1
|
Zhu JN, Liu ML, He QH, Ding HY. Endophytic microorganisms in lichen: rising stars in the biomedicine field deserving broader recognition. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-19. [PMID: 40433762 DOI: 10.1080/10286020.2025.2501030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025]
Abstract
Lichens are renowned for their ability to thrive in extreme environments and for producing unique metabolites with considerable bioactive potential. However, their medicinal value remains largely underexplored, primarily due to slow growth rates and habitat specificity. Notably, endolichenic microorganisms, particularly fungi, are the predominant producers of these bioactive compounds, which exhibit antimicrobial, antiviral, and anticancer properties. Investigating these microorganisms and their metabolites presents promising biomedical opportunities, underscoring the importance of sustainably utilizing lichen resources and discovering novel compounds. This paper reviews the diversity and bioactive potential of endophytic microorganisms in lichens, providing valuable insights for the exploration of natural resources.
Collapse
Affiliation(s)
- Jia-Na Zhu
- School of Public Health, Dali University, Dali, China
| | - Meng-Long Liu
- School of Public Health, Dali University, Dali, China
| | - Qiu-Hua He
- School of Public Health, Dali University, Dali, China
| | - Hai-Yan Ding
- School of Public Health, Dali University, Dali, China
| |
Collapse
|
2
|
Lin YY, Ho HC, Chou JY. Effects of lichen symbiotic bacteria-derived indole-3-acetic acid on the stress responses of an algal-fungal symbiont. Braz J Microbiol 2025:10.1007/s42770-025-01693-y. [PMID: 40397361 DOI: 10.1007/s42770-025-01693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 05/05/2025] [Indexed: 05/22/2025] Open
Abstract
Lichens, comprising filamentous fungi and algae/cyanobacteria engaged in mutualistic symbiosis, exhibit remarkable adaptability to environmental challenges. While fungi safeguard algae from dry conditions, their ability to mitigate other stresses remains uncertain. Additionally, the functions of coexisting bacteria within lichen communities remain relatively unexplored. This study investigates the potential of indole-3-acetic acid (IAA) as a stress-response signaling molecule in lichen symbiosis. We subjected IAA-treated monocultures of algae and co-cultures of the fungal-algal complex to various stress conditions. IAA's role in bolstering resilience was evident, as demonstrated by the release of IAA (0-500 µM) by bacteria isolated from the lichen Parmelia tinctorum. This IAA was subsequently utilized by the lichen photobionts to alleviate oxidative stress. IAA acted as a communication signal, priming algal cells to defend against impending stressors. Further microscopic examinations unveiled that only the fibrous extensions were exposed in fungal cells that were in direct physical contact with viable algal cells. Co-cultivation and subsequent microscopic observations revealed that the algal cells were protected from diverse stressors by a barrier of fungal hyphae. Our findings underscore the significance of IAA in enhancing stress resistance within the context of lichen symbiosis, thereby advancing our understanding of the adaptability of these unique organisms. Further exploration of bacterial functions in lichen symbiosis holds promise for uncovering novel insights into their ecology and biology.
Collapse
Affiliation(s)
- Yan-Yu Lin
- Department of Biology, National Changhua University of Education, Changhua, 50007, Taiwan
| | - Han-Chen Ho
- Electron Microscopy Laboratory, Department of Anatomy, Tzu Chi University, Hualien, 97004, Taiwan
| | - Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua, 50007, Taiwan.
