model compounds regarding gonadal sex differentiation and embryonic development of the domestic fowl (Gallus gallus domesticus). The substances were injected into the yolk of fertilized eggs on embryonic day one. On embryonic day 19 sex genotype and phenotype were determined, followed by gross morphological and histological examination of the gonads. Treatment with flutamide (0.5, 5, 50 µg/g egg), p,p'-DDE (0.5, 5, 50 µg/g egg) or CPA (0.2, 2, 20 µg/g egg) did not affect male or female gonad development, assessed by gonad surface area and cortex thickness in both sexes and by the percentage of seminiferous tubules in males as endpoints. This leads to the conclusion that antiandrogens do not affect sexual differentiation during embryonic development of G. gallus domesticus, reflecting that gonads are not target organs for androgens in birds. In ovo exposure to 2 and 20 µg CPA/g egg, however, resulted in significantly smaller embryos as displayed by shortened lengths of skull, ulna and tarsometatarsus. Although gonadal endpoints were not affected by antiandrogens, the embryo of G. gallus domesticus is shown to be a suitable test system for the identification of substance-related mortality and developmental delays.
Collapse
Affiliation(s)
- Luzie Jessl
- Aquatic Ecotoxicology, Goethe University Frankfurt, Frankfurt am Main, Hesse, Germany
- R-Biopharm AG, Darmstadt, Hesse, Germany
| | - Jörg Oehlmann
- Aquatic Ecotoxicology, Goethe University Frankfurt, Frankfurt am Main, Hesse, Germany
| |
Collapse
|
2
|
Investigation of the Effects of Monosodium Glutamate on the Embryonic Development of the Eye in Chickens. Vet Sci 2023; 10:vetsci10020099. [PMID: 36851403 PMCID: PMC9958917 DOI: 10.3390/vetsci10020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
MSG is the most ubiquitous food additive in the food industry. The aim of this report was to investigate the effects of in ovo MSG administration on embryonic chicken eye development using histological and histometric methods. A total of 410 fertilized eggs obtained from Babcock Brown laying hens (Gallus gallus domesticus) were used and divided into 5 groups: I (untreated control), II (vehicle control), III (0.12 mg/g egg MSG), IV (0.6 mg/g egg MSG), and V (1.2 mg/g egg MSG), and injections were performed via the egg yolk. At incubation day 15, 18, and 21, 6 embryos from each group were sacrificed by decapitation and pieces of eye tissue were obtained. In all MSG groups, it was determined that both corneal epithelium thickness and total corneal thickness decreased at incubation time points 15, 18, and 21 days compared with the controls (p < 0.05). The total retinal thickness, thickness of the outer nuclear layer (ONL), inner nuclear layer (INL), ganglion cell layer (GL), and nerve fibre layers (NFL), as well as the number of ganglion cells decreased significantly at incubation days 15, 18, and 21 (p < 0.05), and degenerative changes such as vacuolar degeneration and retinal pigment epithelial detachment were also observed. In conclusion, MSG in ovo administration can affect the cornea and distinct layers of retinal cells.
Collapse
|
3
|
Bölükbaş F, Öznurlu Y. Determining the effects of in ovo administration of monosodium glutamate on the embryonic development of brain in chickens. Neurotoxicology 2023; 94:87-97. [PMID: 36400230 DOI: 10.1016/j.neuro.2022.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Monosodium glutamate (MSG) is a popular flavor enhancer largely used in the food industry. Although numerous studies have reported the neurotoxic effects of MSG on humans and animals, there is limited information about how it affects embryonic brain development. Thus, this study aimed to determine the effects of in ovo administered MSG on embryonic brain development in chickens. For this purpose, 410 fertilized chicken eggs were divided into 5 groups as control, distilled water, 0.12, 0.6 and 1.2 mg/g egg MSG, and injections were performed via the egg yolk. On days 15, 18, and 21 of the incubation period, brain tissue samples were taken from all embryos and chicks. The mortality rates of MSG-treated groups were significantly higher than those of the control and distilled water groups. The MSG-treated groups showed embryonic growth retardation and various structural abnormalities such as abdominal hernia, unilateral anophthalmia, hemorrhage, brain malformation, and the curling of legs and fingers. The relative embryo and body weights of the MSG-treated groups were significantly lower than those of the control group on incubation days 18 and 21. Histopathological evaluations revealed that MSG caused histopathological changes such as necrosis, neuronophagia, and gliosis in brain on incubation days 15, 18, and 21. There was a significant increase in the number of necrotic neurons in the MSG-treated groups compared to the control and distilled water groups in the hyperpallium, optic tectum and hippocampus regions. Proliferating cell nuclear antigen (PCNA) positive cells in brain were found in the hyperpallium, optic tectum, and hippocampus regions; there were more PCNA(+) immunoreactive cells in MSG-treated groups than in control and distilled water groups. In conclusion, it was determined that in ovo MSG administered could adversely affect embryonic growth and development in addition to causing necrosis in the neurons in the developing brain.
