1
|
Stefanoudis PV, Rivers M, Smith SR, Schneider CW, Wagner D, Ford H, Rogers AD, Woodall LC. Low connectivity between shallow, mesophotic and rariphotic zone benthos. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190958. [PMID: 31598316 PMCID: PMC6774966 DOI: 10.1098/rsos.190958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/16/2019] [Indexed: 05/17/2023]
Abstract
Worldwide coral reefs face catastrophic damage due to a series of anthropogenic stressors. Investigating how coral reefs ecosystems are connected, in particular across depth, will help us understand if deeper reefs harbour distinct communities. Here, we explore changes in benthic community structure across 15-300 m depths using technical divers and submersibles around Bermuda. We report high levels of floral and faunal differentiation across depth, with distinct assemblages occupying each depth surveyed, except 200-300 m, corresponding to the lower rariphotic zone. Community turnover was highest at the boundary depths of mesophotic coral ecosystems (30-150 m) driven largely by taxonomic turnover and to a lesser degree by ordered species loss (nestedness). Our work highlights the biologically unique nature of benthic communities in the mesophotic and rariphotic zones, and their limited connectivity to shallow reefs, thus emphasizing the need to manage and protect deeper reefs as distinct entities.
Collapse
Affiliation(s)
- Paris V. Stefanoudis
- Nekton Foundation, Begbroke Science Park, Begbroke Hill, Woodstock Road, Begbroke, Oxfordshire OX5 1PF, UK
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, UK
- Author for correspondence: Paris V. Stefanoudis e-mail:
| | - Molly Rivers
- Nekton Foundation, Begbroke Science Park, Begbroke Hill, Woodstock Road, Begbroke, Oxfordshire OX5 1PF, UK
| | - Struan R. Smith
- Natural History Museum, Bermuda Aquarium, Museum and Zoo, 40 North Shore Road, Hamilton Parish FL04, Bermuda
| | | | - Daniel Wagner
- NOAA Office of Ocean Exploration and Research, 331 Fort, Johnston Road, Charleston, SC 29412, USA
| | - Helen Ford
- Nekton Foundation, Begbroke Science Park, Begbroke Hill, Woodstock Road, Begbroke, Oxfordshire OX5 1PF, UK
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Alex D. Rogers
- Nekton Foundation, Begbroke Science Park, Begbroke Hill, Woodstock Road, Begbroke, Oxfordshire OX5 1PF, UK
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Lucy C. Woodall
- Nekton Foundation, Begbroke Science Park, Begbroke Hill, Woodstock Road, Begbroke, Oxfordshire OX5 1PF, UK
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, UK
| |
Collapse
|
2
|
Gress E, Arroyo-Gerez MJ, Wright G, Andradi-Brown DA. Assessing mesophotic coral ecosystems inside and outside a Caribbean marine protected area. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180835. [PMID: 30473832 PMCID: PMC6227970 DOI: 10.1098/rsos.180835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 10/08/2018] [Indexed: 06/09/2023]
Abstract
Widespread shallow coral reef loss has led to calls for more holistic approaches to coral reef management, requiring inclusion of ecosystems interacting with shallow coral reefs in management plans. Yet, almost all current reef management is biased towards shallow reefs, and overlooks that coral reefs extend beyond shallow waters to mesophotic coral ecosystems (MCEs; 30-150 m). We present the first detailed quantitative characterization of MCEs off Cozumel, Mexico, on the northern Mesoamerican Reef in the Mexican Caribbean, and provide insights into their general state. We documented MCE biodiversity, and assessed whether MCEs adjacent to a major town and port, where coastal development has caused shallow reef damage, have similar benthic and fish communities to MCEs within a National Park. Our results show that overall MCE communities are similar regardless of protection, though some taxa-specific differences exist in benthic communities between sites within the MPA and areas outside. Regardless of protection and location, and in contrast to shallow reefs, all observed Cozumel MCEs were continuous reefs with the main structural habitat complexity provided by calcareous macroalgae, sponges, gorgonians and black corals. Hard corals were present on MCEs, although at low abundance. We found that 42.5% of fish species recorded on Cozumel could be found on both shallow reefs and MCEs, including 39.6% of commercially valuable fish species. These results suggest that MCEs could play an important role in supporting fish populations. However, regardless of protection and depth, we found few large-body fishes (greater than 500 mm), which were nearly absent at all studied sites. Cozumel MCEs contain diverse benthic and fish assemblages, including commercially valuable fisheries species and ecosystem engineers, such as black corals. Because of their inherent biodiversity and identified threats, MCEs should be incorporated into shallow-reef-focused Cozumel National Park management plan.
Collapse
Affiliation(s)
- Erika Gress
- Conservation Leadership Programme, David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK
- Nekton Foundation, Begbroke Science Park, Begbroke Hill, Woodstock Road, Begbroke, Oxfordshire OX5 1PF, UK
| | - Maria J. Arroyo-Gerez
- Conservation Leadership Programme, David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK
| | - Georgina Wright
- Operation Wallacea, Wallace House, Old Bolingbroke, Spilsby, Lincolnshire PE23 4EX, United Kingdom
| | - Dominic A. Andradi-Brown
- Conservation Leadership Programme, David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK
- Ocean Conservation, World Wildlife Fund - US, 1250 24th St NW, Washington, DC 20037, USA
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|