| |
Collapse
|
3
|
West NJ, Landa M, Obernosterer I. Differential association of key bacterial groups with diatoms and Phaeocystis spp. during spring blooms in the Southern Ocean. Microbiologyopen 2024; 13:e1428. [PMID: 39119822 PMCID: PMC11310772 DOI: 10.1002/mbo3.1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Interactions between phytoplankton and heterotrophic bacteria significantly influence the cycling of organic carbon in the ocean, with many of these interactions occurring at the micrometer scale. We explored potential associations between specific phytoplankton and bacteria in two size fractions, 0.8-3 µm and larger than 3 µm, at three naturally iron-fertilized stations and one high nutrient low chlorophyll station in the Southern Ocean. The composition of phytoplankton and bacterial communities was determined by sequencing the rbcL gene and 16S rRNA gene from DNA and RNA extracts, which represent presence and potential activity, respectively. Diatoms, particularly Thalassiosira, contributed significantly to the DNA sequences in the larger size fractions, while haptophytes were dominant in the smaller size fraction. Correlation analysis between the most abundant phytoplankton and bacterial operational taxonomic units revealed strong correlations between Phaeocystis and picoeukaryotes with SAR11, SAR116, Magnetospira, and Planktomarina. In contrast, most Thalassiosira operational taxonomic units showed the highest correlations with Polaribacter, Sulfitobacteria, Erythrobacter, and Sphingobium, while Fragilariopsis, Haslea, and Thalassionema were correlated with OM60, Fluviicola, and Ulvibacter. Our in-situ observations suggest distinct associations between phytoplankton and bacterial taxa, which could play crucial roles in nutrient cycling in the Southern Ocean.
Collapse
Affiliation(s)
- Nyree J. West
- CNRS FR3724, Observatoire Océanologique de Banyuls (OOB)Sorbonne UniversitéBanyuls sur merFrance
| | - Marine Landa
- Laboratoire d'Océanographie Microbienne, LOMIC, CNRSSorbonne UniversitéBanyuls sur merFrance
| | - Ingrid Obernosterer
- Laboratoire d'Océanographie Microbienne, LOMIC, CNRSSorbonne UniversitéBanyuls sur merFrance
| |
Collapse
|
4
|
Chrismas N, Tindall-Jones B, Jenkins H, Harley J, Bird K, Cunliffe M. Metatranscriptomics reveals diversity of symbiotic interaction and mechanisms of carbon exchange in the marine cyanolichen Lichina pygmaea. THE NEW PHYTOLOGIST 2024; 241:2243-2257. [PMID: 37840369 DOI: 10.1111/nph.19320] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
Lichens are exemplar symbioses based upon carbon exchange between photobionts and their mycobiont hosts. Historically considered a two-way relationship, some lichen symbioses have been shown to contain multiple photobiont partners; however, the way in which these photobiont communities react to environmental change is poorly understood. Lichina pygmaea is a marine cyanolichen that inhabits rocky seashores where it is submerged in seawater during every tidal cycle. Recent work has indicated that L. pygmaea has a complex photobiont community including the cyanobionts Rivularia and Pleurocapsa. We performed rRNA-based metabarcoding and mRNA metatranscriptomics of the L. pygmaea holobiont at high and low tide to investigate community response to immersion in seawater. Carbon exchange in L. pygmaea is a dynamic process, influenced by both tidal cycle and the biology of the individual symbiotic components. The mycobiont and two cyanobiont partners exhibit distinct transcriptional responses to seawater hydration. Sugar-based compatible solutes produced by Rivularia and Pleurocapsa in response to seawater are a potential source of carbon to the mycobiont. We propose that extracellular processing of photobiont-derived polysaccharides is a fundamental step in carbon acquisition by L. pygmaea and is analogous to uptake of plant-derived carbon in ectomycorrhizal symbioses.
Collapse
Affiliation(s)
- Nathan Chrismas
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon, PL1 2PB, UK
| | - Beth Tindall-Jones
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon, PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Helen Jenkins
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon, PL1 2PB, UK
| | - Joanna Harley
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon, PL1 2PB, UK
| | - Kimberley Bird
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon, PL1 2PB, UK
| | - Michael Cunliffe
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon, PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| |
Collapse
|
5
|
Grube M, Balestrini R. News from 'black belt' masters of symbiosis. THE NEW PHYTOLOGIST 2024; 241:1888-1890. [PMID: 38192071 DOI: 10.1111/nph.19519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
This article is a Commentary on Chrismas et al. (2024), 241: 2243–2257.