Collapse
Affiliation(s)
- Ferhan Bölükbaş
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey.
| | - Yasemin Öznurlu
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| |
Collapse
|
4
|
Bölükbaş F, Öznurlu Y. The determination of the effect of in ovo administered monosodium glutamate on the embryonic development of thymus and bursa of Fabricius and percentages of alpha-naphthyl acetate esterase positive lymphocyte in chicken. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45338-45348. [PMID: 35143005 DOI: 10.1007/s11356-022-19112-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Monosodium glutamate (MSG) is a flavor enhancer commonly used in modern nutrition. In this study, it was aimed to determine the effect of in ovo administered MSG on the embryonic development of thymus, bursa of Fabricius, and percentages of alpha-naphthyl acetate esterase (ANAE) positive lymphocyte by using histological, histometrical, and enzyme histochemical methods in chickens. For this purpose, 410 fertile eggs were used. The eggs were then divided into five groups: group 1 (control group, n = 40 eggs), group 2 (distilled water-injected group, n = 62 eggs), group 3 (0.12 mg/g egg MSG-injected group, n = 80 eggs), group 4 (0.6 mg/g egg MSG-injected group, n = 90 eggs), and group 5 (1.2 mg/g egg MSG-injected group, n = 138 eggs), and injections were performed via the egg yolk. On the 18th and 21st days of the incubation, the eggs were randomly opened from each group until six live embryos were obtained. The embryos of each group were sacrificed by decapitation, and blood, thymus, and bursa of Fabricius tissue samples were taken from the obtained embryos. The MSG-treated groups were found to be retarded embryonic development of thymus and bursa of Fabricius tissue compared to the control and distilled water groups. MSG treatment also resulted in reduced lymphoid follicles count and follicle diameters in bursa of Fabricius (P < 0.05). The percentage of peripheral blood ANAE positive lymphocytes was significantly lower in the MSG-treated groups than in the control and distilled water groups (P < 0.05). In conclusion, it has been found that in ovo administered MSG can adversely affect the embryonic development of thymus and bursa of Fabricius and decrease percentage of ANAE positive lymphocyte.
Collapse
Affiliation(s)
- Ferhan Bölükbaş
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey.
| | - Yasemin Öznurlu
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| |
Collapse
|
5
|
Ghimire S, Zhang X, Zhang J, Wu C. Use of Chicken Embryo Model in Toxicity Studies of Endocrine-Disrupting Chemicals and Nanoparticles. Chem Res Toxicol 2022; 35:550-568. [PMID: 35286071 DOI: 10.1021/acs.chemrestox.1c00399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lab animals such as mice and rats are widely used in toxicity research of food additive and pharmaceutics, despite the well-recognized research limitation such as the inability to simulate human neurological diseases, faster absorption of chemicals, big variations among species, and high cost when using a large number of animals. The Society of Toxicology's guidance now focuses on minimizing discomfort and distress of lab animals, finding alternative ways to reduce animal number, replacing animals with in vitro models, and complying to the animal welfare policies. The chicken embryonic model can be a better alternative to mice and rats because of its abundant availability and cost-effectiveness. It can be studied in both laboratory and natural environment, with easy manipulation in ovo or in vivo. The objective of this review paper is to evaluate the use of chicken embryonic model in toxicity evaluation for endocrine-disrupting chemicals (EDCs) and nanoparticles (NPs) by different end points to determine more comprehensive toxic responses. The end points include chicken embryonic mortality and hatchability, developmental malformation analysis, hormonal imbalance, physiological changes in endocrine organs, and antiangiogenesis. Major research methodologies using chicken embryos are also summarized to demonstrate their versatile practice and valuable application in modern toxicity evaluation of EDCs and NPs.