Collapse
Affiliation(s)
- Martin Grube
- Institute of Biology, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Raffaella Balestrini
- Institute for Sustainable Plant Protection, Strada delle Cacce, 73, Turin, 10135, Italy
| |
Collapse
|
6
|
Garrido-Benavent I, de Los Ríos A, Núñez-Zapata J, Ortiz-Álvarez R, Schultz M, Pérez-Ortega S. Ocean crossers: a tale of disjunctions and speciation in the dwarf-fruticose Lichina (lichenized Ascomycota). Mol Phylogenet Evol 2023:107829. [PMID: 37247701 DOI: 10.1016/j.ympev.2023.107829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/24/2022] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Lichens thrive in rocky coastal areas in temperate and cold regions of both hemispheres. Species of the genus Lichina, which form characteristic black fruiting thalli associated with cyanobacteria, often create distinguishable bands in the intertidal and supralittoral zones. The present study uses a comprehensive specimen dataset and four gene loci to (1) delineate and discuss species boundaries in this genus, (2) assess evolutionary relationships among species, and (3) infer the most likely causes of their current geographic distribution in the Northern and Southern hemispheres. A dated phylogeny describes the time frame in which extant disjunctions of species and populations were established. The results showed that the genus is integrated by four species, with Lichina pygmaea, L. confinis and the newly described L. canariensis from rocky seashores in the Canary Islands, occurring in the Northern Hemisphere, whereas L. intermedia is restricted to the Southern Hemisphere. Lichina intermedia hosted a much higher intraspecific genetic diversity than the other species, with subclades interpreted as species-level lineages by the different species delimitation approaches. However, a conservative taxonomic approach was adopted. This species showed a striking disjunct distribution between Australasia and southern South America. The timing for the observed interspecific and intraspecific divergences and population disjunctions postdated continental plate movements, suggesting that long-distance dispersal across body waters in the two hemispheres played a major role in shaping the current species distributions. Such ocean crossings were, as in L. canariensis, followed by speciation. New substitution rates for the nrITS of the genus Lichina were inferred using a tree spanning the major Ascomycota lineages calibrated using fossils. In conclusion, this work lays the foundation for a better understanding of the evolution through time and space of maritime lichens.
Collapse
Affiliation(s)
- Isaac Garrido-Benavent
- Departament de Botànica i Geologia, Facultat de Ciències Biològiques, Universitat de València, C/ Doctor Moliner 50, E-46100-Burjassot, València, Spain; Department of Mycology, Real Jardín Botánico (CSIC), Plaza Murillo 2, E-28014 Madrid, Spain.
| | - Asunción de Los Ríos
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN-CSIC), Serrano 115 dpdo, E-28045 Madrid, Spain.
| | - Jano Núñez-Zapata
- Department of Mycology, Real Jardín Botánico (CSIC), Plaza Murillo 2, E-28014 Madrid, Spain.
| | - Rüdiger Ortiz-Álvarez
- Department of International Science, Spanish Federation of Science and Technology (FECYT), C/ Pintor Murillo 15, E-28100 Alcobendas, Madrid, Spain.
| | - Matthias Schultz
- Herbarium Hamburgense, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany.
| | - Sergio Pérez-Ortega
- Department of Mycology, Real Jardín Botánico (CSIC), Plaza Murillo 2, E-28014 Madrid, Spain.
| |
Collapse
|
7
|
Weeraphan T, Somphong A, Poengsungnoen V, Buaruang K, Harunari E, Igarashi Y, Tanasupawat S, Phongsopitanun W. Bacterial microbiome in tropical lichens and the effect of the isolation method on culturable lichen-derived actinobacteria. Sci Rep 2023; 13:5483. [PMID: 37016075 PMCID: PMC10073151 DOI: 10.1038/s41598-023-32759-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/01/2023] [Indexed: 04/06/2023] Open
Abstract
Ten samples of tropical lichens collected from Doi Inthanon, Thailand, were explored for the diversity of their bacterial microbiomes through 16S rRNA-based metagenomics analysis. The five predominant lichen-associated bacteria belonged to the phyla Proteobacteria (31.84%), Planctomycetota (17.08%), Actinobacteriota (15.37%), Verrucomicrobiota (12.17%), and Acidobacteriota (7.87%). The diversity analysis metric showed that Heterodermia contained the highest bacterial species richness. Within the lichens, Ramalina conduplicans and Cladonia rappii showed a distinct bacterial community from the other lichen species. The community of lichen-associated actinobacteria was investigated as a potential source of synthesized biologically active compounds. From the total Operational Taxonomic Units (OTUs) found across the ten different lichen samples, 13.21% were identified as actinobacteria, including the rare actinobacterial genera that are not commonly found, such as Pseudonocardia, Kineosporia, Dactylosporangium, Amycolatopsis, Actinoplanes, and Streptosporangium. Evaluation of the pretreatment method (heat, air-drying, phenol, and flooding) and isolation media used for the culture-dependent actinobacterial isolation revealed that the different pretreatments combined with different isolation media were effective in obtaining several species of actinobacteria. However, metagenomics analyses revealed that there were still several strains, including rare actinobacterial species, that were not isolated. This research strongly suggests that lichens appear to be a promising source for obtaining actinobacteria.