Collapse
Affiliation(s)
- Shweta Ghimire
- University of Delaware, Department of Animal and Food sciences, Newark, Delaware 19716, United States
| | - Xinwen Zhang
- University of Delaware, Department of Animal and Food sciences, Newark, Delaware 19716, United States
| | - Jinglin Zhang
- University of Delaware, Department of Animal and Food sciences, Newark, Delaware 19716, United States
| | - Changqing Wu
- University of Delaware, Department of Animal and Food sciences, Newark, Delaware 19716, United States
| |
Collapse
|
6
|
Oestrogen Activates the MAP3K1 Cascade and β-Catenin to Promote Granulosa-like Cell Fate in a Human Testis-Derived Cell Line. Int J Mol Sci 2021; 22:ijms221810046. [PMID: 34576208 PMCID: PMC8471392 DOI: 10.3390/ijms221810046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Sex determination triggers the differentiation of the bi-potential gonad into either an ovary or testis. In non-mammalian vertebrates, the presence or absence of oestrogen dictates gonad differentiation, while in mammals, this mechanism has been supplanted by the testis-determining gene SRY. Exogenous oestrogen can override this genetic trigger to shift somatic cell fate in the gonad towards ovarian developmental pathways by limiting the bioavailability of the key testis factor SOX9 within somatic cells. Our previous work has implicated the MAPK pathway in mediating the rapid cellular response to oestrogen. We performed proteomic and phosphoproteomic analyses to investigate the precise mechanism through which oestrogen impacts these pathways to activate β-catenin-a factor essential for ovarian development. We show that oestrogen can activate β-catenin within 30 min, concomitant with the cytoplasmic retention of SOX9. This occurs through changes to the MAP3K1 cascade, suggesting this pathway is a mechanism through which oestrogen influences gonad somatic cell fate. We demonstrate that oestrogen can promote the shift from SOX9 pro-testis activity to β-catenin pro-ovary activity through activation of MAP3K1. Our findings define a previously unknown mechanism through which oestrogen can promote a switch in gonad somatic cell fate and provided novel insights into the impacts of exogenous oestrogen exposure on the testis.
Collapse
|
7
|
Mentor A, Wänn M, Brunström B, Jönsson M, Mattsson A. Bisphenol AF and Bisphenol F Induce Similar Feminizing Effects in Chicken Embryo Testis as Bisphenol A. Toxicol Sci 2021; 178:239-250. [PMID: 33010167 PMCID: PMC7706397 DOI: 10.1093/toxsci/kfaa152] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The plastic component bisphenol A (BPA) impairs reproductive organ development in various experimental animal species. In birds, effects are similar to those caused by other xenoestrogens. Because of its endocrine disrupting activity, BPA is being substituted with other bisphenols in many applications. Using the chicken embryo model, we explored whether the BPA alternatives bisphenol AF (BPAF), bisphenol F (BPF), and bisphenol S (BPS) can induce effects on reproductive organ development similar to those induced by BPA. Embryos were exposed in ovo from embryonic day 4 (E4) to vehicle, BPAF at 2.1, 21, 210, and 520 nmol/g egg, or to BPA, BPF, or BPS at 210 nmol/g egg and were dissected on embryonic day 19. Similar to BPA, BPAF and BPF induced testis feminization, manifested as eg testis-size asymmetry and ovarian-like cortex in the left testis. In the BPS-group, too few males were alive on day 19 to evaluate any effects on testis development. We found no effects by any treatment on ovaries or Müllerian ducts. BPAF and BPS increased the gallbladder-somatic index and BPAF, BPF and BPS caused increased embryo mortality. The overall lowest-observed-adverse-effect level for BPAF was 210 nmol/g egg based on increased mortality, increased gallbladder-somatic index, and various signs of testis feminization. This study demonstrates that the BPA replacements BPAF, BPF, and BPS are embryotoxic and suggests that BPAF is at least as potent as BPA in inducing estrogen-like effects in chicken embryos. Our results support the notion that these bisphenols are not safe alternatives to BPA.