Collapse
Affiliation(s)
- Trinset Weeraphan
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Achiraya Somphong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Vasun Poengsungnoen
- Lichen Research Unit, Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Kawinnat Buaruang
- Lichen Research Unit, Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
- Natural Products and Nanoparticles Research Unit (RP2), Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
He Z, Naganuma T. Chronicle of Research into Lichen-Associated Bacteria. Microorganisms 2022; 10:2111. [PMID: 36363703 PMCID: PMC9698887 DOI: 10.3390/microorganisms10112111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 02/12/2024] Open
Abstract
Lichens are mutually symbiotic systems consisting of fungal and algal symbionts. While diverse lichen-forming fungal species are known, limited species of algae form lichens. Plasticity in the combination of fungal and algal species with different eco-physiological properties may contribute to the worldwide distribution of lichens, even in extreme habitats. Lichens have been studied systematically for more than 200 years; however, plasticity in fungal-algal/cyanobacterial symbiotic combinations is still unclear. In addition, the association between non-cyanobacterial bacteria and lichens has attracted attention in recent years. The types, diversity, and functions of lichen-associated bacteria have been studied using both culture-based and culture-independent methods. This review summarizes the history of systematic research on lichens and lichen-associated bacteria and provides insights into the current status of research in this field.
Collapse
Affiliation(s)
| | - Takeshi Naganuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
9
|
Miral A, Kautsky A, Alves-Carvalho S, Cottret L, Guillerm-Erckelboudt AY, Buguet M, Rouaud I, Tranchimand S, Tomasi S, Bartoli C. Rhizocarpon geographicum Lichen Discloses a Highly Diversified Microbiota Carrying Antibiotic Resistance and Persistent Organic Pollutant Tolerance. Microorganisms 2022; 10:1859. [PMID: 36144461 PMCID: PMC9503503 DOI: 10.3390/microorganisms10091859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
As rock inhabitants, lichens are exposed to extreme and fluctuating abiotic conditions associated with poor sources of nutriments. These extreme conditions confer to lichens the unique ability to develop protective mechanisms. Consequently, lichen-associated microbes disclose highly versatile lifestyles and ecological plasticity, enabling them to withstand extreme environments. Because of their ability to grow in poor and extreme habitats, bacteria associated with lichens can tolerate a wide range of pollutants, and they are known to produce antimicrobial compounds. In addition, lichen-associated bacteria have been described to harbor ecological functions crucial for the evolution of the lichen holobiont. Nevertheless, the ecological features of lichen-associated microbes are still underestimated. To explore the untapped ecological diversity of lichen-associated bacteria, we adopted a novel culturomic approach on the crustose lichen Rhizocarpon geographicum. We sampled R. geographicum in French habitats exposed to oil spills, and we combined nine culturing methods with 16S rRNA sequencing to capture the greatest bacterial diversity. A deep functional analysis of the lichen-associated bacterial collection showed the presence of a set of bacterial strains resistant to a wide range of antibiotics and displaying tolerance to Persistent Organic Pollutants (POPs). Our study is a starting point to explore the ecological features of the lichen microbiota.
Collapse
Affiliation(s)
- Alice Miral
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, University of Rennes 1, 35000 Rennes, France
| | - Adam Kautsky
- IGEPP, INRAE, Institut Agro, University of Rennes 1, LIPME, INRAE, 35653 Le Rheu, France
| | - Susete Alves-Carvalho
- IGEPP, INRAE, Institut Agro, University of Rennes 1, LIPME, INRAE, 35653 Le Rheu, France
| | - Ludovic Cottret
- CNRS, Université de Toulouse, 31320 Castanet-Tolosan, France
| | | | - Manon Buguet
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, University of Rennes 1, 35000 Rennes, France
| | - Isabelle Rouaud
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, University of Rennes 1, 35000 Rennes, France
| | - Sylvain Tranchimand
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, University of Rennes 1, 35000 Rennes, France
| | - Sophie Tomasi
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, University of Rennes 1, 35000 Rennes, France
| | - Claudia Bartoli
- IGEPP, INRAE, Institut Agro, University of Rennes 1, LIPME, INRAE, 35653 Le Rheu, France
| |
Collapse
|
10
|
de Los Ríos A, Garrido-Benavent I, Limón A, Cason ED, Maggs-Kölling G, Cowan D, Valverde A. Novel lichen-dominated hypolithic communities in the Namib Desert. MICROBIAL ECOLOGY 2022; 83:1036-1048. [PMID: 34312709 PMCID: PMC9015988 DOI: 10.1007/s00248-021-01812-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The ventral surfaces of translucent rocks from hot desert pavements often harbor hypolithic microbial communities, which are mostly dominated by cyanobacteria. The Namib Desert fog belt supports extensive hypolithic colonization of quartz rocks, which are also colonized by lichens on their dorsal surfaces. Here, we aim to evaluate whether lichens colonize the ventral surface of the rocks (i.e., show hypolithic lifestyle) and compare the bacterial composition of these coastal hypolithic communities with those found inland. Fungal DNA barcoding and fungal and bacterial Illumina metabarcoding were combined with electron microscopy to characterize the composition and spatial structure of hypolithic communities from two (coastal and inland) areas in the Namib Desert. We report, for the first time, the structure and composition of lichen-dominated hypolithic communities found in the coastal zone of the Namib Desert with extensive epilithic lichen cover. Lichen modified areoles with inverted morphology of the genus Stellarangia (three lineages) and Buellia (two lineages) were the main components of these hypolithic communities. Some of these lineages were also found in epilithic habitats. These lichen-dominated hypolithic communities differed in structural organization and bacterial community composition from those found in inland areas. The hypolithic lichen colonization characterized here seems not to be an extension of epilithic or biological soil crust lichen growths but the result of specific sublithic microenvironmental conditions. Moisture derived from fog and dew could be the main driver of this unique colonization.
Collapse
Affiliation(s)
- Asunción de Los Ríos
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales, CSIC, Serrano 115 dpdo, 28006, Madrid, Spain.
| | - Isaac Garrido-Benavent
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales, CSIC, Serrano 115 dpdo, 28006, Madrid, Spain
- Departament de Botànica i Geologia, Facultat de Ciències Biològiques, Universitat de València (UV), C. Doctor Moliner 50, 46100, Burjassot, València, Spain
| | - Alicia Limón
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales, CSIC, Serrano 115 dpdo, 28006, Madrid, Spain
| | - Errol D Cason
- Department of Animal Science, University of the Free State, Bloemfontein, South Africa
| | | | - Don Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Angel Valverde
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), C/ Cordel de Merinas 40-52, 37008, Salamanca, Spain
| |
Collapse
|
11
|
Shishido TK, Wahlsten M, Laine P, Rikkinen J, Lundell T, Auvinen P. Microbial Communities of Cladonia Lichens and Their Biosynthetic Gene Clusters Potentially Encoding Natural Products. Microorganisms 2021; 9:1347. [PMID: 34206222 PMCID: PMC8304397 DOI: 10.3390/microorganisms9071347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023] Open
Abstract
Lichens have been widely used in traditional medicine, especially by indigenous communities worldwide. However, their slow growth and difficulties in the isolation of lichen symbionts and associated microbes have hindered the pharmaceutical utilisation of lichen-produced compounds. Advances in high-throughput sequencing techniques now permit detailed investigations of the complex microbial communities formed by fungi, green algae, cyanobacteria, and other bacteria within the lichen thalli. Here, we used amplicon sequencing, shotgun metagenomics, and in silico metabolomics together with compound extractions to study reindeer lichens collected from Southern Finland. Our aim was to evaluate the potential of Cladonia species as sources of novel natural products. We compared the predicted biosynthetic pathways of lichen compounds from isolated genome-sequenced lichen fungi and our environmental samples. Potential biosynthetic genes could then be further used to produce secondary metabolites in more tractable hosts. Furthermore, we detected multiple compounds by metabolite analyses, which revealed connections between the identified biosynthetic gene clusters and their products. Taken together, our results contribute to metagenomic data studies from complex lichen-symbiotic communities and provide valuable new information for use in further biochemical and pharmacological studies.