Collapse
Affiliation(s)
- Anna Mentor
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden.,Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Mimmi Wänn
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Björn Brunström
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden.,Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Maria Jönsson
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden.,Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mattsson
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden.,Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| |
Collapse
|
8
|
Sharin T, Gyasi H, Williams KL, Crump D, O'Brien JM. Effects of two Bisphenol A replacement compounds, 1,7-bis (4-hydroxyphenylthio)-3,5-dioxaheptane and Bisphenol AF, on development and mRNA expression in chicken embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112140. [PMID: 33730607 DOI: 10.1016/j.ecoenv.2021.112140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/24/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Concerns about the estrogenic properties of Bisphenol A (BPA) have led to increased efforts to find BPA replacements. 1,7-bis(4-Hydroxyphenylthio)-3,5-dioxaheptane (DD-70) and 4,4'-(hexafluoroisopropylidene) diphenol (bisphenol AF, BPAF) are two potential chemical substitutes for BPA; however, toxicity data for these chemicals in avian species are limited. To determine effects on avian embryonic viability, development, and hepatic mRNA expression at two distinct developmental periods (mid-incubation [day 11] and term [day 20]), two egg injection studies were performed. Test chemicals were injected into the air cell of unincubated, fertilized chicken eggs at concentrations ranging from 0-88.2 µg/g for DD-70 and 0-114 µg/g egg for BPAF. Embryonic concentrations of DD-70 and BPAF decreased at mid-incubation and term compared to injected concentrations suggesting embryonic metabolism. Exposure to DD-70 (40.9 and 88.2 µg/g) and BPAF (114 µg/g) significantly decreased embryonic viability at mid-incubation. Exposure to DD-70 (88.2 µg/g) decreased embryo mass and increased gallbladder mass, while 114 µg/g BPAF resulted in increased gallbladder mass in term embryos. Expression of hepatic genes related to xenobiotic metabolism, lipid homeostasis, and response to estrogen were altered at both developmental stages. Given the importance of identifying suitable BPA replacements, the present study provides novel, whole animal avian toxicological data for two replacement compounds, DD-70 and BPAF. DATA AVAILABILITY: Data, associated metadata, and calculation tools are available from the corresponding author (doug.crump@canada.ca).
Collapse
Affiliation(s)
- Tasnia Sharin
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario K1S 5B6, Canada; Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Helina Gyasi
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario K1S 5B6, Canada; Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Kim L Williams
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario K1S 5B6, Canada
| | - Doug Crump
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario K1S 5B6, Canada.
| | - Jason M O'Brien
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
9
|
Sharin T, Williams KL, Chiu S, Crump D, O'Brien JM. Toxicity Screening of Bisphenol A Replacement Compounds: Cytotoxicity and mRNA Expression in Primary Hepatocytes of Chicken and Double-Crested Cormorant. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1368-1378. [PMID: 33465250 DOI: 10.1002/etc.4985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/17/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
A market for bisphenol A (BPA) replacement compounds has emerged as a result of restrictions on the use of BPA. Some of these compounds have been detected in the environment; however, little is known about their toxicological properties. In the present study, an avian in vitro toxicogenomic approach was used to compare the effects of 5 BPA alternatives. Cell viability and mRNA expression were compared in primary embryonic hepatocytes of chicken (CEH) and double-crested cormorant (DCEH) exposed to 4,4'-(propane-2,2-diyl) diphenol (BPA), bis (4-hydroxyphenyl) methane (BPF), bis (3-allyl-4-hydroxyphenyl) sulfone (TGSH), 7-bis (4-hydroxyphenylthio)-3,5-dioxaheptane (DD-70), 2,2-bis (4-hydroxyphenyl) hexafluoropropane (BPAF), and 4-hydroxyphenyl 4-isoprooxyphenylsulfone (BPSIP). Changes in gene expression were determined using 2 polymerase chain reaction (PCR) arrays: 1) species-specific ToxChips that contain genes representing toxicologically relevant pathways, and 2) chicken-specific AestroChip that measures estrogen responsive genes. In CEH and DCEH, BPA alternatives TGSH, DD-70, and BPAF were most cytotoxic. Some of the replacement compounds changed the expression of genes related to xenobiotic metabolism, bile acid, and cholesterol regulation. The rank order based on the number of genes altered on the chicken ToxChip array was TGSH > DD-70 > BPAF = BPF > 17β estradiol (E2) > BPSIP > BPA. On the cormorant ToxChip array, BPSIP altered the greatest number of genes. Based on the chicken AestroChip data, BPSIP and BPF were slightly estrogenic. These results suggest that the replacement compounds have comparable or even greater toxicity than BPA and act via different mechanisms. Environ Toxicol Chem 2021;40:1368-1378. © 2021 Her Majesty the Queen in Right of Canada. Reproduced with the permission of the Minister of Environment and Climate Change Canada.