Collapse
Affiliation(s)
- Tânia Keiko Shishido
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland; (P.L.); (P.A.)
| | - Matti Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland; (M.W.); (T.L.)
| | - Pia Laine
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland; (P.L.); (P.A.)
| | - Jouko Rikkinen
- Finnish Museum of Natural History, Botany Unit, University of Helsinki, P.O. Box 7, 00014 Helsinki, Finland;
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Taina Lundell
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland; (M.W.); (T.L.)
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland; (P.L.); (P.A.)
| |
Collapse
|
12
|
Nazem-Bokaee H, Hom EFY, Warden AC, Mathews S, Gueidan C. Towards a Systems Biology Approach to Understanding the Lichen Symbiosis: Opportunities and Challenges of Implementing Network Modelling. Front Microbiol 2021; 12:667864. [PMID: 34012428 PMCID: PMC8126723 DOI: 10.3389/fmicb.2021.667864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Lichen associations, a classic model for successful and sustainable interactions between micro-organisms, have been studied for many years. However, there are significant gaps in our understanding about how the lichen symbiosis operates at the molecular level. This review addresses opportunities for expanding current knowledge on signalling and metabolic interplays in the lichen symbiosis using the tools and approaches of systems biology, particularly network modelling. The largely unexplored nature of symbiont recognition and metabolic interdependency in lichens could benefit from applying a holistic approach to understand underlying molecular mechanisms and processes. Together with ‘omics’ approaches, the application of signalling and metabolic network modelling could provide predictive means to gain insights into lichen signalling and metabolic pathways. First, we review the major signalling and recognition modalities in the lichen symbioses studied to date, and then describe how modelling signalling networks could enhance our understanding of symbiont recognition, particularly leveraging omics techniques. Next, we highlight the current state of knowledge on lichen metabolism. We also discuss metabolic network modelling as a tool to simulate flux distribution in lichen metabolic pathways and to analyse the co-dependence between symbionts. This is especially important given the growing number of lichen genomes now available and improved computational tools for reconstructing such models. We highlight the benefits and possible bottlenecks for implementing different types of network models as applied to the study of lichens.
Collapse
Affiliation(s)
- Hadi Nazem-Bokaee
- CSIRO Australian National Herbarium, Centre for Australian National Biodiversity Research, National Research Collections Australia, NCMI, Canberra, ACT, Australia.,CSIRO Land and Water, Canberra, ACT, Australia.,CSIRO Synthetic Biology Future Science Platform, Canberra, ACT, Australia
| | - Erik F Y Hom
- Department of Biology and Center for Biodiversity and Conservation Research, The University of Mississippi, University City, MS, United States
| | | | - Sarah Mathews
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Cécile Gueidan
- CSIRO Australian National Herbarium, Centre for Australian National Biodiversity Research, National Research Collections Australia, NCMI, Canberra, ACT, Australia
| |
Collapse
|
13
|
Leiva D, Fernández-Mendoza F, Acevedo J, Carú M, Grube M, Orlando J. The Bacterial Community of the Foliose Macro-lichen Peltigera frigida Is More than a Mere Extension of the Microbiota of the Subjacent Substrate. MICROBIAL ECOLOGY 2021; 81:965-976. [PMID: 33404820 DOI: 10.1007/s00248-020-01662-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Lichens host highly diverse microbial communities, with bacteria being one of the most explored groups in terms of their diversity and functioning. These bacteria could partly originate from symbiotic propagules developed by many lichens and, perhaps more commonly and depending on environmental conditions, from different sources of the surroundings. Using the narrowly distributed species Peltigera frigida as an object of study, we propose that bacterial communities in these lichens are different from those in their subjacent substrates, even if some taxa might be shared. Ten terricolous P. frigida lichens and their substrates were sampled from forested sites in the Coyhaique National Reserve, located in an understudied region in Chile. The mycobiont identity was confirmed using partial 28S and ITS sequences. Besides, 16S fragments revealed that mycobionts were associated with the same cyanobacterial haplotype. From both lichens and substrates, Illumina 16S amplicon sequencing was performed using primers that exclude cyanobacteria. In lichens, Proteobacteria was the most abundant phylum (37%), whereas soil substrates were dominated by Acidobacteriota (39%). At lower taxonomic levels, several bacterial groups differed in relative abundance among P. frigida lichens and their substrates, some of them being highly abundant in lichens but almost absent in substrates, like Sphingomonas (8% vs 0.2%), and others enriched in lichens, as an unassigned genus of Chitinophagaceae (10% vs 2%). These results reinforce the idea that lichens would carry some components of their microbiome when propagating, but they also could acquire part of their bacterial community from the substrates.