Collapse
Affiliation(s)
- Tasnia Sharin
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kim L Williams
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Suzanne Chiu
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Doug Crump
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Jason M O'Brien
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Shioda K, Odajima J, Kobayashi M, Kobayashi M, Cordazzo B, Isselbacher KJ, Shioda T. Transcriptomic and Epigenetic Preservation of Genetic Sex Identity in Estrogen-feminized Male Chicken Embryonic Gonads. Endocrinology 2021; 162:5973467. [PMID: 33170207 PMCID: PMC7745639 DOI: 10.1210/endocr/bqaa208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 12/18/2022]
Abstract
Whereas in ovo exposure of genetically male (ZZ) chicken embryos to exogenous estrogens temporarily feminizes gonads at the time of hatching, the morphologically ovarian ZZ-gonads (FemZZs for feminized ZZ gonads) are masculinized back to testes within 1 year. To identify the feminization-resistant "memory" of genetic male sex, FemZZs showing varying degrees of feminization were subjected to transcriptomic, DNA methylome, and immunofluorescence analyses. Protein-coding genes were classified based on their relative mRNA expression across normal ZZ-testes, genetically female (ZW) ovaries, and FemZZs. We identified a group of 25 genes that were strongly expressed in both ZZ-testes and FemZZs but dramatically suppressed in ZW-ovaries. Interestingly, 84% (21/25) of these feminization-resistant testicular marker genes, including the DMRT1 master masculinizing gene, were located in chromosome Z. Expression of representative marker genes of germline cells (eg, DAZL or DDX4/VASA) was stronger in FemZZs than normal ZZ-testes or ZW-ovaries. We also identified 231 repetitive sequences (RSs) that were strongly expressed in both ZZ-testes and FemZZs, but these RSs were not enriched in chromosome Z. Although 94% (165/176) of RSs exclusively expressed in ZW-ovaries were located in chromosome W, no feminization-inducible RS was detected in FemZZs. DNA methylome analysis distinguished FemZZs from normal ZZ- and ZW-gonads. Immunofluorescence analysis of FemZZ gonads revealed expression of DMRT1 protein in medullary SOX9+ somatic cells and apparent germline cell populations in both medulla and cortex. Taken together, our study provides evidence that both somatic and germline cell populations in morphologically feminized FemZZs maintain significant transcriptomic and epigenetic memories of genetic sex.
Collapse
Affiliation(s)
- Keiko Shioda
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Junko Odajima
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Misato Kobayashi
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Mutsumi Kobayashi
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Bianca Cordazzo
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Kurt J Isselbacher
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Toshi Shioda
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Correspondence: Toshi Shioda, Massachusetts General Hospital Center for Cancer Research, Building 149 – 7th Floor, 13th Street, Charlestown, Massachusetts 02129, USA. E-mail:
| |
Collapse
|
11
|
Farounbi AI, Ngqwala NP. Occurrence of selected endocrine disrupting compounds in the eastern cape province of South Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17268-17279. [PMID: 32152855 PMCID: PMC7192885 DOI: 10.1007/s11356-020-08082-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/11/2020] [Indexed: 05/24/2023]
Abstract
Endocrine-disrupting compounds are attracting attention worldwide because of their effects on living things in the environment. Ten endocrine disrupting compounds: 4-nonylphenol, 2,4-dichlorophenol, estrone, 17β-estradiol, bisphenol A, 4-tert-octylphenol, triclosan, atrazine, imidazole and 1,2,4-triazole were investigated in four rivers and wastewater treatment plants in this study. Rivers were sampled at upstream, midstream and downstream reaches, while the influent and effluent samples of wastewater were collected from treatment plants near the receiving rivers. Sample waters were freeze-dried followed by extraction of the organic content and purification by solid-phase extraction. Concentrations of the compounds in the samples were determined with ultra-high performance liquid chromatography-tandem mass spectrometry. The instrument was operated in the positive electrospray ionization (ESI) mode. The results showed that these compounds are present in the samples with nonylphenol > dichlorophenol > bisphenol A > triclosan > octylphenol > imidazole > atrazine > triazole > estrone > estradiol. Nonylphenol has its highest concentration of 6.72 μg/L in King Williams Town wastewater influent and 2.55 μg/L in midstream Bloukrans River. Dichlorophenol has its highest concentration in Alice wastewater influent with 2.20 μg/L, while it was 0.737 μg/L in midstream Bloukrans River. Uitenhage wastewater effluent has bisphenol A concentration of 1.684 μg/L while it was 0.477 μg/L in the downstream samples of the Bloukrans River. Generally, the upstream samples of the rivers had lesser concentrations of the compounds. The wastewater treatment plants were not able to achieve total removal of the compounds in the wastewater while runoffs and wastes dump from the cities contributed to the concentrations of the compounds in the rivers.