Collapse
Affiliation(s)
- Diego Leiva
- Faculty of Sciences, Department of Ecological Sciences, Universidad de Chile, Santiago, Chile
- Institute of Biology, University of Graz, Graz, Austria
| | | | - José Acevedo
- Faculty of Sciences, Department of Ecological Sciences, Universidad de Chile, Santiago, Chile
| | - Margarita Carú
- Faculty of Sciences, Department of Ecological Sciences, Universidad de Chile, Santiago, Chile
| | - Martin Grube
- Institute of Biology, University of Graz, Graz, Austria
| | - Julieta Orlando
- Faculty of Sciences, Department of Ecological Sciences, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
14
|
Grimm M, Grube M, Schiefelbein U, Zühlke D, Bernhardt J, Riedel K. The Lichens' Microbiota, Still a Mystery? Front Microbiol 2021; 12:623839. [PMID: 33859626 PMCID: PMC8042158 DOI: 10.3389/fmicb.2021.623839] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/10/2021] [Indexed: 01/03/2023] Open
Abstract
Lichens represent self-supporting symbioses, which occur in a wide range of terrestrial habitats and which contribute significantly to mineral cycling and energy flow at a global scale. Lichens usually grow much slower than higher plants. Nevertheless, lichens can contribute substantially to biomass production. This review focuses on the lichen symbiosis in general and especially on the model species Lobaria pulmonaria L. Hoffm., which is a large foliose lichen that occurs worldwide on tree trunks in undisturbed forests with long ecological continuity. In comparison to many other lichens, L. pulmonaria is less tolerant to desiccation and highly sensitive to air pollution. The name-giving mycobiont (belonging to the Ascomycota), provides a protective layer covering a layer of the green-algal photobiont (Dictyochloropsis reticulata) and interspersed cyanobacterial cell clusters (Nostoc spec.). Recently performed metaproteome analyses confirm the partition of functions in lichen partnerships. The ample functional diversity of the mycobiont contrasts the predominant function of the photobiont in production (and secretion) of energy-rich carbohydrates, and the cyanobiont's contribution by nitrogen fixation. In addition, high throughput and state-of-the-art metagenomics and community fingerprinting, metatranscriptomics, and MS-based metaproteomics identify the bacterial community present on L. pulmonaria as a surprisingly abundant and structurally integrated element of the lichen symbiosis. Comparative metaproteome analyses of lichens from different sampling sites suggest the presence of a relatively stable core microbiome and a sampling site-specific portion of the microbiome. Moreover, these studies indicate how the microbiota may contribute to the symbiotic system, to improve its health, growth and fitness.