Collapse
Affiliation(s)
- Adebayo I. Farounbi
- Environmental Health and Biotechnology Research Group, Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, P.O. Box 94, Grahamstown, 6140 South Africa
| | - Nosiphiwe P. Ngqwala
- Environmental Health and Biotechnology Research Group, Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, P.O. Box 94, Grahamstown, 6140 South Africa
| |
Collapse
|
12
|
Mentor A, Bornehag CG, Jönsson M, Mattsson A. A suggested bisphenol A metabolite (MBP) interfered with reproductive organ development in the chicken embryo while a human-relevant mixture of phthalate monoesters had no such effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:66-81. [PMID: 32077375 DOI: 10.1080/15287394.2020.1728598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) and phthalate diesters are ubiquitous environmental contaminants. While these compounds have been reported as reproductive toxicants, their effects may partially be attributed to metabolites. The aim of this study was to examine reproductive organ development in chicken embryos exposed to the BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP; 100 µg/g egg) or a human-relevant mixture of 4 phthalate monoesters (85 µg/g egg). The mixture was designed within the EU project EDC-MixRisk based upon a negative association with anogenital distance in boys at 21 months of age in a Swedish pregnancy cohort. Chicken embryos were exposed in ovo from an initial stage of gonad differentiation (embryonic day 4) and dissected two days prior to anticipated hatching (embryonic day 19). No discernible effects were noted on reproductive organs in embryos exposed to the mixture. MBP-treated males exhibited retention of Müllerian ducts and feminization of the left testicle, while MBP-administered females displayed a diminished the left ovary. In the left testicle of MBP-treated males, mRNA expression of female-associated genes was upregulated while the testicular marker gene SOX9 was downregulated, corroborating a feminizing effect by MBP. Our results demonstrate that MBP, but not the phthalate monoester mixture, disrupts both male and female reproductive organ development in an avian embryo model.
Collapse
Affiliation(s)
- Anna Mentor
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
- Department of Environmental Medicine and Public Health, Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Carl-Gustaf Bornehag
- Public Health Sciences, Karlstad University, Karlstad, Sweden
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Jönsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
- Department of Environmental Medicine and Public Health, Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mattsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
- Department of Environmental Medicine and Public Health, Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| |
Collapse
|
13
|
Kanda R. Reproductive Impact of Environmental Chemicals on Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:41-70. [PMID: 31471794 DOI: 10.1007/978-3-030-23633-5_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wildlife is exposed to a diverse range of natural and man-made chemicals. Some environmental chemicals possess specific endocrine disrupting properties, which have the potential to disrupt reproductive and developmental process in certain animals. There is growing evidence that exposure to endocrine disrupting chemicals plays a key role in reproductive disorders in fish, amphibians, mammals, reptiles and invertebrates. This evidence comes from field-based observations and laboratory based exposure studies, which provide substantial evidence that environmental chemicals can cause adverse effects at environmentally relevant doses. There is particular concern about wildlife exposures to cocktails of biologically active chemicals, which combined with other stressors, may play an even greater role in reproductive disorders than can be reproduced in laboratory experiments. Regulation of chemicals affords some protection to animals of the adverse effects of exposure to legacy chemicals but there continues to be considerable debate on the regulation of emerging pollutants.
Collapse
Affiliation(s)
- Rakesh Kanda
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK.
| |
Collapse
|