Collapse
Affiliation(s)
- Maria Grimm
- Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Martin Grube
- Institute of Plant Sciences, Karl-Franzens-University Graz, Graz, Austria
| | | | - Daniela Zühlke
- Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Jörg Bernhardt
- Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University Greifswald, Greifswald, Germany
| |
Collapse
|
15
|
Klarenberg IJ, Keuschnig C, Warshan D, Jónsdóttir IS, Vilhelmsson O. The Total and Active Bacterial Community of the Chlorolichen Cetraria islandica and Its Response to Long-Term Warming in Sub-Arctic Tundra. Front Microbiol 2020; 11:540404. [PMID: 33391192 PMCID: PMC7775390 DOI: 10.3389/fmicb.2020.540404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 11/30/2020] [Indexed: 01/04/2023] Open
Abstract
Lichens are traditionally defined as a symbiosis between a fungus and a green alga and or a cyanobacterium. This idea has been challenged by the discovery of bacterial communities inhabiting the lichen thalli. These bacteria are thought to contribute to the survival of lichens under extreme and changing environmental conditions. How these changing environmental conditions affect the lichen-associated bacterial community composition remains unclear. We describe the total (rDNA-based) and potentially metabolically active (rRNA-based) bacterial community of the lichen Cetaria islandica and its response to long-term warming using a 20-year warming experiment in an Icelandic sub-Arctic tundra. 16S rRNA and rDNA amplicon sequencing showed that the orders Acetobacterales (of the class Alphaproteobacteria) and Acidobacteriales (of the phylum Acidobacteria) dominated the bacterial community. Numerous amplicon sequence variants (ASVs) could only be detected in the potentially active community but not in the total community. Long-term warming led to increases in relative abundance of bacterial taxa on class, order and ASV level. Warming altered the relative abundance of ASVs of the most common bacterial genera, such as Granulicella and Endobacter. The potentially metabolically active bacterial community was also more responsive to warming than the total community. Our results suggest that the bacterial community of the lichen C. islandica is dominated by acidophilic taxa and harbors disproportionally active rare taxa. We also show for the first time that climate warming can lead to shifts in lichen-associated bacterial community composition.
Collapse
Affiliation(s)
- Ingeborg J. Klarenberg
- Natural Resource Sciences, University of Akureyri, Akureyri, Iceland
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Christoph Keuschnig
- Environmental Microbial Genomics, Laboratoire Ampère, CNRS, École Centrale de Lyon, Écully, France
| | - Denis Warshan
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | | | - Oddur Vilhelmsson
- Natural Resource Sciences, University of Akureyri, Akureyri, Iceland
- BioMedical Center, University of Iceland, Reykjavík, Iceland
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
16
|
Sierra MA, Danko DC, Sandoval TA, Pishchany G, Moncada B, Kolter R, Mason CE, Zambrano MM. The Microbiomes of Seven Lichen Genera Reveal Host Specificity, a Reduced Core Community and Potential as Source of Antimicrobials. Front Microbiol 2020; 11:398. [PMID: 32265864 PMCID: PMC7105886 DOI: 10.3389/fmicb.2020.00398] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
The High Andean Paramo ecosystem is a unique neotropical mountain biome considered a diversity and evolutionary hotspot. Lichens, which are complex symbiotic structures that contain diverse commensal microbial communities, are prevalent in Paramos. There they play vital roles in soil formation and mineral fixation. In this study we analyzed the microbiomes of seven lichen genera in Colombian Paramos using 16S rRNA gene amplicon sequencing and provide the first description of the bacterial communities associated with Cora and Hypotrachyna lichens. Paramo lichen microbiomes varied in diversity indexes and number of OTUs, but were composed predominantly by the phyla Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria, and Verrucomicrobia. In the case of Cora and Cladonia, the microbiomes were distinguished based on the identity of the lichen host. While the majority of the lichen-associated microorganisms were not present in all lichens sampled, sixteen taxa shared among this diverse group of lichens suggest a core lichen microbiome that broadens our concept of these symbiotic structures. Additionally, we identified strains producing compounds active against clinically relevant microbial strains. These results indicate that lichen microbiomes from the Paramo ecosystem are diverse and host-specific but share a taxonomic core and can be a source of new bacterial taxa and antimicrobials.
Collapse
Affiliation(s)
- Maria A. Sierra
- Molecular Genetics, Corporación CorpoGen – Research Center, Bogotá, Colombia
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - David C. Danko
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Tito A. Sandoval
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Gleb Pishchany
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Bibiana Moncada
- Licenciatura en Biología, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
| | - Roberto Kolter
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | | |
Collapse
|
17
|
Maggi E, Bongiorni L, Fontanini D, Capocchi A, Dal Bello M, Giacomelli A, Benedetti‐Cecchi L. Artificial light at night erases positive interactions across trophic levels. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13485] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Elena Maggi
- Dip. di Biologia, CoNISMa Università di Pisa Pisa Italy
| | | | | | | | - Martina Dal Bello
- Physics of Living Systems Group Department of Physics Massachusetts Institute of Technology Cambridge MA USA
| | | | | |
Collapse
|